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1
1 Introduction

In domains that contain uncertainty, evidential reason-
ing can play an important role in plan execution. For
example, suppose we are executing an evacuation plan
and have received the following messages:

Bus1: Arrived in Abyss, loading 5 passengers.
Exodus weather: storm clouds are forming to the east.
Bus2: Engined overheated on way to Delta.
Bus1: Got at tire on way to Barnacle.
Bus2: Loading 9 passengers.
Bus1: It is starting to snow in Barnacle.
Bus3: Got at tire on way to Calypso.

Given the messages received so far, we might ask
questions about the current or future state of the world
such as what is the probability that a severe storm will
hit Barnacle? Or what is the probability that Bus1 will
get another at tire? Answers to these questions can be
used to improve the plan. For example, we might send
storm supplies to Barnacle or send Bus1 on a longer but
better paved road. We might also ask whether the plan
will have a higher chance of succeeding if we perform
some action. For example, given the evidence received
so far, will the plan have a higher chance of succeeding
if we send a helicopter to evacuate the people in Exodus
compared to letting Bus3 do it, as originally planned.
We cast plan monitoring as inference on Bayesian

networks, but we interested in planning domains for
which the resulting networks are di�cult to solve with
exact methods. Simulation is a promising alternative
when analyzing large plans in uncertain domains (e.g.,
(Lesh et al. 1998)). Simulation is linear in the length of
the plan and fast in practice. Furthermore, the number
of simulations required to estimate the probability of
an event to some level of con�dence is independent of
the length of the plan.
In this paper, we explore the use of simulation for

performing plan monitoring. Our objective is an algo-
rithm for quickly generating a set of weighted simula-
tions, where the weight indicates the probability of the
simulation given observations made during the partial
execution of a plan.
There are several algorithms for simulation-based

inference in Bayesian networks, including likelihood
weighting (Shachter and Peot 1989; Fung and Chang.
1989), arc reversal (Shachter 1986; Fung and Chang.
1989), and Survival Of The Fittest (SOF) (Kanazawa
et al. 1995). We consider these algorithms and �nd
that none of them is especially well suited for (or was
designed for) plan monitoring. We then present a mod-
i�cation to SOF that improves its performance and in-
troduce a new algorithm, Rewind/Replay (RR).
In the remainder of this paper, we formulate our task,

discuss previous algorithms, and consider two problems
on which past approaches perform poorly. We then
present RR and a generalization of SOF. Finally, we
describe our experiments and conclude.

2 Problem formulation

Previous work shows how probabilistic processes and
plans can be encoded in Bayesian networks (e.g., (Dean
and Kanazawa 1989; Hanks et al. 1995)). Here, we
formulate our task as inference on Bayesian networks.
A Bayesian network describes the joint distribution

over a �nite set of discrete random variables X . Each
variable Xi 2 X can take on any value from a �nite
domain val(Xi). A variable assignment is an expression
of the form Xi = xj indicating that Xi has value xj .
We use capital letters (e.g., X;Y; Z) for variables and
lowercase letters (e.g., x; y; z) for values of variables.
A Bayesian network is a directed, acyclic graph in

which nodes correspond to variables and arcs to direct
probabilistic dependence relations among variables. A
network is de�ned by a variable set X , a parent func-
tion �, and a conditional probability table CPT . The
� function maps Xi to Xi's parents. The CPT func-
tion maps Xi and a variable assignment for each parent
of Xi to a probability distribution over val(Xi). Vari-
able Xi can be sampled by randomly drawing from the
probability distribution returned by CPT . An entire
network can be sampled by sampling the variables in
an order such that each variable is sampled after its
parents are sampled. See (Pearl 1988) for details.
Although we formulate our problem more generally,

we are especially interested in Dynamic belief networks
(DBNs), also called temporal belief networks (e.g.,
(Kjaerul� 1992)). DBNs are Bayesian networks used
to model temporal processes. A DBN can be divided
into subsections, called time slices, that correspond to
snapshots of the state of the world.
Typically, certain variables in each time slice are des-

