
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Mining Features for Sequence Classification

Neal Lesh, Mohammed J. Zaki, Mitsunori Ogihara

TR98-22 December 1998

Abstract

Classification algorithms are difficult to apply to sequential examples, such as plan executions or
text, because there is a vast number of potentially useful features for describing each example.
Past work on feature selection has focused on searching the space of all subsets of the available
features which is intractable for large feature sets. We adapt data mining techniques to act as
a preprocessor to select features for standard classification algorithms such as Naive Bayes and
Winnow. We apply our algorithm to the task of predicting whether or not a plan will succeed
or fail, during plan execution. The features produced by our algorithm improve classification
accuracy by 10-50 percent in our experiments.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Mining features for sequence

classi�cation

Neal Lesh Mohammed J. Zaki�

Mitsunori Ogiharay

TR-98-22 December 1998

Abstract

Classi�cation algorithms are di�cult to apply to sequential examples, such
as plan executions or text, because there is a vast number of potentially useful
features for describing each example. Past work on feature selection has focused
on searching the space of all subsets of the available features which is intractable
for large feature sets. We adapt data mining techniques to act as a preprocessor
to select features for standard classi�cation algorithms such as Naive Bayes and
Winnow. We apply our algorithm to the task of predicting whether or not a
plan will succeed or fail, during plan execution. The features produced by our
algorithm improve classi�cation accuracy by 10-50% in our experiments.

Submitted to IJCAI'99.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors
and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1998
201 Broadway, Cambridge, Massachusetts 02139

�Rensselaer Polytechnic Institute
yUniversity of Rochester

Publication History:{

1. First printing, TR-98-22, December 1998

1
1 Introduction

Some classi�cation algorithms have been shown to work
well when there are thousands of features for describing
each example (e.g, [14; 16]). In some domains, however,
the number of potentially useful features is exponential
in the size of the examples. Data mining algorithms
(e.g., [1]) have been used to search through billions of
rules, or patterns, and select the most interesting ones.
In this paper, we adapt data mining techniques to act as
a preprocessor to construct a set of features to use for
classi�cation.

This work was motivated by the task of plan mon-
itoring in stochastic domains (e.g, [17]). Probabilistic
planners (e.g. [12]) construct plans with high probabil-
ity of achieving their goal. The task of monitoring is
to \watch" as the plan is executed and predict, in ad-
vance, whether the plan will most likely succeed or fail
to facilitate re-planning.

There are three steps in our approach. First, we sim-
ulate the plan repeatedly to generate execution traces.
Probabilistic planners use a domain model that indicates
the probability of state si resulting from executing ac-
tion aj in state sk for all states and actions. We use this
information to perform Monte Carlo simulation. Second,
we mine the simulated execution traces for features that
are common in either successful or unsuccessful execu-
tion traces, but not in both. Finally, we train a classi�er
to predict success or failure on a second set of simulated
traces, using the features produced in the second step.

Plan monitoring (or monitoring any probabilistic pro-
cess that we can simulate) is an attractive area for ma-
chine learning because there is an essentially unlimited
supply of training data. Although we cannot consider all
possible execution paths, because the number of paths is
exponential in the length of the plan, or process, we can
generate arbitrary numbers of new examples with Monte
Carlo simulation. The problem of over-�tting is reduced
because we can test our hypotheses on \fresh" data sets.

The contribution of this paper is to combine two
powerful paradigms for classi�cation: sequence mining
which can e�ciently search for patterns that are cor-
related with the target classes, and classi�cation algo-
rithms which learn to weigh evidence from di�erent fea-
tures to classify new examples. Additionally, we present
a criteria for selecting features, and present pruning rules
that allow for more e�cient mining of the features.

The rest of this paper is organized as follows. First,
we demonstrate the main ideas described in this paper
with a simple example. We then formulate and present
a solution for the feature mining problem. We then de-
scribe our experiments and conclude with discussion of
related and future work.

2 Example: poker

We now preview the main ideas in this paper with a
simple, illustrative example.

