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Abstract

We seek a learning-based algorithm that applies to var-
ious low-level vision problems. For each problem, we
want to �nd the scene interpretation that best explains
image data. For example, we may want to infer the pro-
jected velocities (scene) which best explain two consec-
utive image frames (image). From synthetic data, we
model the relationship between local image and scene
regions, and between a scene region and neighboring
scene regions. Three probabilities are learned, which
characterize the low-level vision algorithm: the local

prior, the local likelihood, and the the conditional prob-
abilities of scene neighbors. Given a new image, we
propagate likelihood functions in a Markov network to
infer the underlying scene. We use a factorization ap-
proximation, ignoring the e�ect of loops. This yields
an e�cient method to infer low-level scene interpreta-
tions, which we always �nd to be stable. We illustrate
the method with di�erent representations, and show
it working for three applications: an explanatory ex-
ample, motion analysis and estimating high resolution
images from low-resolution ones.

1 Introduction

Our goal is to interpret images, in particular, to solve
low-level vision tasks. Figure 1 shows examples of the
problems we hope to address: interpreting line draw-
ings, analyzing motion, and extrapolating resolution.
Each task has input image data, which can be a sin-
gle image, or a collection of images over time. From
that, we want to estimate an underlying scene, which
could be 3-dimensional shape, optical ow, reectances,
or high resolution detail. We will focus on low-level
scene representations like these that are mapped over
space. Reliable solutions to these vision tasks would
have many applications in searching, editing, and in-
terpreting images. Machine solutions might give insight

into biological mechanisms.

Much research has addressed these problems, pro-
viding important foundations. Because the problems
are under-determined, regularization and statistical es-
timation theory are cornerstones (e.g.: [21, 26, 43, 36,
39, 27]). Unfortunately, tractable solutions can be dif-
�cult to �nd, or are often unreliable or slow. Often-
times the statistical models used need to be made-up
or hand-tweaked. Various image interpretation prob-
lems have de�ed generalization from initial simpli�ed
solutions [40, 3, 38].

In part to address the need for stronger models, re-
searchers have analyzed the statistical properties of the
visual world. Several groups derived V1-like receptive
�elds from ensembles of images [30, 5]; Simoncelli and
Schwartz [37] accounted for contrast normalization ef-
fects by redundancy reduction. Li and Atick [2] ex-
plained retinal color coding by information process-
ing arguments. Researchers have developed powerful
methods to analyze and synthesize realistic textures by
studying the response statistics of V1-like multi-scale,
oriented receptive �elds [19, 11, 43, 36]. These meth-
ods may help us understand the early stages of image
representation and processing in the brain.

Unfortunately, they don't address how a visual sys-
tem might interpret images. To do that, one should
collect statistics relating images with their underlying
scene interpretations. This data is di�cult to collect
for natural scenes, since it involves gathering both im-
ages and the ground truth data, of the scene attributes
to be estimated.

A useful alternative is to use computer graphics to
generate and render synthetic worlds, where every at-
tribute is known, and record statistics from those. Sev-
eral researchers have done so: Kersten and Knill stud-
ied linear shading and other problems [25, 24]; Hurl-
bert and Poggio trained a linear color constancy esti-
mator [20]. Unfortunately, the simpli�ed (usually lin-
ear) models which were used to obtain tractable results



limited the usefulness of these methods.

Our approach is to use general statistical models,
but to make the method tractable by restricting our-
selves to local regions of images and scenes. We follow a
learning-based approach, and use Markov networks to
form models of image rendering, and prior probabilities
for scenes.

We ask: can a visual system correctly interpret a
visual scene if it models (1) the probability that any
local scene patch generated the local image, and (2)
the probability that any local scene is the neighbor to
any other? The �rst probabilities allow making scene
estimates from local image data, and the second allow
these local estimates to propagate. This approach leads
to a Bayesian method for low level vision problems,
constrained by Markov assumptions. We describe this
general method, illustrate implementation choices, and
show it working for several problems.

Figure 1: Example low-level vision problems. (The

scenes shown are idealizations, not program out-

puts).

2 Bayesian method

We take a Bayesian approach [6, 26]. We want to �nd
the the posterior probability, P (~xj~y): the probability of
a scene, ~x, given the image observation, ~y. By Bayes
rule (standard names shown):

P (~xj~y) =
P (~yj~x) P (~x)

P (~y)
(1)

posterior =
likelihood � prior

evidence
: (2)

The evidence is independent of the scene, ~x, we want
to estimate, so we treat it as a normalization constant.