ignated as observation variables. Figure 1 shows a very
simple DBN. The state variables Posi and Diri repre-
sent a person's position and direction, respectively, at
time i. The person's direction at time i inuences both
their position and direction at time i+1. The variable
Obsi represents some observation on Diri, such as the
output of a compass or the person calling out their di-
rection. The observations may be noisy. Note that we
can infer a probability distribution over the position of
the person given a set of observations, even though the
position is never directly observed.
We now de�ne the simulated inference task. The in-

puts are a Bayesian network B and a set of assignments
O = fO1 = o1; :::; On = ong, which give the observed
values for some of the observation variables in B, such
as fObs1 = west; Obs2 = eastg. The output is a set of
positively weighted samples of B, where each sample si
is weighted by an estimate of the probability P(sijO).
Inference on Bayesian networks is more typically for-

mulated as determining the probability of a query ex-
pression given the evidence. We chose our formulation
because it o�ers a wide range of reasoning for plan mon-
itoring. Suppose we are projecting from past observa-
tions to �nd the safest escape route in some hazardous
environment. We might query a probabilistic reasoner
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Figure 1: Example DBN

to infer the probability that each possible path is safe,
but this would mean enumerating all possible paths. As
an alternative, we can apply path-following algorithms
to a set of weighted simulations and more quickly de-
termine the safest path. We give an example of this
approach in our experiments.

3 Previous algorithms

We now discuss previous simulation methods.

3.1 Logical sampling

A simple approach, called logical sampling (LS) (Hen-
rion 1988), is to repeatedly sample the network and
discard samples in which Oi 6= oi for any Oi = oi 2 O.
LS assigns the same weight to each retained simulation.
Given a query 
, LS estimates the probability of 
 as
the percentage of retained samples in which 
 holds.
Logical sampling is an unbiased technique: as the num-
ber of simulations approaches in�nity, the estimate of

 approaches the true probability of 
.
The probability of a perfect match, however, is expo-

nentially low in the number of observations, assuming
some independence among the observations. In many
examples we consider, LS can run for hours without
retaining a single sample.

3.2 Likelihood weighting

The most commonly implemented simulation tech-
nique, called likelihood weighting (LW), is a variation
on logical sampling which can converge much faster in
some cases (Shachter and Peot 1989; Fung and Chang.
1989; Dagum and Pradhan 1996).
LW also samples the network repeatedly but weights

each instantiation by the probability it could have pro-
duced the observations. Consider a simple case in which
there is a single observation node O1 with observed
value o1. Logical sampling would repeatedly simulate
the network and discard any samples in which O1 6= o1.
LW, however, weights each sample by the probability
that O1 would be assigned o1 under the network's CPT
function given the values of O1's parents in the sample.

1

For example, if O1 had a .08 probability of being as-
signed o1 but was assigned some other value, LW would
weight the sample .08.

1We assume observation variables have no children.
Thus, their values do not e�ect the value of other variables.

In the more general case, LW weights each sample
s as the Likelihood(Ojs), where Likelihood(Ojs) de-
notes the product of the individual conditional proba-
bilities for the evidence in O given the sampled values
for their parents in s.
LW is also unbiased and has been shown to be ef-

fective on many problems. However, as demonstrated
in (Kanazawa et al. 1995), LW does not work well on
DBNs. Both LS and LW consider the evidence only
when weighting the samples. When the network mod-
els a temporal process with an exponential number of
possible execution paths, the vast majority of random
samples can have a likelihood of or near zero.

