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Abstract

Computers looking through a camera at people

is a potentially powerful technique to facilitate

human-computer interaction. The computer can

interpret the user's movements, gestures, and

glances. Fundamental visual algorithms include

tracking, shape recognition, and motion analysis.

For interactive graphics applications, these al-

gorithms need to be robust, fast, and run on in-

expensive hardware. Fortunately, the interactive

applications also make the vision problems easier:

they constrain the possible visual interpretations

and provide helpful visual feedback to the user.

Thus, some fast and simple vision algorithms can

�t well with interactive graphics applications.

We describe several vision algorithms for inter-

active graphics, and present various vision con-

trolled graphics applications which we have built

which use them: vision-based computer games, a

hand signal recognition system, and a television

set controlled by hand gestures. Some of these

applications can employ a special arti�cial retina

chip for image detection or pre-processing.

Keywords:

Human computer interface, computer vision, in-

teractive computer graphics.

1 Introduction

Vision can be a powerful interface device for com-

puters. There is the potential to sense body posi-

tion, head orientation, direction of gaze, pointing

commands, and gestures.
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Such unencumbered interaction can make com-

puters easier to use. Applications could include

computer controlled games or machines, or a

more natural interface to the computer itself. In

a computer game application, rather than press-

ing buttons, the player could pantomime actions

or gestures, which the computer would then rec-

ognize. A CAD designer might use his hands

to manipulate objects in the computer. A user

of machinery or appliances might just have to

use hand gestures to give commands, a potential

bene�t to surgeons, soldiers, or disabled patients.

The vision based interactions could make the ma-

chine interaction more enjoyable or engaging, or

perhaps safer.

Interactive applications pose particular chal-

lenges. The response time should be very fast.

The user should sense no appreciable delay be-

tween when he or she makes a gesture or motion

and when the computer responds. The computer

vision algorithms should be reliable, work for dif-

ferent people, and work against unpredictable

backgrounds.

There are also economic constraints: the vision

based interfaces will be replacing existing ones

which are often very low cost. A hand-held video

game controller and a television remote control

each cost about $40. Even for added functional-

ity, consumers may not want to spend more.

Academic and industrial researchers have re-

cently been focusing on analyzing images of peo-

ple [4]. While researchers are making progress,

the problem is hard and many present day al-

gorithms are complex, slow or unreliable. The

algorithms that do run near real-time do so on

computers that are very expensive relative to the

hand-held interface devices.

Fortunately, interactive graphics applications

o�er particular advantages that make low-cost,

real-time vision control possible. The vision in-

put functions as part of a larger system that in-

cludes an interactive graphical display. This may

be a computer game, the control of a television

set, or control of objects in a virtual or real world.

The �rst advantage is that the application con-



text restricts the possible visual interpretations.

Perhaps, from the game context, we know that

the player is running, then the vision system may

need only to ascertain how fast the player is run-

ning. This is a much easier vision problem to

solve than a 3-d reconstruction of the player's

motion from scratch. Secondly, there is a human

in the loop. The user can exploit the immediate

visual feedback of the graphical display to change

their gesture, if necessary, to achieve the desired

e�ect. If a player is leaning to make a turn in a

game and sees that he isn't turning enough, he

can lean more.

There is a niche for fast, unsophisticated com-

puter vision algorithms which take advantage of

the simpli�cations that interactive graphics ap-

plications provide.

We have developed or applied various vision

algorithms suitable for interactive graphics ap-

plications. We will describe various fundamental

visual measurements, in order of increasing com-

plexity: large object tracking, shape recognition,

motion analysis, and small object tracking. We

have used these to make vision-based interfaces

for several computer games, and hand gesture

controllers for a toy robot, crane, and a televi-

sion set. We have developed a special image de-

tector/processor which can further reduce costs.

Some researchers have undertaken related

projects, including the Alive work at the MIT

Media Lab [3], and the pioneering work of [8]. It

is similar in spirit to a thrust of computer vision

research known as \active vision", which empha-

sizes real-time response to real vision problems

[1].

2 Large object tracking

In some interactive applications, the computer

needs to track the position or orientation of a

body or hand that is prominent in the visual

�eld of the camera. Relevant applications might

be computer games, or interactive machine con-

trol where the camera viewing conditions are con-

strained. In such cases, a description of the over-

all properties of the image may be adequate.