The optimum scene estimate, ~̂x, depends on the loss
function, or the penalty for guessing the wrong scene
[6, 12]. Two di�erent choices lead to the estimation
rules used here. The Maximum A Posteriori, or MAP,

estimate is the scene, ~̂x, which maximizes the poste-
rior, P (~xj~y). The Minimum Mean Squared Error, or
MMSE, estimate is the posterior mean. For computa-
tional convenience, we will use MMSE with inference
in a continuous representation, and MAP with discrete
representations.

The likelihood term, P (~yj~x) is the forward model.
For a given scene, it asks, what is the probability that
this scene renders to the observed image data? The
prior probability, P (~x) states how probable a scene is
to exist.

The space of all possible solutions is very large. In
principle, to �nd the best scene, one needs to ren-
der each candidate scene and evaluate its likelihood
and prior probability. To make practical systems, re-
searchers typically restrict some aspect of the problem.
We will make three major approximations. First, we
only model the statistics of local regions, invoking the
Markov assumption (next section). Second, we will use
a factorization approximation (Sect. 3.1) to solve the
Markov model. Finally, our preferred solution is to
sample from a continuous distribution (Sect. 4.3) dur-
ing the \inference phase".

3 Markov network

We place the image and scene data in a Markov network
[31, 17]. We break the images and scenes into localized
patches where image patches connect with underlying
scene patches; scene patches also connect with neigh-
boring scene patches, Fig. 2. (The neighbor relation-
ship can be with regard to position, scale, orientation,
etc.). This forms a network of scene nodes, each of
which may have an associated observation.

Figure 2: Markov network for vision problems.

Observations, y, have underlying scene explana-

tions, x. Connections between nodes of the graphi-

cal model indicate statistical dependencies.

Referring to Fig. 2, the Markov assumption asserts
that complete knowledge of node xj makes nodes xi and
xk independent, or P (xi; xkjxj) = P (xijxj)P (xk jxj).
We say xi and xk are conditionally independent given
xj . (For notational convenience, we will drop the vec-
tor symbol from the random variables.) The Markov
assumption also implies that P (xijxj ; xk) = P (xijxj).



This lets us model a complicated spatial probability by
a network of (tractable) probabilities governing local
relationships.

To apply a Markov network to vision problems, we
need to �rst learn the parameters of the network from a
collection of training examples. Then, given new image
data, we seek to infer the corresponding scene.

There are exact and approximate methods for both
the learning and inference phases [17, 22, 14]. Exact
methods can be prohibitively time consuming. For net-
works without loops, the Markov assumption allows the
posterior probability to factorize, yielding e�cient lo-
cal rules for both learning and inference [31, 42, 22, 14].
We will adopt a factorization approximation, ignoring
the e�ect of loops during both learning and inference.

3.1 Factorization

There are di�erent, equivalent ways to use the Markov
assumptions to factorize the posterior probability of a
Markov network without loops [31, 42, 22, 14]. We use
a particular factorization, which we believe to be new,
which leads to a message passing scheme with appealing
interpretations for the messages [13].

We derive the evidence propagation rules of the in-
ference stage by calculating the messages needed to
achieve the optimal Bayesian estimate at a scene node.
These rules will indicate the probabilities we need to
measure during the learning phase. We present the
derivation for the MMSE estimator, using continuous
variables, then indicate how to modify the rules for the
MAP estimator, and for discrete variables.

Before any messages are passed, each node, j, has
only its local evidence, yj , available for estimating
the local scene, xj . The best that node can do is to
calculate the mean of the posterior from P (xj jyj) /
P (xj ; yj) = P (yj jxj)P (xj). The MMSE estimate at
iteration 0, x̂j0, is

x̂j0 =

Z
xj

xjP (xj)P (yj jxj): (3)

At the �rst message passing iteration, node j will
communicate with neighboring scenes. For simplicity
of exposition, we assume scene node j has just two
scene neighbors, nodes i and k. Including those obser-
vations yi and yk of the neighboring nodes, the MMSE
estimate for xj will be the mean over xj of the joint
posterior, P (yi; xi; yj ; xj ; yk; xk), after marginalization
over xi and xk :

x̂j1 =

Z
xj

xj

Z
xi;xk

P (yi; xi; yj ; xj ; yk; xk) (4)

=

Z
xj

xj

Z
xi;xk

P (yi; xi; yj ; yk; xk jxj)P (xj)(5)