Suppose we observe three people playing poker with

betting sequences and outcomes such as:

example: P1 Bets 3, P2 Calls, P3 Raises 2, P1 Raises 1,
P2 Folds, P3 Calls) P1 wins

Our objective is to learn a function that predicts who
is most likely to win given a betting sequence. This
task resembles standard classi�cation: we are given la-
belled training examples and must produce a function
that classi�es new, unlabelled examples. Classi�ers re-
quire, however, that examples be represented as vectors
of feature-value pairs. This paper addresses the problem
of selecting features to represent the betting sequences.

First, consider an obvious, but poor, feature set. Let
N be the length of the longest betting sequence. We can
represent betting sequences with 3N features by gener-
ating a distinct feature for every 0 � i � N , for the
person who made the ith bet, for the type of the ith
bet, and for the amount of the ith bet. In section 4, we
show experimentally that this feature set leads to poor
classi�cation. One problem with these features is that
they do not express that some sequence of events took
place. Consider the following features:

Feature: P1 raises twice
Feature: P2 folds and then P1 raises 2 dollars

The �rst feature would be important if, for example,
P1 tends to win whenever she raises twice. A classi�er
could construct a boolean expression out of the features
described above to capture the notion \P1 raises twice",
but the expression would have N2 disjuncts.1

An alternative is to use a much larger feature set.
If there are 3 players, 4 bids, and 5 di�erent amounts
then there are 4 � 5 � 6 = 120 partial speci�cations of
a bet, such as \someone bets 3". We can chain partial
speci�cations together with an \and then" relation, as
in \P1 raises and then someone bets 3". The number of
such features of length K is 120K . The problem with
this feature set is that it is too large. Sets of 10,000
features are considered large [5]. Furthermore, irrelevant
or redundant features can reduce classi�cation accuracy
[4].

We adopt a middle ground between these two ex-
tremes. We use data mining techniques to search
through the second, huge feature set and select a sub-
set. We show that a criteria similar to that used in the
general knowledge discovery task works well for deciding
which features will be useful.

2.1 Analyzing probabilistic processes

What does this example have to do with plan monitor-
ing? Suppose that instead of watching people play cards,
we are given probabilistic rules which describe how the
players bet, such as \if player P1's hand cannot beat two
pair, then P1 will fold with .75 probability, or otherwise
call." Analytically computing which player is most likely

1It would need a disjunct for \P1 raises in the ith bet and
in the jth" for all i; j < N where i 6= j.

MERL-TR-98-22 December 1998

2
to win given a betting sequence can be intractable. In-
stead, we can perform Monte Carlo simulation to gener-
ate betting sequences and treat these sequences as train-
ing examples, as described above.

For plan monitoring, we are given a probabilistic plan
P , goal G, and domain description D. We assume that
some or all of the actions in P have an observable out-
come. The task of plan monitoring is to predict whether
the plan will succeed or fail given the observed results
of the partial execution of plan P . Computing the exact
probability that the plan will succeed is exponential in
the length of P [13]. As a more tractable alternative, we
can repeatedly simulate plan P and label each simula-
tion by whether or not goal G is true in the �nal state.
Since we want predict the �nal outcome of the plan in
advance, we can train a classi�er with, say, only the �rst
10 time steps of each simulation. During plan execution,
this classi�er can be used as a plan monitor by feeding
the �rst ten steps of the real execution into the classi�er.
The monitor's output will be an indication of whether
the plan is likely to succeed or fail.

Note that the plan monitor is trained prior to ex-
ecution. With the classi�ers we use, the time required
during plan execution is linear in the number of features.

3 Data mining for features

We now formulate and present an algorithm for feature
mining. We begin by adopting the following terminology,
which closely resembles that used for sequence mining.

Let F be a set of distinct features, each with some
�nite set of possible values. Let I contain a unique el-
ement for every possible feature-value pair. A sequence
is an ordered list of subsets of I . A sequence � is de-
noted as (�1 ! �2 ! ::: ! �n) where each sequence
element �i is a subset of I. The length of sequence
(�1 ! �2 ! ::: ! �n) is n and its width is the max-
imum size of any �i for 1 � i � n. We say that � is
a subsequence of �, denoted as � � �, if there exists
integers i1 < i2 < ::: < in such that �j � �ij for all �j .