Image moments, which are fast to compute,

provide a very coarse summary of global av-

erages of orientation and position (see sidebar,

Image Moments). If the camera views a hand on a

uniform background, this method can distinguish

hand positions and simple pointing gestures, as

shown in Fig. 1 (a). We have implemented this

to control the motion of a toy robot, Fig. 1 (b).

The robot followed the direction that the hand

was pointing; tilting the hand perpendicular to

the camera caused the robot to stop.

We are able to calculate moments particularly

quickly using a low-cost detector/processor that

we have developed, called the arti�cial retina chip

(see sidebar, Artificial Retina). This chip com-

bines image detection with some low-level im-

age processing (named arti�cial retina by anal-

ogy with those combined abilities of the human

retina). The chip can compute various functions

useful in the fast algorithms for interactive graph-

ics applications.

An application area to which we have applied

several di�erent vision algorithms is interactive

computer games. As shown in Fig. 2, we replace

the handheld game keypad with a detector, a

processor, and interface hardware. The interface

hardware, controlled by the processor interpret-

ing detector images, issues commands which look

like keypad commands to the Sega Saturn game

machine.1

The ideal way to design a vision based inter-

active game is from scratch, building a game

on the particular advantages of the vision in-

terface (good analog adjustments; complex pose

con�gurations). As an easier preliminary step,

we selected existing games that we felt were

particularly well suited to a vision interface,

and designed a vision interface that was plug-

compatible with the existing keypad interface. A

disadvantage of this approach is that the game is

tuned for play on the keypad, and not all of the

keypad commands are easy to issue from vision

input; we omitted some. We developed interfaces

for three Sega Saturn games: Nights, Magic Car-

pet, both discussed in this section, and Decath-

lete, discussed in the section on motion analysis.

Part of the Sega Saturn game, Nights, involves

steering a sprite 
ying through a magical world.

We wanted the user to control the sprite by sim-

ple motions or pointing gestures.

We had the user position his hand close to the

camera, so that his hand became a large object

in the camera's �eld of view. To avoid the ef-

fects of stationary background clutter, the input

to the moments calculation may be a quantity

based on motion. To control the movement of

the sprite we calculated the center of mass of a

motion energy image, the absolute value of the

di�erence between successive video frames (see

Fig. 3). The response to pointing gestures is ro-

bust and immediate, allowing natural control of

1We thank Sega for providing game interface
information.



the game character with easy gestures.

We applied the moments analysis hierarchi-

cally, over the image and its four quadrants, to

analyze body positions for control of the game

Magic Carpet (see Fig. 4). The player can steer

his magic carpet in any direction by leaning

or walking in the di�erent directions; he can

�re a spell by holding out his arm. Because

the player's motions match the 
ying carpet re-

sponse, the game control is intuitive and sim-

ple to learn. Both of the above systems require

some control over the background. The motion-

based method requires a stationary background;

the shape-based method requires a uniform back-

ground.

(a)

(b)

Figure 1: (a) Hand images and equivalent
rectangles, having the same �rst and second
order moments. We measure X-Y position,
orientation, and projected width from the
rectangle. We used image moments to con-
trol the motion of a toy robot, (b).
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Figure 2: System block diagram of interac-
tive game machine.

(a) (b)

(c)
(d)

Figure 3: (a) and (b): Two frames of camera
input. (c) Absolute value of temporal di�er-
ence image (a - b). Its center of mass (arrow)
controls direction of 
ight of sprite, (d).



Figure 4: A hierarchy of computed image moments was used to analyze the shape and orientation
of the player for the game, Magic Carpet. The player controls the magic carpet 
ight by leaning or
walking. The player can raise his arm to �re a spell.



2.1 Sidebar: Image moments

Image moments [7] provide useful summaries of

global image information. The moments involve

sums over all pixels, and so are robust against

small pixel value changes.