3.3 SOF

The Survival Of The Fittest (SOF) algorithm is the best
suited, of those we investigated, for plan monitoring
because it uses the evidence to guide the simulation,
rather than simply to weight it afterwards (Kanazawa
et al. 1995). We now provide an informal description
of the SOF algorithm. Figure 5 contains pseudo-code
for a slight generalization.
SOF was designed speci�cally for DBN's. The idea

is to, at each time point, seed the next round of simula-
tions with the samples that best matched the evidence
in the previous round. SOF maintains a �xed number
of possible world states, but re-generates a sample pop-
ulation of world states for each time t by a weighted
random selection from the world states at time t � 1
where the weight for a world state is given by the like-
lihood of the observations at time t in that world state.
Initially, SOF generates a �xed number, say 100, of

samples of the state variables in the �rst time slice.
The weight of the ith sample, si, is the likelihood of
the observed evidence at time 1. SOF now randomly
generates a new set of 100 samples by randomly select-
ing from samples s1; :::; s100 using weights w1; :::; w100.
Some samples may be chosen (and copied) multiple
times and others may not be chosen at all. SOF next
samples the state variables in the second slice in each of
its 100 samples. SOF then weights each of these sam-
ples by the likelihood of the evidence at time 2. Next,
SOF re-populates the samples again, weights them by
the likelihood of the evidence at time 3, and so on, until
all the evidence has been accounted for.

4 Di�cult problems for SOF

We now describe two example DBN's carefully designed
to expose potential problems with using SOF for plan
monitoring.

4.1 Discarding plausible hypotheses

SOF can discard hypotheses by random chance during
its re-population phase. Consider the following thought
experiment. Suppose you have 1,000 distinct names in
a hat and you repeatedly draw a name from the hat,
write it down, and return the name to the hat. If you re-
peat the process 1,000 times you will have, on average,
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about 632 distinct names.2 SOF can lose hypotheses
in a similar manner. Even though the evidence favors
selecting the most likely hypotheses, the problem will
arise if there are hidden state variables whose value be-
comes apparent only by integrating information over
time from a series of reports.
We designed the following network to demonstrate

this problem. The network contains one state and one
sensor node for each time slice. At time 1, the state
node is assigned a integer value between 1 and 50 from
a uniform distribution. For t > 1, the state simply in-
herits its value from the state node at time t � 1. At
each time step t � 1, if the state node's value is evenly
divisible by t then the sensor returns Yes with .9 prob-
ability or No with .1 probability and otherwise returns
Yes with .1 probability or No with .9 probability. If,
for example, we observe Y es; Y es; Y es;No; Y es, then
there is a 22.5% chance that the state's value is 30.
The goal is to guess the state node's value. This

seems like an easy problem for SOF to solve with, say,
1000 samples. There are only 50 distinct hypotheses
and thus SOF should initially have several copies of
each hypotheses. As time progresses, the most likely
hypotheses should be steadily re-enforced by the evi-
dence. We tested SOF by running it with N = 1000
samples. We found the hypothesis that SOF reports is
most likely and see if it is, in fact, one of the most likely
hypotheses given the evidence.3 Based on 1,000 exam-
ple trials, however, SOF achieves only an 81% accuracy
on this problem. Even with N = 2000, SOF achieves
only 92% accuracy.
The graph in �gure 2 shows the average number of

distinct hypotheses that SOF, with N = 1000, main-
tains after t time steps for 0 � t � 25 as well as the av-
erage number of hypotheses that have a .005 or greater
probability of being true given the evidence at time t.4

We counted the number of hypotheses maintained by
SOF by counting the number of distinct values for the
state node contained in the 1000 samples maintained
by SOF. As the graph shows, the number of hypothe-
ses that SOF maintains is noticeably lower than the
number of plausible hypotheses.

4.2 Premature variable assignment
We designed the following problem to reduce the use-
fulness of SOF's re-population strategy. We consider a
case in which the state variables need to be assigned
values several time steps before they are observed. We
believe this represents an important aspect of plan mon-
itoring. Probabilistic planners (e.g. (Kushmerick et al.