Let C be a set of class labels. An example is a pair
h�; ci where � is a sequence and c 2 C is a label. An
example h�; ci is said to contain sequence � if � � �.

Let D be a set of examples. The frequency of sequence
� in D, denoted fr(�;D), is the fraction of examples in D
that contain �. Let � be a sequence and c be a class label.
The con�dence of the rule �) c, denoted conf(�; c;D),
is the conditional probability that c is the label of an
example in D given that it contains sequence �. That

is, conf(�; c;D) = fr(�;Dc)

fr(�;D)
where Dc is the subset of

examples in D with class label c.
A sequence classi�er is a function from sequences to

C [fnullg. A classi�er can be evaluated using standard
metrics such as accuracy and coverage.

Finally, we describe how sequences �1; :::; �n can be
used as features for classi�cation. Recall that the in-
put to a standard classi�er is an example represented as
vector of feature-value pairs. We represent a sequence

� as a vector of feature-value pairs by treating each se-
quence �i as a boolean feature that is true i� �i � �.
For example, suppose the features are f1 = A ! B;
f2 = A ! BC; and f3 = AC. The sequence AB ! BC
would be represented as hf1; truei; hf2; truei; hf3; falsei.
The sequence ABC ! B would be represented as
hf1; truei; hf2; falsei; hf3; truei.

3.1 Selection criteria for mining

We now specify our selection criteria for selecting fea-
tures to use for classi�cation. Our objective is to �nd
sequences such that representing examples with these se-
quences will yield a highly accurate sequence classi�er.
Certainly, the criteria for selecting features might depend
on the domain and the classi�er being used. We be-
lieve, however, that the following domain-and-classi�er-
independent heuristics are useful for selecting sequences
to serve as features:

1. Features should be frequent.

2. Features should be distinctive of at least one class.

3. Feature sets should not contain redundant features.

The intuition behind the �rst heuristic is simply that
rare features can, by de�nition, only rarely be useful for
classifying examples. In our problem formulation, this
heuristic translates into a requirement that all features
have some minimum frequency in the training set.

The intuition for the second heuristic is that features
that are equally likely in all classes do not help deter-
mine which class an example belongs to. Of course, a
conjunction of multiple non-distinctive features can be
distinctive. In this case, our algorithm prefers to use
the distinctive conjunction as a feature rather than the
non-distinctive conjuncts. We encode this heuristic by
requiring that each selected feature be signi�cantly cor-
related with at least one class that it is frequent in.

The motivation for our third heuristic is that if two
features are closely correlated with each other, then ei-
ther of them is as useful for classi�cation as both are. We
show below that we can reduce the number of features
and the time needed to mine for features by pruning re-
dundant rules. In addition to wanting to prune features
which provide the same information, we also want to
prune a feature if there is another feature available that
provides strictly more information. Let M(f;D) be the
set of examples in D that contain feature f . We say that
feature f1 subsumes feature f2 with respect to predict-
ing class c in data set D i� M(f2;Dc) �M(f1;Dc) and
M(f1;D:c) �M(f2;D:c)

We can now de�ne the feature mining task. The in-
puts to the FeatureMine algorithm are a set of exam-
ples D and parameters minfr, maxw, and maxl. The
output is a non-redundant set of the frequent and distinc-
tive features of width maxw and length maxl. Formally:
Feature mining: Given examples D and parameters
minfr, maxw, and maxl return feature set F such that
for every feature fi and every class cj 2 C, if length(fi) �
maxl and width(fi) � maxw and fr (�;Dcj) � minfr

MERL-TR-98-22 December 1998

3
and conf (�; cj ;D) is signi�cantly greater than jDcj=jDj
then F contains fi or contains a feature that subsumes
fi with respect to class cj in data set D.2

3.2 E�cient mining of features

We now present the FeatureMine algorithm which
leverages existing data mining techniques to e�ciently
mine features from a set of training examples.