If I(x; y) is the image intensity at position x,

y, then the image moments, up to second order,

are:

M00 =
X
x

X
y

I(x; y) M11 =
X
x

X
y

xy I(x; y)

M10 =
X
x

X
y

x I(x; y) M01 =
X
x

X
y

y I(x; y)

M20 =
X
x

X
y

x2 I(x; y) M02 =
X
x

X
y

y2 I(x; y)

(1)

We can �nd the position, xc, yc, orientation �,

and dimensions l1 and l2 of an equivalent rectan-

gle which has the same moments as those mea-

sured in the image [7]. Those values give a mea-

sure of the hand's position, orientation, and as-

pect ratio. We have:

xc =
M10

M00

yc =
M01

M00

(2)

De�ne the intermediate variables a, b, and c,

a =
M20

M00

� x2c

b = 2(
M11

M00

� xcyc)

c =
M02

M00

� y2c : (3)

We have (c.f. [7]):

� =
arctan(b; (a� c))

2
(4)

and

l1 =

s
(a+ c) +

p
b2 + (a� c)2

2

l2 =

s
(a+ c)�pb2 + (a� c)2

2
(5)

The image moments can be calculated from

three projections of the image [7]. Let the verti-

cal, horizontal, and diagonal projections be

V (x) =
X
y

I(x; y); (6)

H(y) =
X
x

I(x; y); (7)

and

D(t) =
X
s

I(
t� sp

2
;
t+ sp

2
): (8)

Then the image moments can be written as [7]:

M00 =
P

x V (x)

M11 =
P

t t
2D(t) � M20

2
� M02

2

M10 =
P

x xV (x) M01 =
P

y yH(y)

M20 =
P

x x
2 V (x) M02 =

P
y y

2H(y):(9)

These equations replace the double sums

of Eq. 1 with single sums, which speeds

up the processing or accommodates process-

ing by fast, special hardware (see sidebar,

Artificial Retina Chip).



2.2 Sidebar: The arti�cial retina
chip

We have developed an image detector which al-

lows programmable on-chip processing. By anal-

ogy with the fast, low-level processing that oc-

curs in the eye, we call the detector the arti�cial

retina (AR) chip [9]. Figure 5 shows the elements

of the AR chip: a 2-D array of variable sensitiv-

ity photodetection cells (VSPC), a random ac-

cess scanner for sensitivity control, and an out-

put multiplexer. On-chip image processing can

be realized by analog operation (addition or sub-

traction) of each VSPC's output current. The

VSPC consists of a pn photo-diode and a di�er-

ential ampli�er which allows for high detection

sensitivity. This structure also realizes nonde-

structive readout of the image, essential for the

image processing. We have built detector arrays

ranging in resolution from 32x32 to 256 x 256 pix-

els; a 32x32 detector array was adequate for the

game applications presented here. That chip size

is 6.5 by 6.5 square millimeters, with 150 by 150

micron sized pixels, using a 1 micron fabrication

process. On-chip image processing is obtained

from an input image at every time step.

The image processing of the arti�cial retina

can be expressed as a matrix equation. In Fig. 5,

the input image projected onto the chip is the

weight matrix W . All VSPC's have three elec-

trodes. A direction sensitivity electrode, con-

nected along rows, yields the sensitivity control

vector, S. The VSPC sensitivities can be set

to one of (+1; 0;�1) at each row. An output

electrode is connected along columns, yielding an

output photocurrent which is the vector product,

J = WS. The third electrode is used to reset the

accumulated photo-carriers.

By setting the sensitivity control vector, S, ap-

propriately, this hardware can read-out the raw

image or execute simple linear operations such as

local derivatives and image projections. Data ac-

quisition is not limited to video frame rates and

can range from 1 to 1000 Hz. This detector can

be manufactured on the same equipment used to

process DRAM's and thus may cost less to man-

ufacture than conventional CCD's.

We have integrated this detector/processor

chip into an inexpensive AR module, which con-

tains a low-resolution (32x32) AR detector chip,

support and interface electronics, and a 16 bit 10

MHz micro-processor. Taken together, the mi-

croprocessor and AR chip can perform general

image processing operations quickly. The mod-

ule is 8 x 4 x 3 cm, and the chip can be fabricated

(a)

(b)

Figure 5: (a) Schematic structure of the ar-
ti�cial retina chip. An array of variable sen-
sitivity photodetector cells allows image de-
tection, linear �ltering, and projection. (b)
Photomicrograph of the chip.

at a considerably lower cost than CCD's because

the chip fabrication is CMOS-based.

The arti�cial retina detector can perform the

horizontal and vertical image projections needed

for the image moment calculations, saving pro-

cessor time. The savings depend on the image

resolution and micro-processor speed. For the

10 MHz micro-processor of the AR module and

32x32 resolution, the calculations would take 10

msec per image on the microprocessor alone, but

only 0.3 msec per image using the microprocessor

and arti�cial retina chip.