=

Z
xj

xjP (xj)P (yj jxj) (6)

�

Z
xi

P (yi; xijxj)

Z
xk

P (yk; xkjxj): (7)

The factorization of P (yi; xi; yj ; yk; xkjxj) used above
follows from the conditional independence de�ned by
the Markov network. After marginalizing over xi, the
message

R
xi

P (yi; xijxj) will become P (yijxj), and sim-
ilarly for xk. We call this a region likelihood, the like-
lihood given xj of some other region of image obser-
vations, in this case, just yi. This is a nice feature of
our particular factorization: the messages passed be-
tween nodes are all region likelihoods. These are all
conditionally independent of each other (given xj), if
the network has no loops.

To form the full likelihood function for xj , we mul-
tiply together all the region likelihoods and the local
likelihood. Multiplying by the local prior, P (xj), then
gives the posterior for xj , joint with yj and all the ob-
servations that entered into the region likelihoods.

We call P (xj) the local prior, and P (yj jxj) the local

likelihood. P (xijxj) is a scene conditional. Eq. (7) then
has the form,

x̂j =

Z
xj

xj � [local prior] (8)

� [local likelihood] (9)

�
Y

neighbor links

[region likelihoods]:(10)

We need to know how to generate new region likeli-
hood messages from those received on the previous iter-
ation. Let us determine what message node xj should
pass to node xk. To examine a more general case, as-
sume now xj connects to four other scene nodes (see
Fig. 7). Suppose node xj receives region likelihood
messages P (yR1jxj), P (yR2jxj), P (yR3jxj) from each
scene node other than xk . By construction, these re-
gions (R1, R2, R3) are conditionally independent of
each other and of yj , given xj . Thus the region like-
lihood for the union of those observations is just their
product,

P (yR1; yR2; yR3; yj jxj) = P (yR1jxj)P (yR2jxj)P (yR3jxj)P (yj jxj):
(11)

We seek to calculate the next region likelihood mes-
sage Lkj = P (yR1; yR2; yR3; yj jxk) to pass to node xk.
At each iteration, by adding more image observations
into the passed region likelihoods, the scene nodes add
more observations to their joint posteriors of observa-
tions and scene value, improving their scene estimates.



We will �nd P (yR1; yR2; yR3; yj jxk) by �rst comput-
ing P (yR1; yR2; yR3; yj ; xj jxk), then marginalizing over
xj . We use P (a; bjc) = P (ajb; c)P (bjc) to write

P (yR1; yR2; yR3; yj ; xj jxk) = (12)

P (yR1; yR2; yR3; yj jxj ; xk)P (xj jxk): (13)

Because xj is closer in the network to the observa-
tions in the region likelihood than is xk , by the Markov
properties, we have P (yR1; yR2; yR3; yj jxj ; xk) =
P (yR1; yR2; yR3; yj jxj).

Combining our results, we have

P (yR1; yR2; yR3; yj jxk) = (14)Z
xj

P (xj jxk)P (yR1jxj)P (yR2jxj)P (yR3jxj)P (yj jxj): (15)

This tells us how to pass region likelihoods from node j
to node k: (1) multiply together the region likelihoods
from the other neighbors of node j; (2) include node
j's local likelihood; (3) multiply by P (xj jxk); and (4)
marginalize over xj . Figure 3 shows the passed mes-
sages.

Figure 3: To send a message to node xk, node

xj multiplies together the (conditionally indepen-

dent) region likelihoods for regions R1, R2, and R3,

giving P (yR1; yR2; yR3jxj) (gray arrows show mes-

sages). It multiplies in its own local likelihood,

also conditionally independent of the others, giv-

ing P (yR1; yR2; yR3; yj jxj). After multiplication by

P (xj jxk) and marginalization over xj , that becomes

P (yR4jxk), node xk's region likelihood for the new

region R4 = R1
S
R2
S
R3
S
yj . That is node xj 's

message to node xk, and illustrates one iteration of

recursively passing conditionally independent infor-

mation to neighboring nodes.

Summarizing, after each iteration, the MMSE esti-
mate at node j, x̂j is

x̂j =

Z
xj

xjP (xj)P (yj jxj)
Y
k

Lkj ; (16)

where k runs over all scene node neighbors of node j.

We calculate the region likelihoods, Lkj , from:

Lkj =

Z
xk

P (xk jxj)P (ykjxk)
Y
l6=j

~Llk; (17)

where ~Llk is Llk from the previous iteration. The initial
~Llk's are 1.