2Each name has a 1 - :9991000 chance of being selected.
3It is simple to compute the actual probability of the ob-

served evidence for each of the 50 (equally likely) hypothe-
ses, but there might be ties.

4The number of hypotheses with probability � .005 can
increase. At time 2, half the hypotheses are relatively un-
likely compared to the other half. At time 3, typically, a
few are very likely but a larger number become reasonably
likely.
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Figure 2: Number of hypotheses maintained by SOF
compared to the number of hypotheses with probability
greater than .005 on the NumberNet DBN.

1995)) take as input a probability distribution over ini-
tial states. The value of conditions in the initial state
are decided before they are observed, but may be cru-
cial to the success of a plan. For example, in evacuation
plans, there might be uncertainty about whether or not
a certain bridge is usable, and the �rst report on its
condition may come when a vehicle encounters it dur-
ing plan execution.
Consider a simple DBN in which there are K fair

coins, all ipped at time 1. The ith coin is reported
with .95% accuracy at time i + 1 and again with with
.95% accuracy at time K + i+ 1. The network for this
DBN contains a state node ci for each of the K coins
and a single sensor node. Initially all the coins are given
a random value from fHeads ;Tailsg. For all times j > 1
the coin ci simply inherits its value at time j � 1. At
time j+1 the sensor outputs the value of coin cj at time
j+1 with .95 accuracy. Similarly, at time K+j+1 the
sensor outputs the value of coin cj at time K + j + 1
with .95 accuracy.
Given a sequence of observations, the goal is compute

the probability that coin ci = Heads for each coin i.
To evaluate SOF, we computed the actual probability
of ci = Heads given the evidence and compared it to
the weighted estimate produced by diving the sum of
the weights of the simulations SOF returns in which
ci = Heads by the sum of the weights of all returned
simulations.
The graph in �gure 3 shows the average error rate on

SOF on a problem with 15 coins if SOF maintains N =
1000 samples. The graph shows both that the errors
are high (the average error is .24) and that the error is
higher for the higher number coins. Our explanation is
as follows. At time 1, SOF picks 1000 of the possible
215 combinations of Heads or Tails for the coins. At
time 2, SOF re-populates its samples to match the �rst
report on coin 1. At time 3, SOF does the same for coin
1. By the time SOF gets to the higher number coins,
it less and less likely to have samples with a coin ip
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4
matching the observed evidence.
Figure 3 also shows the performance on a modi�ed

version of SOF, called SOF-bayes, which we describe
below. As shown in the graph, SOF-bayes performs
much better on this problem.
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Figure 3: Error rate for SOF with N = 1000 on the
CoinNet problem, compared with our modi�ed version
of SOF, called SOF-bayes, with N = 50. Based on 200
random trials.

5 New algorithms
We now present new methods.

5.1 Rewind/replay algorithm
We now introduce the Rewind/Replay (RR) algorithm,
which is closely related to the sampling method called
sequential imputation (discussed below).
We �rst describe RR informally in terms of solving

a DBN. RR samples each time slice of the network a
�xed number of times, before moving onto the next
time slice. After each round of sampling the nodes in
time slice i, RR adopts one of the samples by choos-
ing at random from the samples which contain all the
observations made at time i. It then simulates forward
from this sample into the (i + 1)th time slice. If the
observed evidence does not arise in any of the samples
of a time slice, then RR abandons the current sample
of the DBN that it is constructing, and begins again
from the �rst time slice. If RR makes it through all
the time slices then it has a single sample of the net-
work that matches all the evidence. RR weights this
sample as F1 � F2 � ::Fn where Fi is the fraction of
samples of time slice i that matched the observations
for time i. The justi�cation for this weighting method
is that the probability of the sample given the evidence
is P(E1 j S1) � P(E2 j S2) � ::: � P(EN j SN ), where
P(Ei j Si) is the probability of the evidence at time i
given the state at time i and is approximated by Fi.
An optimization we use in our implementation of RR

is to proceed to the next time slice as soon as the evi-
dence arises in any sample. This is as random as choos-
ing from the samples that matched the evidence after