3 Shape recognition

Most applications, such as recognizing a particu-

lar static hand signal, require a richer description

of the shape of the input object than image mo-

ments provide.

If the hand signals fall in a predetermined set,

and the camera views a close-up of the hand, we

may use an example-based approach, combined

with a simple method to analyze hand signals

called orientation histograms. These histograms

summarize how much of each shape is oriented in

each possible direction, independent of the posi-

tion of the hand inside the camera frame. The

computation involves taking spatial derivatives,

followed by a non-linearity and can be imple-

mented quickly using either conventional or spe-

cial hardware.

These example-based applications involved

two phases, training and running. In the train-

ing phase, the user shows the system one or more

examples of a particular hand shape. The com-

puter forms and stores the corresponding orienta-

tion histograms. In the run phase, the computer

compares the orientation histogram of the cur-

rent image with each of the stored templates and

selects the category of the closest match, or inter-

polates between templates, as appropriate. This

method is insensitive to small changes in the size

of the hand, but is sensitive to changes in hand

orientation. For greater robustness, the user may

show several examples and the computer can use

the closest matching example to the test image.

We have implemented several interactive

graphics applications which rely on orientation

histograms for hand gesture recognition [5]. Fig-

ure 6 shows a computer graphic crane that we

can control by hand signals. The system is �rst

trained on the hand signals for the commands up,

down, left, right, and stop, by having the user

show an example of each gesture. After training

the computer, the user can use those commands

to move around a crane under hand gesture con-

trol. A graphical display of the closeness of each

hand signal to the 5 trained categories gives the

user feedback for implementing consistent ges-

tures and helps to debug any miscategorizations.

We used the same recognition engine in an

interactive game of rock, scissors, paper, Fig-

ure 8. A computer graphic \robot hand" plays

the game against the user. This indicates when

the user should make the gesture, allowing simple

open loop capture of the video gesture.

Each of these systems, while simple and fast,

recognizes gestures under the constrained view-

ing conditions where the hand dominates the im-

age. We have showed these systems to many

users, most of whom can use them without prac-

tice. Generally, the system must be trained for

each user; in the run phase, the response is reli-

able and fast.

We have observed several conditions where the

user is not satis�ed with the gesture classi�ca-

tion, illustrated in Fig. 7. (a) and (b) show two

images which users feel should represent the same

gesture. However, their orientation histograms

are very di�erent, illustrated in (c). This prob-

lem can be addressed by providing multiple train-

ing images for the same gesture. Some di�er-

ent gestures have very similar orientation his-

tograms. (d) and (e) show an example of this,

with the histograms overlaid in (f). One must

choose a vocabulary of gestures that avoids such

confusable pairs. Finally, the hand must dom-

inate the image for this simple statistical tech-

nique to work. (g) and (h) show images where the

hand is a small part of the image. Even though

user has very di�erent hand positions, the ori-

entation histograms of the two images are very

similar, (i). This orientation histogram method

is most appropriate for close-ups of the hand. A

uniform background provides the best results.

The processing is fast on a conventional

general-purpose processor. One can also use spe-

cial hardware, such as the arti�cial retina chip

described above, for the low-level image process-

ing tasks, see sidebar (Arti�cial Retina).
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Figure 6: Orientation histograms in an example-based hand gesture recognition system. Top: Train-
ing images, with their orientation maps and orientation histograms. Middle: In the run phase, the
computer compares the orientation histogram of the current image with those of the training images.
Graph showing inverse distances gives user feedback on performance. Bottom: Here, the hand signals
control a toy crane.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Problem images for the orientation histogram based gesture classi�er. Users may feel that
(a) and (b) represent the same gesture, but their orientation histograms are di�erent, shown overlaid
in (c). A remedy is to provide training images of the gesture at various orientations.
Sometimes small changes in the image can cause large semantic di�erences, while changing the orienta-
tion histograms little. Users classify (d) and (e) as di�erent gestures, yet their orientation histograms
are nearly the same, (f). One has to construct a gesture vocabulary which avoids gestures with similar
orientation histograms.
Finally, for this simple statistical technique to work, the hand must dominate the image. If it does not,
then even large changes in the hand pose can cause negligible changes to the orientation histogram (g)
{ (i).



Figure 8: Rock, scissors paper game, based on orientation histograms.