To learn the network parameters, we measure P (xj),
P (yj jxj), and P (xkjxj), directly from the synthetic
training data.

3.2 Variations

For a discrete probability representation, we replace the
integral signs with sums. To use the MAP estimator,
instead of MMSE, the above arguments hold, with the
following two changes:

Z
xj

xj ! argmaxxj (18)

Z
xi;xk

! maxxi;xk : (19)

3.3 Loops

If the Markov network contains loops, then the re-
gion likelihoods arriving at a node are not guaranteed
conditionally independent, and the above factorization
may not hold. Both learning and inference then re-
quire more computationally intensive methods. There
are a range of approximation methods to choose from
[22, 14].

One approach is to use non-loopy multi-resolution
quad-tree networks [27], for which the factorization
rules do apply, to propagate information spatially. Un-
fortunately, this gives results with artifacts along quad-
tree boundaries, statistical boundaries in the model not
present in the real problem.

We found good results by including the loop-causing
connections between adjacent nodes at the same tree
level but applying the factorized learning and propaga-
tion rules, anyway. Others have obtained good results
using the same approach for inference [14, 28, 42];

By \unwrapping" the computation of a loopy net-
work, Weiss provides theoretical arguments why this
works for certain networks [42]. Evidence is double-
counted, but all evidence ends up being double counted
equally. Fig. 4 shows how this multiple counting is
distributed over space, for an array of four-connected
nodes. By the (scaled) intensity, the �gure shows the
number of times each node contributes to the belief
calculation of the center node.



Clearly, all nodes are not counted equally. One could
avoid this concern by using other approximations for
solving the Markov network, although those would be
slower. However, in our experiments, we do not observe
problems frommaking the factorization approximation.
We prefer this method because it is fast, and we can
identify clearly what the messages between nodes mean.

It may be the case that for various vision problems,
the likelihood functions are essentially binary functions,
either zero or not, indicating either a scene interpreta-
tion is inconsistent with the observations, or it is con-
sistent. For such likelihood functions, the region like-
lihoods are always conditionally independent, as is re-
quired for the arguments of Sect. 3.1, even for a network
with loops. (For binary likelihoods, the factorization of
Eq. 11 will hold even if observations are counted mul-
tiple times.) The behavior of this limiting case may
explain why we obtain good results using this factor-
ization approximation.

(a)

(b)
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Figure 4: Plots of the number of times each node

contributes a message to the belief at the center

node, as a function of iteration number. (a) shows

locations contributing to the belief, with arrows in-

dicating which node each message came from. The

nine images of (b) repeat that and continue to itera-

tion 8, plotting one node per square pixel. This view

of the \unwrapped" calculation shows that node

data enters the belief calculation multiple times

(each plot is rescaled).

4 Probability Representations

We have explored di�erent probability representations
with our method, Eqs. (16) and (17): (1) continuous,
(2) discrete, and (3) a hybrid method. To explain our
technique, in the rest of the paper we present exam-
ple applications using each of these three probability
representations.

4.1 Continuous Representation

We used mixtures of gaussians to represent continuous
probability densities. We �t the densities to training
data using EM (Expectation Maximization) [7].

During inference, Eqs. (16) and (17) require mul-
tiplying together probability densities. Since gaus-
sians multiply together to give gaussians (given by the
Kalman �ltering formula [16]), the multiplied mixtures
yield other mixtures of gaussians.

However, one must merge and prune the gaussians.
We tested whether two gaussians of a mixture could
be merged into one by measuring the Kullback-Leibler
(KL) distance [7] between the mixture with the merged
gaussians and the mixture with the non-merged gaus-
sians. (We measured the KL distance by sampling, so
there is randomness in our pruning). We repeatedly
testing pairs of gaussians, never repeating comparisons
of a merged mixture with comparisons made by its an-
cestors gaussians. This pruning allows iterative cal-
culation with continuous densities, using a mixture of
gaussians representation.

4.1.1 Toy Problem

We illustrate this representation, and our technique, for
a toy problem with 1-dimensional data. Consider a 3
by 3 network of nodes (Fig. 8, (a)) laid out spatially
5 units apart. The \scene" we want to estimate is the
horizontal position of each node, which is the same for
each node of a column, and di�erent by 5 units for each
adjacent node in a row. The image data usually tells
the scene value itself, with a little noise. However, when
the image data, y = 0, then the underlying scene, x,
can take on any value. Figure 5 shows the joint density,
P (x; y). This behavior is typical of some vision prob-
lems, where local image cues can determine the scene
interpretation, but other image values give ambiguous
interpretations.