Sequence mining algorithms are designed to discover
highly frequent and con�dent patterns in sequential data
sets and so are well suited to our task. FeatureMine

is based on the recently proposed UnNamed algorithm
(name and citation omitted for blind review) for fast
discovery of sequential patterns. The algorithm uses the
observation that the subsequence relation � de�nes a
partial order on sequences. If � � �, we say that �
is more general than �, or � is more speci�c than �.
The relation � is a monotone specialization relation with
respect to the frequency fr(�;D), i.e., if � is a frequent
sequence, then all subsequences � � � are also frequent.

The UnNamed algorithm systematically searches the
sequence lattice spanned by the subsequence relation,
from general to speci�c sequences, in a breadth/depth-
�rst manner. UnNamed starts with sequences contain-
ing a single item. During each iteration, the sequences
from the previous iteration that have frequency minfr
or greater are extended by one more item. The new item
is chosen from an equivalence class of k length sequences
which share the same k � 1 length su�x. For example,
if su�x equivalence class [C] has the elements A 7! C,
and B 7! C, then the only possible frequent sequences
at the next step can be A 7! B 7! C, B 7! A 7! C,
and (AB) 7! C. No other item X can lead to a frequent
sequence with the su�x C, unless (XC) or X 7! C is
also in [C]. This use of equivalence classes decomposes
the original search space into smaller sub-spaces, which
can be solved independently, and results in e�cient enu-
meration of all the frequent patterns.

To construct FeatureMine, we adapted the Un-

Named algorithm to search data bases of labelled ex-
amples. FeatureMine mines the patterns predictive of
all the classes in the database, simultaneously. As op-
posed to previous approaches that �rst mine millions of
patterns and then apply pruning as a post-processing
step, FeatureMine integrates pruning techniques in
the mining algorithm itself.

The �rst pruning rule is that we do not extend (i.e,
specialize) any feature with 100% accuracy. Let f1 be
a feature contained by examples of only one class. Spe-
cializations of f1 may pass the frequency and con�dence
tests in the de�nition of feature mining, but will be sub-
sumed by f1. The following Lemma, which follows from
the de�nition of subsume, justi�es this pruning rule:
Lemma 1: If fi � fj and conf(fi; c;D) = 1.0 then fi
subsumes fj with respect to class c.

Our next pruning rule concerns correlations between
individual items. Recall that the examples in D are rep-

2We use a chi-squared test to determine signi�cance.

resented as a sequence of sets. We say that A) B in
examples D if B occurs in every set in every sequence in
D in which A occurs. The following lemma states that
if A) B then any feature containing a set with both A
and B will be subsumed by one of its generalizations:
Lemma 2: Let � = �1 ! �2 ! :::! �n where A;B 2
�i for some 1 � i � n. If A) B, then � will be
subsumed by �1 ! :::�i�1 ! �i �B ! �i+1:::! �n.

We precompute the set of all A) B relations and
immediately prune any feature, during the search, that
contains a set with both A and B. In section 4, we
discuss why A) B relations arise and show they are
crucial for the success of our approach for some problems.

4 Empirical evaluation

We now describe experiments to test whether the fea-
tures produced by our system improve the performance
of the Winnow [14] and Naive Bayes [7] classi�cation
algorithms.

Winnow is a multiplicative weight-updating algo-
rithm. We used a variant of Winnow that maintains
a weight wi;j for each feature fi and class cj . Given an
example, the activation level for class cj is

Pn
i=0 wi;jxi

where xi is 1 if feature fi is true in the example, or 0
otherwise. Given an example, Winnow outputs the class
with the highest activation level. During training, Win-
now iterates through the training examples. If Winnow's
classi�cation of a training example does not agree with
its label then Winnow updates the weights of each fea-
ture fi that was true in the example: it multiplies the
weights for the correct class by some constant � > 1 and
multiples the weights for the incorrect classes by some
constant � < 1. In our experiments, � = 1:1 and � = :91

For each feature fi and class cj , Naive Bayes computes
P(fijcj) as the fraction of training examples of class cj
that contain fi. Given a new example in which features
f1; :::fn are true, Naive Bayes returns the class that max-
imizes P (cj)�P (f1jcj)� :::�P (fnjcj). Even though the
Naive Bayes algorithm appears to make the unjusti�ed
assumption that all features are independent it has been
shown to perform surprisingly well, often doing as well
as or better than C4.5 [6].