3.1 Sidebar: Orientation histograms

The desire for lighting and position invariance

motivates the orientation histogram representa-

tion. Figure 9 shows a comparison of a pixel rep-

resentation and an orientation representation for

a picture of a hand under two di�erent lighting

conditions. The pixel values of the hand vary

considerably with lighting; the orientation values

remain fairly constant. One can calculate the lo-

cal orientation using image gradients. The phase

angle of a complex number de�ned by horizontal

and vertical image pixel di�erences yields the lo-

cal orientation angle, �, as a function of position

x and y:

�(x; y) = arctan[I(x; y)�I(x�1; y); I(x; y)�I(x; y�1)]
(10)

We want gestures to be the same regardless

of where they occur within the camera's �eld of

view. We chose to achieve this translation in-

variance by the rather drastic step of ignoring

position altogether, and simply tabulating a his-

togram of how often each orientation element oc-

curred in the image. Clearly, this throws out in-

formation and some distinct images will be con-

fused by their orientation histograms. In prac-

tice, however, one can easily choose a set of train-

ing gestures with substantially di�erent orienta-

tion histograms from each other (e.g. Fig. 6).

We form a vector, �, of N elements, with the

ith element showing the number of orientation

elements �(x; y) between the angles 360�

N
(i � 1

2
)

and 360�

N
(i+ 1

2
):

�(i) =
X
x;y

�
1 if j�(x; y) � 360�

N
ij < 360�

N

0 otherwise
:

(11)

To reduce noise and allow interactions between

neighboring orientations, we average together ad-

jacent histogram bins. We used N = 36 bins for

the applications shown here. Simple Euclidean

distance, (�1 � �2)
2, provides a distance mea-

sure between the two images with orientation his-

tograms �1 and �2. Figure 10 shows the orien-

tation histogram calculation for a simple image.

The resulting orientation histogram is very fast

to compute, and can be used as a feature vec-

tor to compare with previously analyzed train-

ing shapes. McConnell [10] proposed these as a

method to analyze the shapes of binary images;

we apply them to applications using grey scale

images [5].

(a) (b)

 (c)  (d)

Figure 9: Orientation maps, (c) and (d),
are generally more robust to lighting changes
than are images of pixel intensities.

orientation histogram example

orientation angle

frequency
of occurence

(a) image

orientation angle

frequency
of occurence

(d)
polar plot

(b) raw
histogram

(c) blurred

Figure 10: Simple illustration of orientation
histogram. An image of a horizontal edge
(a) has only one orientation at a su�ciently
high contrast. Thus the raw orientation his-
togram (b) has counts at only one orientation
value. To allow neighboring orientations to
sense each other, we blur the raw histogram,
giving (c). (d) shows the same information,
plotted in polar coordinates. We de�ne the
orientation to be the direction of the inten-
sity gradient, plus 90�.



4 Motion analysis

Often a person's motion signals the important in-

terface information to the computer. Computer

vision methods to analyze \optical 
ow" can be

used to sense movements or gestures.

We applied motion analysis to control the Sega

Saturn game, Decathlete. The game involves the

Olympic events of the decathlon. The conven-

tional game interface su�ers from the limitations

of the handheld control; to make the game ath-

lete run faster, the player must press a key faster

and faster. We sought to allow the user to pan-

tomime stationary versions of the athletic events

in front of the camera, by running or jumping in

place. We hoped this would add an extra dimen-

sion to the game and make it more engaging.

Figure 11 shows examples of the human-

computer interaction for the 110 meter hurdles.

The user runs in place to make the computer

character run; the character's speed is propor-

tional to how fast the player runs in place. To

jump over a hurdle, the player raises both hands

at the same time.

Recognition of these actions in a general con-

text would be very challenging. But knowing the

game context greatly simpli�es the visual recog-

nition. The graphics application tells us which

event the player is performing, and we only have

to choose between a few di�erent motions the

player should be performing, or to estimate tim-

ing or rate parameters. These are much easier

problems to solve. For the 110 meter hurdles,

the vision algorithm has to choose whether the

player is running, or raising his arms to jump

over a hurdle. If he is running in place, the algo-

rithm has to estimate how fast.

There are many methods to analyze optical


ow, but relative to our low-cost, high-speed re-

quirements, these can be too slow on conven-

tional machines. Our motion analysis does not

need to be detailed, but needs to be extremely

fast.