4.1.2 Learning

During learning, we present many examples of image
data, y, coupled with scene data, x. From those ex-



amples, we used EM to �t mixtures of ten gaussians
to each of the probability densities that de�ne our al-
gorithm: the local prior P (xj), the local likelihood,
P (yj jxj), and the scene conditionals, P (xleftjx), and
P (xabovejx). Figure 6 shows the �tted mixtures.

Figure 5: Illustrative toy problem, joint probability

densities. x is the scene data; y is the corresponding

observation. y is a good indicator of the underlying

scene, except when y = 0; then the scene can be

anything.

(a)

(b)

(c)

(d)

Figure 6: Outputs of learning phase for toy prob-

lem of Sect. 4.1.1. All probability densities shown

are mixtures of gaussians, �tted to labelled train-

ing data. Both scene, x, and image, y, variables

are 1-d here. (a) Local prior (red shows component

gaussians of mixture, blue is sum). Fit is only ap-

proximate to the true prior (vertical projection of

Fig. 5), but adequate for inference. (b), (c) and

(d): Learned conditionals for P (yjx), P (xleftjx),

P (xabovejx). Jumps to horizontally neighboring

node changes x by 5 units. Jumps to vertical neigh-

bors leave x constant. The learned conditionals (c)

and (d) both correctly model this made-up world.



4.1.3 Inference

Given particular image data (Fig. 8 (a)), we infer the
underlying scene values for our toy problem by itera-
tively applying Eqs. (16) and (17). Figures 7 and 8
illustrate the message passing and belief calculation.
Figures 9 { 12 show the posterior probabilities at each
node for 0, 1, 2, and 10 iterations. By iteration 2, each
node has communicated with node 5 (which has un-
ambiguous local image information). Each node then
has the correct posterior mean. After 10 iterations,
the spreads of the posterior probability peaks are arti�-
cially narrowed, from treating as conditionally indepen-
dent messages passed around through loops. However,
the posterior means maintain their proper values.

4.2 Discrete representation

The continuous representation used above is appealing,
but inference is very slow for larger problems. Fur-
thermore, the necessary repeated pruning of gaussian
mixtures reduces the modeling accuracy.

To correct those problems, one might consider using
a discrete representation. Then the basic calculations
in the inference equations, Eqs. (16) and (17), become
(fast) vector and matrix multiplications. In this sec-
tion, we show the result of a discrete representation,
illustrating another application domain: motion analy-
sis. Here the \image" is two concatenated image frames
at sequential times. The \scene" is the corresponding
projected velocites in each frame.

The training images were randomly generated mov-
ing, irregularly shaped blobs, as typi�ed by Fig. 13 (a).
The contrast with the background was randomized.
Each blob was moving in a randomized direction, at
some speed between 0 and 2 pixels per frame.

We represented both the images and the velocities in
4-level Gaussian pyramids [9], to e�ciently communi-
cate across space. Each scene patch then additionally
connects with the patches at neighboring resolution lev-
els. Figure 13 shows the multiresolution representation
(at one time frame) for images and scenes.1

We applied the training method and propagation
rules to motion estimation, using a vector code rep-
resentation [18] for both images and scenes. We wrote
a tree-structured vector quantizer, to code 4 by 4 pixel
by 2 frame blocks of image data for each pyramid level
into one of 300 codes for each level. We also coded
scene patches into one of 300 codes. Figure 13 shows
an input test image, (a) before and (b) after vector

1To maintain the desired conditional independence relation-

ships, we appended the image data to the scenes. This provided

the scene elements with image contrast information, which they

would otherwise lack.

quantization. The true underlying scene, the desired
output, is shown at the right, (a) before and (b) after
vector quantization.

4.2.1 Learning

During learning, we presented approximately 200,000
examples of di�erent moving blobs, some overlapping,
of a contrast with the background randomized to one of
4 values. Using co-occurance histograms, we measured
the statistical relationships that embody our algorithm:
P (x), P (yjx), and P (xnjx), for scene xn neighboring
scene x. Figures. 14 and 15 show examples of these
measurements.