We now describe the domains we tested our approach
in and then discuss the results of our experiments.

Random parity problems: We �rst describe a (non-
sequential) problem designed to demonstrate the poten-
tial value of our approach.

Each problem is de�ned by three integers, N , M , and
L. For every 0 � i � N and 0 � j � M , there is a
boolean feature fi;j . Additionally, for 0 � k � L, there
is an irrelevant, boolean feature fk. Each instance is set
containing a feature/boolean pair for each feature and
its value in that instance. Thus, there are 2N�M+L

distinct instances. Each feature has a 50% chance of
being true and thus every instance is equally likely.

We also choose N weights w1; :::; wN , and assign each
instance one of two class labels (ON or OFF) as follows.
The \score" of an instance is the sum of the weights wi

MERL-TR-98-22 December 1998

4
Experiment Winnow Winnow with Winnow with Bayes Bayes with Bayes with

times � features FeatureMine time � features FeatureMine

parity, N = 5;M = 3; L = 5 .51 N/A .96 .50 N/A .96
parity, N = 3;M = 4; L = 8 .50 N/A .98 .50 N/A 1.0
parity, N = 10;M = 4; L = 10 .50 N/A .88 .50 N/A .84
�re, time = 5 .60 .65 .79 .69 .71 .81
�re, time = 10 .56 .77 .85 .68 .68 .75
�re, time = 15 .52 .75 .88 .68 .68 .72
spelling, their vs. there .70 N/A .94 .75 N/A .78
spelling, I vs. me .86 N/A .94 .66 N/A .90
spelling, than vs. then .83 N/A .92 .79 N/A .81
spelling, you're vs. your .77 N/A .86 .77 N/A .86

Table 1: Classi�cation results: the average classi�cation accuracy using di�erent feature sets to represent the exam-
ples. The highest accuracy was obtained with the features produced by the FeatureMine algorithm

for which the parity of features fi;1; :::fi;M is even. If
an instance's score is greater than half the sum of all

the weights,
PN

i=1 wi, then the instance is assigned class
label ON, otherwise it is assigned OFF. Example features
produced by FeatureMine are (f1;1=true, f1;2=true),
and (f4;1=true, f4;2=false,f4;3 =true).

In the experiments reported here, we used a minfr of
.02 to .05, maxw = 4, and maxl = 1.

Forest �re plans: We constructed a simple forest-�re
domain based loosely on the Phoenix �re simulator [9].3

We use a grid representation of the terrain. Each grid
cell can contain vegetation, water, or a base. At the
beginning of each simulation, the �re is started at a ran-
dom location. In each iteration of the simulation, the �re
spreads stochastically. The probability of a cell igniting
at time t is calculated based on the cell's vegetation, the
wind direction, and how many of the cell's neighbors are
burning at time t� 1. Additionally, bulldozers are used
to contain the �re. For each example terrain, we hand-
designed a plan for bulldozers to dig a �re line to stop
the �re. The bulldozer's speed varies from simulation to
simulation. An example simulation looks like:

(time0 Ignite X3 Y7), (time0 MoveTo BD1 X3 Y4),

(time0 MoveTo BD2 X7 Y4), (time0 DigAt BD2 X7 Y4),

.... (time8 DigAt BD2 X7 Y3), (time8 Ignite X3 Y9),

(time8 DigAt BD1 X2 Y3), (time8 Ignite X5 Y8),

... (time32 Ignite X6 Y1), (time32 Ignite X6 Y0),

We tag each plan with SUCCESS if none of the loca-
tions with bases have been burned in the �nal state,
or FAILURE otherwise. To train a plan monitor that can
predict at time k whether or not the bases will ultimately
be burned, we only include events which occur by time
k in the training examples. Example features produced
by FeatureMine in this domain are:

(MoveTo BD1 X2) ! (time6), and
(Ignite X2) ! (time8 MoveTo Y3))

The �rst sequence holds if bulldozer BD1 moves to the
second column before time 6. The second holds if a �re
ignites anywhere in the second column and then any bull-
dozer moves to the third row at time 8.