Rmax tries, since all the trials are independent. If RR
manages to match the evidence for all the time slices, it
can compute the weight by returning to each time slice j
and perform Rmax�kj samples where kj is the number
of samples RR has already performed on the jth time
slice. The advantage here is to reduce the computation
expended in RR's attempts to sample the network that
ultimately fail.
The intuition behind RR can be explained in terms

of the task of ipping twenty coins until all of them are
heads. The logical sampling approach, for example, is
to ip all twenty coins, and if they do not all come up
heads, ip them all again. This is expected to succeed
in 1 out of 220 trials. The Rewind/Replay approach is
to ip each coin until it is heads and then move on to
the next coin. For Rmax = 5, RR should succeed with

1 � ( 2
5�1
25

)20 probability, or about 1 in 2 times. With
Rmax = 10, RR will succeed with over .99 probability.
We now describe RR in terms of an arbitrary

Bayesian network. To do so, we need to distribute the
input observations O = fO1 = o1; :::; On = ong into a
sequence of sets of observations E1; E2; :::Em such that
each observation goes into exactly one evidence set. Al-
though it will not e�ect correctness, the distribution of
the evidence can have a signi�cant impact on the per-
formance of RR. For example, if all the evidence is put
into a single set, i.e, E1 = fOg, then RR is equivalent
to LS. Unless otherwise stated, we will assume the op-
posite extreme of putting each observation in its own
set, i.e, for 1 � i � n, E i = fOi = oig.
RR needs to determine which nodes inuence the ob-

servations in each set Ej . In a Bayesian network, the
only nodes which can inuence the probability distribu-
tion over the value of some node Oi when Oi is sampled
are the ancestors of Oi (i.e., the parents of Oi, the par-
ents of the parents Oi, and so on). As we process each
evidence set Ej , we want to sample only the variables
which are ancestors of Ej and that we have not sampled
already, i.e., that are not ancestors of any observation
in E1; :::; Ej�1. This set is determined by the function
Anc, de�ned in �gure 4.
The pseudo code for RR is shown in �gure 4. For

each simulation, RR iterates through the evidence sets
E1,..., Em. For each Ej , RR samples the unsampled
ancestors of Ej a total of Rmax times and selects one
the samples that satis�es every variable assignment in
Ej . The weight for each net is M1

Rmax
� M1

Rmax
� ::: �

Mm

Rmax
, whereM1 is the number of samples that matched

evidence set E i.
The RR algorithm is closely related to the sta-

tistical sampling technique called sequential imputa-
tion (Kong et al. 1994; Liu 1996). Sequential im-
putation is a Monte Carlo technique for solving non-
parametric Bayes models given some data d1; :::; di by
incrementally sampling from the probability distribu-
tion P(di j d1; :::; di�1) for increasing values of i. RR
is perhaps best viewed as one of many possible instan-
tiations of sequential imputation for the task of infer-
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5procedure: RR(B; E = fE1:::Emg; N;Rmax)
for i = 1 to N
si  ;; wi  1; stop false
for j = 1 to m
if stop = false
Xj  Anc(Ej ; E ; B)
M ;
for l = 1 to Rmax
Add a sample of Xj to si
if Holds(Ej ; si)
Add a copy of si toM

wi  wi �
jMj
Rmax

if jMj > 0
si  random selection fromM

else stop true
return s1; :::sN and w1; :::; wn.

function: ANC(Ej ; fE1:::Emg; B)
Returns set of all variables Vi in B from which
there is a directed path in B from Vi to a
variable in Ej but not a directed path to
any variable ej 2 E1 [ E2 [ ::: [ Ej�1.