4.2.2 Inference

Figure 16 shows six iterations of the inference algorithm
(Eqs. 16 and 17) as it converges to a good estimate for
the underlying scene velocities. The local probabilities
we learned (P (x), P (yjx), and P (xnjx)) lead to �g-
ure/ground segmentation, aperture problem constraint
propagation, and �lling-in (see caption). The resulting
inferred velocities are correct within the accuracy of the
vector quantized representation.



Figure 7: Graphical illustration of passing a message from node xa to node xb. The steps are: (a) combine

conditionally independent region likelihoods arriving at xa by multiplying them together; (b) introduce the variable

xb; (c) and (d) multiply by P (xajxb) to move xa out of the conditioning variables; (e) marginalize out xa. The result

is the region likelihood for the union of all the regions multiplied together in (a), but now referenced to node xb.



(a)

(b)

Figure 8: (a) Observed data for scene inference, for toy problem. (b) Belief calculation at a node (node 5), �rst

iteration. The belief is the product of six probability distributions over x5: the prior on x (P (x5)), the local likelihood

(P (y5 = 3jx5)), and the four region likelihoods, which are messages passed from nodes 2, 4, 6, and 8.



Figure 9: Next four �gures: posterior distributions at each node of toy problem of Sect. 4.1.1, over several iterations.

Figure 8 (a) shows the \image" data. Iteration 0: initial beliefs at each node before any message passing. The

observations at all nodes have ambiguous interpretations, except for node 5, where y = 3 ) x = 3, by the joint

density of Fig. 5. Sampling is used when pruning the gaussian mixtures, so each pruned mixture (of the nodes other

than 5) looks di�erent.

Figure 10: Beliefs at iteration 1. Nodes 2, 4, 6, and 8 have bene�tted from the message passed from node 5.



Figure 11: Beliefs at iteration 2. All nodes have heard the message from node 5. The posteriors have all attained

their proper mean values (-2 for left column of nodes, 3 for middle column, 8 for right column).

Figure 12: Beliefs at iteration 10. Running for 10 iterations arti�cially narrows the posterior distributions, from

hearing the same information many times as if new, due to the network loops. However, the mean values are still the

correct ones.



(a)

(b)
Figure 13: Motion estimation problem. (a) First of two frames of image data (in gaussian pyramid), and corre-

sponding frames of velocity data. (b) Image and scene representations after vector quantization. The left side shows

just one of two image frames. The right side shows (red) motion vectors from the second time frame obscuring (blue)

motion vectors from the �rst. The scene representation contains both frames. Each large grid square is one node of

the Markov network.

Figure 14: The local likelihood information for motion problem, vector quantized representation. Conditional

probabilities are derived from co-occurance histograms. For a given image data sample, (a), the 4 most likely scene

elements are shown in (b).

Figure 15: Some scene conditional probabilities, for the motion problem. For the given scene element, (a), the 4

most likely nodes from four di�erent neighboring scene elements are shown. Scene elements also connect to each

other across scale, not shown in this �gure.



Figure 16: The most probable scene code for Fig. 13b at �rst 6 iterations of Bayesian belief propagation. (a)

Note initial motion estimates occur only at edges. Due to the \aperture problem", initial estimates do not agree.

(b) Filling-in of motion estimate occurs. Cues for �gure/ground determination may include edge curvature, and

information from lower resolution levels. Both are included implicitly in the learned probabilities. (c) Figure/ground

still undetermined in this region of low edge curvature. (d) Velocities have �lled-in, but do not yet all agree. (e)

Velocities have �lled-in, and agree with each other and with the correct velocity direction, shown in Fig. 13.



4.3 Continuous learning, sampled infer-

ence

Figure 17: \Lineup of suspects" method for infer-

ence. (Photo from [1]). At each node, we gather a

set of scenes, each of which explains the observed

local image data. We evaluate the scene posterior

only at those sample scenes. We sample appropri-

ately from the continuous representation of the con-

ditional probability with neighboring scenes to ob-

tain discrete linking matrices between nodes. This

allows for fast inference calculations in Eqs. 16 and

17.

Unfortunately, in a discrete representation, a faith-
ful image representation requires so many vector codes
that it becomes infeasible to measure the prior and co-
occurance statistics. Note unfaithful �t of the vector
quantized image and scene in Fig. 13. On the other
hand, the discrete representation allows fast propaga-
tion during inference. We developed a hybrid method
that allows both good �tting and fast propagation.
We use a continuous representation during the learning

phase, and a sampled one during inference.