3Execution traces are available by email from the authors.

Many correlations used by our second pruning rule
described in section 3.2 arise in these data sets. For
example, Y8) Ignite arises in one of our test plans in
which a bulldozer never moves in the eighth column.

In the experiments reported here, we used a minfr =
.2, maxw = 3, and maxl = 3.

Context-sensitive spelling correction

We also tested our algorithm on the task of correcting
spelling errors that result in valid words, such as substi-
tuting there for their ([8]). For each test, we chose two
commonly confused words and searched for sentences in
the 1-million-word Brown corpus [10] containing either
word. We removed the target word and then represented
each word by the word itself, the part-of-speech tag in
the Brown corpus, and the position relative to the tar-
get word. For example, the sentence \And then there
is politics" is translated into (word=and tag=cc pos=-
2)! (word=then tag=rb pos=-1)! (word=is tag=bez
pos=+1) ! (word=politics tag=nn pos=+2).

Example features produced by FeatureMine include
(pos=+3) ! (word=the), indicating that the word the
occurs at least 3 words after the target word, and (pos=-
4) ! (tag=nn) ! (pos=+1), indicating that a noun
occurs within three words before the target word.

In the experiments reported here, we used a minfr =
.05, maxw = 3, and maxl = 2.

4.1 Results

For each test in the parity and �re domains, we gener-
ated 7,000 random training examples. We mined fea-
tures from 1,000 examples, pruned features that did not
pass a chi-squared signi�cance test (for correlation to a
class the feature was frequent in) in 2,000 examples, and
trained the classi�er on the remaining 5,000 examples.
We then tested on 1,000 additional examples. The re-
sults in Tables 1 and 2 the tables are averaged over 25-50
such tests. For the spelling correction, we used all the
examples in the Brown corpus, roughly 1000-4000 exam-
ples per word set, split 80-20 (by sentence) into training
and test sets. We mined features from 500 sentences and
trained the classi�er on the entire training set.

Table 1 shows that the features produced by Fea-

tureMine improved classi�cation performance. We
compared using the feature set produced by FeatureM-

MERL-TR-98-22 December 1998

5
Experiment Evaluated Selected

features features
random, N = 10;M = 4; L = 10 7,693,200 196
�re world, time =10 64,766 553
spelling, there vs. their 782,264 318

Table 2: Mining results: number of features considered
and returned by FeatureMine

ine with using only the primitive features themselves, i.e.
features of length 1. In the �re domain, we also evaluated
the feature set containing a feature for each primitive fea-
ture at each time step.4 Both Winnow and Naive Bayes
performed much better with the features produced by
FeatureMine. In the parity experiments, the mined
features dramatically improved the performance of the
classi�ers and in the other experiments the mined fea-
tures improved the accuracy of the classi�ers by a sig-
ni�cant amount, often more than 20%.

Table 2 shows the number of features evaluated and
the number returned, for several of the problems. For the
largest random parity problem, FeatureMine evalu-
ated more than 7 million features and selected only about
200. There were in fact 100 million possible features5 but
most of were rejected implicitly by the pruning rules.

Table 3 shows the impact of the A) B pruning rule
described in Section 3.2 on mining time. The results are
from one data set from each domain, with slightly higher
values for maxl and maxw than in the above experi-
ments. The pruning rule did not improve mining time
in all cases, but made a tremendous di�erence in the
�re world problems, where the same event descriptors
often appear together. Without A) B pruning, the
�re world problems are essentially unsolvable because
FeatureMine �nds over 20 million frequent sequences.

5 Related work

A great deal of work has been done on feature-subset
selection, motivated by the observation that classi�ers
can perform worse with feature set F than with some
F 0 � F (e.g., [4]). The algorithms explore the exponen-
tially large space of all subsets of a given feature set. In
contrast, we explore exponentially large sets of potential
features, but evaluate each feature independently. The
feature-subset approach seems infeasible for the prob-
lems we consider, which contain hundreds of thousands
to millions of potential features.