Figure 4: The Rewind/Replay algorithm and support
function ANC

ence on Bayesian networks, which employs a particular
method of extending the sample to cover the ith piece
of evidence. Likewise, SOF can be thought of as an
alternative instantiation of sequential imputation.
RR uses the evidence to guide the simulations, but

can avoid the problems caused by SOF's re-population
phase. With Rmax = 10 and N = 500, RR achieved .96
accuracy on the NumberNet problem described above,
on 1000 random trials. In the worst case, RR might
e�ectively sample the network 10 � 500 = 5000 times,
but in practice RR samples it much less frequently and,
on average, only generates 69.4 matches per 500 at-
tempts. In our Lisp implementations, RR required 3.3
CPU seconds to complete its inference, which is compa-
rable to the 4.8 CPU seconds for SOF with N = 1000 to
achieve an accuracy of .82. Additionally, RR achieved
.09 error on the CoinNet problem, with Rmax = 10 and
N = 1; 000.

5.2 SOF-bayes

Figure 5 shows pseudo code for a variation of SOF that
works on an arbitrary Bayesian network. Rather than
sample the nodes time slice by time slice, as SOF does,
SOF-bayes distributes the evidence into evidence sets
E1; :::; En, as described above for RR, and samples the
unsampled ancestors of each E i before re-populating.
Compared to SOF, SOF-bayes lazily samples the net-

work, only assigning variables to state nodes when
forced to in order to account for some observed evi-
dence. In the CoinNet problem, for example, SOF-
bayes does not sample the value of a coin until it is
observed and thus generates N samples of that coin's

procedure: SOF-bayes (B; E = fE1:::Emg; N)
for i = 1 to N
s1;i  ;; wi  1

for j = 1 to m
Xj  Anc(Ej ; E ; B)
for i = 1 to N
sj;i  randomized selection from sj�1;1; :::; sj�1;N

weighted by w1; :::; wN .
Add a sample of Xj to sj;i
wi  Likelihood(Ej jsi)

return sm;1; :::sm;N and w1; :::; wn.

Figure 5: The Survival-of-the-�ttest algorithm for an
arbitrary Bayesian network

value at that time. In contrast, SOF generates N sam-
ples of the coin's value in the �rst time step and may
discard most of those samples by the time the coin's
value is observed. As shown in �gure 3, SOF-bayes
performs signi�cantly better than SOF on the CoinNet
problem.
Another advantage of SOF-bayes is that it does not

have to sample the entire time slice at once. Consider
a case where K coins are ipped and reported in each
time slice. SOF needs 2K samples in order to generate
a single sample matching all the coin ips. SOF-bayes
can, however, match each coin ip individually.

6 Experiments

We now describe our experiments. Our goal was to gen-
erate a large, non-trivial DBN in order to demonstrate
the promise of simulation-based reasoning for plan mon-
itoring in uncertain domains.

6.1 Description of �re domain

We constructed a simple forest-�re domain based
loosely on the Phoenix �re simulator (Hart and Cohen
1992), which in turn is based on model of �re spread
from the National Wildlife Coordinating Group Fireline
Handbook (Group 1985).
We use a grid representation of the terrain. During

the course of the simulation, each cell is either burning
or not. At each time step, the probability that a cell
will be burning is computed (by an externally de�ned
function) based on the status of that cell and that cell's
neighbors at the previous time slice.
There are ten noisy sensors, each of which reports

on a 3 � 3 block of grid cells. The sensor can output
Low, Med, or High, indicating that 0, 1{3, or 4{9 of
the cells are on �re, respectively (with 10% noise added
in). Additionally, each sensor has a solar battery with
a 75% chance of being charged in each time slice. If the
battery is not charged at time t then the sensor outputs
Recharging at time t+ 1.
A �re �ghter is initially situated in the middle of

the grid. The �re �ghter monitors the �re sensors in
order to decide whether or not to ee to one of four
helipads situated on the edge of the grid. Each helipad,
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6
State Variables

......h... ......h... ......h... ......h... ......h... ......h... .+....+... .++++++++.