We illustrate this favored method with a third ap-
plication, \super-resolution". For super-resolution,
the input \image" is the high-frequency components
(sharpest details) of a sub-sampled image. The \scene"
to be estimated is the high-frequency components of the
full-resolution image, Fig. 19.

We describe the image and scene patches as vectors
in a continuous space, and model the probability densi-
ties, P (x), P (y; x), and P (xn; x), as gaussian mixtures
[7]. (We reduced the dimensionality of the scene and
image data within each patch by principal components
analysis [7]). We had approximately 20,000 patch sam-
ples from our training data, and typically used 9 di-
mensional representations for both images and scenes.

During inference, we evaluated the prior and condi-
tional distributions of Eq. 17 only at a discrete set of
scene values, di�erent for each node. (This approach
was inspired by the success of other sample-based meth-
ods [21, 11]). The scenes were a sampling of those
scenes which render to the image at that node. We
think of it as a \lineup of suspects", Fig. 17. Each node
has its own set of suspects. Each scene in a node's
lineup has in common the fact that it renders to the
image observation at that node. We evaluate the likeli-
hoods of the inference equations, Eqs. 16 and 17, only
at those scene values for each node. This focusses our
computation to just the locally feasible scene interpre-
tations.

P (xkjxj) in Eq. 17 becomes the ratios of the gaus-
sian mixtures P (xk; xj) and P (xj), evaluated at the
scene samples at nodes k and j, respectively. P (ykjxk)
is P (yk; xk)=P (xk) evaluated at the scene samples of
node k. This shows the bene�t of our hybrid approach.
To �t the image and scene well, each sample (suspect)
has to have a very small bin of continuous parameter
values that map to it. It would be prohibitive to learn
the occurance and cooccurance statistics of such a �ne-
grain set of samples; one would have to wait forever
for scene values to fall in those bins. So we do our
learning in the continuous domain, where we can inter-
polate across parameter values, and do our inference
in a discrete domain, where the calculations reduce to
matrix operations. This \continuous learning/sampled
inference" approach reduced the processing times from
24 hours to 10 or 15 minutes for the super-resolution
problem.

To select the scene samples, we could condition the
mixture P (y; x) on the y observed at each node, and
sample x's from the resulting mixture of gaussians.
We obtained somewhat better results by using the
scenes from the training set whose images most closely
matched the image observed at that node. This avoided
one gaussian mixture modeling step; our sampled infer-



ence actually gave better results than inference in the
continuous representation.

Using 20 scene samples per node, setting up the
P (xk jxj) linking matrix for each link took about 10
minutes for these images (approximately 1000 nodes).
The scene (high resolution) patch size was 3x3; the im-
age (low resolution) patch size was 7x7. We didn't feel
long-range scene propagation was critical here, so we
used a at, not a pyramid, node structure. Once the
linking matrices were computed, the iterations of Eq. 17
were completed in a few minutes.

We performed experiments on two di�erent sources
of images, synthetic and natural. For a controlled train-
ing set, we trained on images of synthetically gener-
ated shaded and painted blobs, typi�ed by Fig. 19 (a).
Our training data were pairs of band-pass and high-
frequency samples such as those shown in Fig. 18. We
used local contrast normalization to reduce the vari-
ations we needed to model. Figure 19 illustrates the
image processing steps and the reconstructed result.

Figure 20 shows the bandpassed results after 0, 1, 2,
and 20 iterations of the algorithm. (This is the detail
we add to Fig. 19 (c) to get Fig. 19 (d). After few iter-
ations, the MAP estimate of the high resolution image
is visually close to the actual full frequency image. The
dominant structures are all in approximately the cor-
rect position. This may enable high quality zooming
of low-resolution images, attempted with limited suc-
cess by others [35, 32]. To illustrate that the problem
is non-trivial, we include the nearest neighbor solution
in Fig. 20. The choppiness there (and at iteration 0,
before message passing) shows there are many di�er-
ent high-resolution scenes corresponding to any given
low-resolution image patch.

In our second super-resolution experiment, we
trained with images of tigers in the wild, from the Corel
database. (Given the success of multi-resolution tex-
ture synthesis algorithms [19, 11, 43, 36], we wondered
if high resolution texture scene components might be
learned and synthesized). Figure 22 shows the fre-
quency components of the image, and Figs. 24 and 25
show results. (Figure 23 is the result of a simple com-
parison algorithm, the nearest neighbor. The choppi-
ness points out that given image data can have multiple
possible local scene interpretations, requiring spatial
propagation of some sort.) Good edge and texture syn-
thesis in parts of Fig. 24 provide encouragement that
this approach might be useful even for textured images.
The solution is stable, and reaches convergence quickly.