We have developed a fast \optical 
ow" algo-

rithm, which provides an approximation to the

screen velocity of moving points on the image

appropriate for the large-scale characteristics of

the optical 
ow. We use simple measurements

derived from the optical 
ow to estimate the rel-

evant motion parameters. For example, for the

110 meter hurdles, we track the frame averages

of the horizontal and vertical components of mo-

tion. The frequency of the alternation of the hor-

izontal velocity indicates how fast the player is

running in place. When the average vertical ve-

locity exceeds a threshold, that indicates a jump

command.

The impression on the player of this simple

processing is that the computer understands his

physical gestures. We have demonstrated this

game at various public venues, including at the

computer trade show Comdex, 1996. A station-

ary background was used, to give the most re-

liable recognition. We used the arti�cial retina

chip in detector mode. Players can almost al-

ways control the characters well on their �rst at-

tempts, and became immediately engaged in the

game itself.

4.1 Sidebar: Fast optical 
ow

For an approximation to the optical 
ow �eld,

we have developed a fast algorithm, which works

well for the coarse-scale analysis we use in inter-

active game applications. The algorithm classi-

�es the local motion of edges into various pos-

sibilities, then pools local estimates across ori-

entation and across space to estimate large-scale

optical 
ow.

The algorithm is as follows:

1. Subtract the current frame from the previ-

ous one, yielding a temporal di�erence im-

age.

2. For pixels where the temporal di�erence is

non-zero, enumerate the possible motion di-

rections consistent with the local image mea-

surements. Consider the the 1-d motion

shown in Fig. 14. From this example, we

derive two rules for motion direction estima-

tion:

(a) If the temporal di�erence is negative,

the motion direction is toward the adja-

cent pixel with higher luminance in the

current frame.

(b) If the temporal di�erence is positive,

the motion direction is toward the adja-

cent pixel with lower luminance in the

current frame.

3. Apply the 1-d direction estimation rules to

four orientations (vertical, horizontal, and

the two diagonals) at each pixel.

4. Treat each possible motion direction esti-

mate as a vector and average the possible

motion estimates at each pixel.

5. Finally, average the above 
ow estimate at

each pixel with the 
ow estimates of each of

its eight neighbors.



Figure 11: Top: Participants playing Decathlete game. Bottom: image mosaic showing player,
Decathlete game display, and arti�cial retina module.

Fig. 14 illustrates our algorithm for the case

of a 4x4 pixel moving square. Each sub�g-

ure corresponds with one enumerated step of

the algorithm above. When the square moves

(Fig. 14(a)), there exist some pixel value changes.

Fig. 14 (b) represents the change of each pixel

value by taking their di�erence of the frame in-

terval. Fig. 14(c) is a set of orientation vectors

at each pixel, and motion vectors are shown in

Fig. 14(d). After spatial smoothing, the optical


ow pattern is as in Fig. 14(e)
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Figure 12: Visual display of analysis of Decathlete game.

Figure 13: Example of user playing another Decathlon event, the javelin throw. The computer's
timing of the set and release for the javelin is based on when the integrated downward and upward
motion exceeds predetermined thresholds.



Figure 14: Fast motion estimation algorithm. Top: Showing how contrast direction and motion
direction interact to yield temporal di�erence pixel values (algorithm, step 2). Bottom: Steps in the
algorithm to calculate optical 
ow. (b), (c), (d), and (e) correspond to algorithm steps 1, 3, 4, and 5,
respectively.



5 Small object tracking

The previous algorithms involved tracking or

characterizing objects that are large in the cam-

era frame. Many interactive applications also re-

quire tracking objects, such as the user's hand,

which comprise only a small part of the image.

We describe one such application, and our system

solution.

The target application is to control a televi-

sion set by hand signals, replacing a remote con-

trol. This application forces us to face two design

problems, one from the human's point of view,

and one from the computer's point of view. On

the human side, we want to give a broad set of

commands to the television set by hand signals,

yet we don't want to require an intensive train-

ing period before one can control the television.

On the machine side, recognition of a broad set

of hand gestures made within a complex, unpre-

dictable visual scene, such as a living room, is

di�cult, beyond the realm of present day vision

algorithms.