.......... .......... .......... .......... .......... .......++. .++..++++. ++++++++++

.......... .......... .......... .......... .......... ........++ +++..+.+++ ++++++++++

.......... .......... .......... .......... ........+. +.....++++ ++++..++++ ++++++++++

H......... H......... H...f..... H.f....... f.....++++ +.....++++ +....+++++ ++++++++++

..xx..f... ..xx..f... ..xx...... .+xx....++ ..xx.++.++ ++xx.+++++ ++xx++++++ ++xx++++++

..xx...... ..xx...... ..xx+..+.. .+xx+++++. ++xx++++++ ++xx++++++ ++xx++++++ ++xx++++++

.........H ...++....H +..+++++.H ++.+++++.+ ++++++++++ ++++++++++ ++++++++++ ++++++++++

....++.... ....++++.. .+..+++++. ++.++++++. ++++++++++ ++++++++++ ++++++++++ ++++++++++

....H+.... ...+++++.. ..++++++.. +++++++++. +++++++++. ++++++++++ ++++++++++ ++++++++++

time: 1 time: 4 time: 7 time: 10 time: 13 time: 16 time: 19 time: 23

.......... .......... .......... .......... .......... .......... .......... ..........

.......... .......... .......... .......... .......... .......... .......... ..........

...-.-.-.. ...-.0.0.. ...2.0.0.. ...0.2.-.. ...0.0.1.. ...-.1.-.. ...-.2.2.. ...1.2.1..

.0......0. .0......0. .0......0. .-......0. .-......2. .-......-. .-......2. .-......-.

.......... .......... .......... .......... .......... .......... .......... ..........

........-. ........0. ........1. ........2. ........-. ........-. ........2. ........0.

.0........ .0........ .1........ .2........ .-........ .-........ .-........ .-........

....1.1... ....2.0... ....-.2... ....2.2... ....-.2... ....-.-... ....-.2... ....2.2...

.......... .......... .......... .......... .......... .......... .......... ..........

.......... .......... .......... .......... .......... .......... .......... ..........

Sensor Variables

Figure 6: ASCII representation of several time slices of an example simulation of the �re world domain. A '+'
indicates �re, an 'H' indicates a working helipad, an 'h' indicates a non-working 'helipad', an 'x' indicates an
impassable terrain. The �re �ghter is denoted by an 'f'. In the sensor readings, a 0 indicates a low reading, a 1
indicates, a medium reading, a 2 indicates a high reading, and a '-' indicates that the sensor is recharging. The
messages indicating the condition of the helipads are not shown here.

however, has only a .65 chance of being functional. The
�re �ghter receives reports of varying reliability about
the condition of four helipads.
In these experiments, we used a 10 � 10 grid, and

created a DBN with 30 identical time slices, resulting in
a network with 3660 nodes. Most nodes in the network
have nine parents. There are a total of 14 observations
per time slice (ten �re sensors and four helipad reports.)
A complete description and simulation traces for the
domain are available by email from the �rst author.
Figure 6 contains an ASCII representation of several
time slices from one execution trace.

6.2 Results

The �rst set of experiments we ran were to determine
how accurately the algorithms could predict aspects of
the world state from past observations. The results in
table 1 were generated as follows. First we generated a
sample of the network, sr. We then set Or to be the
variable assignments for all the sensor nodes in sr in
the �rst 6 time steps. We then called LW, SOF, SOF-
bayes, and RR with observations Or. The algorithms
ran until they produced at least 50 sample simulations
or a 3 minute time limit elapsed (although we do not in-

terrupt the algorithm when the time limit elapses). We
then evaluated the sample simulations returned by the
inference algorithms against the sample sr. For each
grid cell, we compared the status (Burning or Safe) of
the cell at time 10 with the weighted estimate of the
returned cell. We credit the algorithm with a correct
prediction if the weighted estimate of the cell being Safe
was greater than .5 and the cell's status in sr is Safe
or if the weighted estimate is less than .5 and the cell's
status is Burning. Similarly, for each helipad, we com-
pared value of the helipad in sr (either Usable or Unus-
able) with the weighted estimate of the returned distri-
butions. If no distributions were returned, we counted
this as guessing that all cells are Safe and all helipads
Usable. As shown in table 1, RR performs best, and
SOF-bayes performed better than SOF. LW never gen-
erated any matches, primarily because it never matched
all the Recharging signals, and thus we did not list any
accuracies for LW.