For comparison, we show the processing result ob-
tained using 5 samples (suspects) per node, instead of
20, Fig. 25. As might be expected, the result is a bit
choppier.

To test the generalization ability, we used the prob-
abilities trained on the tiger images with a non-tiger
image, that of the teapot of Fig. 26. The tiger database
contained few sharp, crisp edges, and the edges are not
extrapolated well in the result. However, the results are
good enough to show that the learned relationships be-
tween scenes and images generalizes some beyond strict
image classes.

5 Discussion

In related applications of Markov random �elds to vi-
sion, researchers often use relatively simple, heuristi-
cally derived expressions (rather than learned) for the
likelihood function P (yjx) or for the spatial relation-
ships in the prior term on scenes [17, 33, 15, 24, 8, 27,
26, 34]. For other learning or constraint propagation
approaches in motion analysis, see [27, 29, 23].

Weiss showed the advantage of belief propagation
over regularization methods for several 1-d problems
[41]; we are applying related methods to our 2-d prob-
lems.

The local probabilities we measure (local prior and
likelihood, and conditional probability of neighboring
scenes) have power and exibility. For the motion prob-
lem, they lead to �lling-in motion estimates in a di-
rection perpendicular to object contours, Fig. 16 (a){
(c). For the super-resolution problem, those same cor-
responding probabilities lead to contour completion in
the direction of the contours, Fig. 20 (d){(f). The same
learning machinery was used in each case, but trained
for di�erent problems, achieving di�erent behavior, ap-
propriate to each problem.

An appealing feature of this work is that it instanti-
ates many of the intuitions developed vision researchers
some time ago. We spatially propagate local interpre-
tation hypotheses in the spirit of blocks world [40, 10]
scene interpretation and the work of Barrow and Tenen-
baum on intrinsic images [3, 4].

6 Summary

We have presented a general, learning-based method
to solve low-level vision problems. The essence of the
algorithm is measuring three probabilities in a synthet-
ically generated labelled world: the local prior, the lo-
cal likelihood, and the conditional relationship between
scene neighbors. We placed image and scene regions in
a Markov network. We used a factorization approxima-
tion to solve the network: we propagated information
as if the network had no loops. This propagation is
fast, and the messages passed between nodes are in-
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Figure 18: Training data, from images such as Fig. 19 (a), for super-resolution problem. The large squares are the

image data (mid-frequency data). The small squares above them are the corresponding scene data (high-frequency

data).

terpretable. Other approximation methods could be
used here, if desired. In all our examples, we found
this method led to stable and accurate inferences. This
method is exact if the region likelihood functions are
binary valued.

We explored the trade-o�s between continuous and
discrete representations with this method, opting for
a hybrid approach: continous learning/sampled infer-
ence.

We considered three application examples: an ex-
planatory toy problem, motion analysis, and super-
resolution. In all three domains, the algorithms be-
haved as desired. Scene estimation by Markov net-
works may be useful for other low-level vision problems,
such as extracting intrinsic images from line drawings
or photographs.
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iter 0: ML iter 0: MAP

iter 1 ML iter 1 MAP

iter 2 ML iter 2 MAP

iter 3 ML iter 3 MAP

iter 20 ML iter 20 MAP

Figure 24: Reconstructed full-resolution images, using the scene estimates from belief propagation in the Markov

network. We present both the maximum likelihood solution (P (x) not multiplied into the �nal belief, Eq. 16) and

the MAP solution (Eq. 16). The prior pulls estimated detail somewhat toward zero. After just a few iterations, the

algorithm converges to a good solution. That solution is stable (see iteration 20 result). Compare with Fig. 22.



iter 3 ML, 5 samples iter 3 MAP, 5 samples

Figure 25: For a comparison of implementation choices, we show the result of using 5 scene samples at each node,

instead of the 20 used in Fig. 24. The image is a bit choppier, which for the textured regions can be a preferred e�ect.

Figure 26: Result from training on the tiger image database and running on this teapot image. The input is the

\low-resolution" image; the desired output is the \full-resolution" image. Crisp edges, of which there are few in

the tiger training set, are not rendered well. However, the textured, painted pattern on the teapot is extrapolated

reasonably well from the low-resolution original.
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