We addressed both these design constraints by

exploiting the ability of the television screen for

graphical feedback [6]. Our interface design is

simple (see Fig. 16). To turn on the television,

the user holds up his hand. Then a graphical

hand icon appears on the television screen, along

with graphical sliders and buttons for television

adjustments. The hand icon tracks the motions

of the user's hand. The user adjusts the vari-

ous television controls by moving the hand icon

on top of the on-screen controls. The graphical

displays and position feedback allows a rich in-

teraction using only simple actions from the user.

The method of moments and orientation his-

tograms of the previous sections aren't ad-

equate to track a small object through the

scene. We adopted a template-based tech-

nique, called normalized correlation (see sidebar:

normalized correlation). We examine the �t of

a hand template to every position in the ana-

lyzed image. The location of maximum correla-

tion gives the position of the candidate hand; the

value of that correlation indicates how likely the

image region is to be a hand.

To simplify the processing, we just used a sin-

gle template for the hand. This restricts the scale

and orientation changes allowed by the image of

the user's hand. The working range of the single

template system was 6 - 10 feet from the tele-

vision. To increase the processing speed, we re-

stricted the �eld of view of the television's camera

to 15� when initially searching for the hand, and

25� in tracking mode. We used a running tem-

poral average of the image in order to subtract

out stationary objects. Nonetheless, best results

are achieved when the background provides good

contrast with the foreground hand. To increase

robustness to lighting changes, we used an ori-

entation representation. Although the tracking

method is not adequate for unpredictable envi-

ronments like living rooms, under demonstration

conditions, it can work quite well. Other tracking

methods may improve performance [2].

The working demonstration allowed us to in-



formally survey people's reactions to controlling

a television set by hand signals. Most people

seemed quite excited by the approach; it seemed

in some ways magical. Unfortunately, to hold

up the hand in the required way for a long time

is tiring. While the initial gesture to turn the

television set on may be adequate, for channel

surfers a more relaxed signal must be developed

to indicate a new channel.

Figure 15: Block diagram of prototype of
television set controlled by hand gestures.
While the prototype uses two display screens,
the graphics could be overlaid directly on the
television image.

camera input television overlay

(a) television o�

(b) turn on television

(c) channel control

(d) change channel

(e) end adjustment

Figure 16: Sample session of television view-
ing. (a) Television is o�, but searching for the
trigger gesture. (b) Viewer shows trigger ges-
ture (open hand). Television set turns on and
hand icon and graphics overlays appear. (c)
The hand icon tracks the user's hand move-
ment. User changes controls as with a mouse.
(d) User has moved hand icon to change chan-
nel. (e) User closes hand to leave control
mode. After one second, the hand icon and
controls then disappear.



Figure 17: For television set controlled by hand gestures. Under vision input, the hand icon tracks
the user's hand, allowing him to use his hand like a computer mouse.



5.1 Sidebar: Normalized correlation

To �nd instances of an intensity pattern within

another image, we can examine the correlation

between each small patch of the image, and the

target pattern. To remove e�ects due to large,

overall changes in brightness, we calculate what

is called the normalized correlation between ev-

ery point of the image and the target pattern.

Consider the M �N pixel target pattern to be

an MN dimensional vector, ~a. For each possible

placement of the target pattern within the image,

let the corresponding M �N pixels of the image

be an MN dimensional vector, ~b. The normal-

ized correlation for that particular o�set of the

target pattern within the image is simply the co-

sine of the angle between the vectors ~a and ~b:
~a�~bp

(~a�~a)(~b�~b)
. Figure 18 shows the normalized cor-

relation between an image and a hand template.

Note the peak correlation intensity at the true

position of the hand.

(a)

(b) (c)

Figure 18: (a) Stored hand template. (b)
Image to be analyzed. (c) Normalized corre-
lation values at each pixel. The bright spot of
the normalized correlation indicates the posi-
tion of the best match.

6 Summary

Fast, simple vision algorithms and interactive

computer graphic applications �t together well at

a system level to accommodate human-computer

interaction based on computer vision. The de-

mands of the interactive application require ro-

bust, fast response with low-cost hardware. For-

tunately, the graphical application also simpli-

�es the problem by providing context to limit

the range of visual interpretations and provid-

ing user feedback. This allows for interfaces to

computer graphic applications based on simple

and fast vision algorithms, and possibly special,

low-cost hardware. Advances in algorithms, pro-

cessing power, and memory will continually im-

prove these vision-based interfaces which, over

time, may become commonplace.
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