In the second set of experiments, we used the
weighted simulations to control the movements of the
�re �ghter and then compared the survival rate with
the di�erent inference algorithms. In each iteration the
�re �ghter can stay in its current cell or move to one
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LW SOF SOF-bayes RR

N = 1000 N = 1000 Rmax = 50

CPU seconds 181 235 168 128

Accuracy predicting { .64 .83 .82

if cell contains �re

Accuracy predicting { .53 .66 .94

condition of

helipads

Table 1: Accuracy at predicting �re and the condition
of the helipads. Numbers averaged over 100 trial runs.

LW SOF SOF-bayes RR

N = 1000 N = 1000 Rmax = 75

Survival { .61 .75 .95

rate

Table 2: Survival rate of the simulated �re �ghter using
di�erent inference engines. Numbers averaged over 25
trial runs.

of the eight adjacent cells. The procedure for decid-
ing where to go computes, for each weighted simulation
and each cell, whether or not there is a path to safety
from the cell. Based on the weights of the simulations,
the procedure then moves to one of the cells with the
highest probability of being safe, with a preference for
remaining in the same cell. To speed the experiments,
we only re-computed the weighted simulations given the
observations at time 6, 8, and 10. As shown in table
2, the �re �ghter survives much more often when using
the Rewind/Replay algorithm than any of the other al-
gorithms.

7 Related work and conclusions

One previous technique we have not mentioned yet is
arc reversal (Shachter 1986; Fung and Chang. 1989),
which has been applied to DBNs (Cheuk and Boutilier
1997). Arc reversal involves reversing the arcs that
point to the evidence nodes. This technique essentially
uses the information in the CPT of the Bayesian net-
work to perform reverse simulation from the observed
evidence. Arc reversal can increase the size of the
network exponentially and would so on our networks.
When reversing an arc from node n1 to node n2, all
parents of n1 and n2 become parents to both nodes.
Reversing a single arc in the �re network can increase
the number of parents of a node from 9 to 17. This
increases the size of the CPT for that node from 29 to
217. Furthermore, in our algorithm the original CPT is
encoded compactly as a function but would have to be
expanded out into a table to reverse an arc.
There have been many other approaches to approx-

imate inference on Bayesian networks (e.g., (Dechter
and Rish 1997)) though most have not been speci�cally
evaluated on complex temporal processes. (Boyen and
Koller 1998) proposes a method for approximating the
belief state for DBNs and prove that under certain as-

sumptions, the error in the belief state will contract
exponentially over time. When applied to DBNs, the
approach involves grouping the variables in each time
slice into semi-independent subsets and maintaining in-
dependent approximations of each of these groupings.
It is not clear, however, how to cluster the variables rep-
resenting the cells in our �re world network into man-
ageable subsets because each cell is strongly connected
to its neighbors, which in turn are strongly connected
to all their neighbors. Finally, prior work has suggested
the use of sequential imputation for solving Bayes nets
(Hanks et al. 1995), but did not propose the speci�c
Rewind/Replay implementation of this idea or compare
RR to SOF.
In this paper we have investigated simulation tech-

niques for plan monitoring and shown that some tech-
niques have signi�cant advantages over others. We have
extended existing simulation algorithms by generalizing
SOF to arbitrary bayes networks and introducing the
Rewind/Replay algorithm.
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