[8] applied a Winnow-based algorithm to context-
sensitive spelling correction. They use sets of 10,000
to 40,000 features and either use all of these features or
prune some based on the classi�cation accuracy of the
individual features. They obtain higher accuracy than
we did. Their approach, however, involves an ensemble
of Winnows, combined by majority weighting, and they
took more care in choosing good parameters for this spe-
ci�c task. Our goal, here, is to demonstrate that the fea-

4This is the feature set of size 3N described in section 2.
5There are 50 booleans features, giving rise to 100 feature-

value pairs. We searched to depth 4 (because M = 4).

tures produced by FeatureMine improve classi�cation
performance.

Data mining algorithms have often been applied to
the task of classi�cation. [15] build decision lists out of
patterns found by association mining. [2] and [3] both
combine association rules to form classi�ers. Our use of
sequence mining is a generalization on association min-
ing. (In the random parity problems, sequence mining
reduces to association mining.) Additionally, while pre-
vious work has explored new methods for combining as-
sociation rules to build classi�ers, the thrust of our work
has been to leverage and augment standard classi�ca-
tion algorithms. Our pruning rules resemble ones used
by [19], which also employs data mining techniques to
construct decision lists. Previous work on using data
mining for classi�cation has focused on combining highly
accurate rules together. By contrast, our classi�cation
algorithms can weigh evidence from many features which
each have low accuracy in order to classify new examples.

Our work is close in spirit to [11], which also con-
structs a set of sequential, boolean features for use by
classi�cation algorithms. They employ a heuristic search
algorithm, called FGEN, which incrementally generalizes
features to cover more and more of the training exam-
ples, based on its classi�cation performance on a hold-
out set of training data, whereas we perform an exhaus-
tive search (to some depth) and accept all features which
meet our selection criteria. Additionally, we use a di�er-
ent feature language and have tested our approaches on
di�erent classi�ers then they have.

Past work has applied data mining to plans. [13;
20] mine plan traces in order to analyze and improve
plans, but do make use of the pruning rules we have
presented here. [18] applies data mining techniques to
plans in order to infer causal, probabilistic models of plan
operators. These systems do no use patterns from data
mining as features for standard classi�cation algorithms.

6 Future work and conclusions

We plan to test our approach on other data sets, multi-
class problems, and other classi�cation algorithms. We
also intend to explore methods for �nding features that
will most improve classi�cation. One idea is to split the
training data into examples that the classi�er correctly
and incorrectly classi�es and then mine for features that
distinguish between these two sets.

In this paper, we have adapted data mining techniques
to act as a preprocessor to construct features for use by
standard classi�cation algorithms. We search through
millions of features to select a few hundred or thousand
features that are frequent and distinctive. We applied
our algorithm, FeatureMine, to the tasks of spelling
correction and classifying simulated plan traces. The
features produced by our algorithm FeatureMine sig-
ni�cantly improve classi�cation accuracy.

MERL-TR-98-22 December 1998

6
Experiment CPU seconds CPU seconds CPU seconds Features Features examined Features

with no pruning with only with all examined with with only examined with
A) B pruning pruning no pruning A) B pruning all pruning

random 320 337 337 1,547,122 1,547,122 1,547,122
�re world 5.8 hours 560 559 25,336,097 511,215 511,215
spelling 490 407 410 1,126,114 999,327 971,085

Table 3: Impact of pruning rules: running time and nodes visited for FeatureMine with and without the A) B
pruning. Results taken from one data set for each example.

References
[1] R. Agrawal and R. Srikant. Mining sequential patterns.

In Intl. Conf. on Data Engg., 1995.

[2] K. Ali, S. Manganaris, and R. Srikant. Partial classi�ca-
tion using association rules. In Proc. 3th Int. Conf. on
KDD, pages 115{118, 1997.

[3] R.J. Jr. Bayardo. Brute-force mining of high-con�dence
classi�cation rules. In Proc. 3rd Int. Conf. on KDD,
pages 123{126, 1997.

[4] R. Caruana and D. Freitag. Greedy attribute selection.
In Proc. 11th Int. Conf. Machine Learning, pages 28{36,
1994.

[5] T. Dietterich. Machine-learning research. AI Magazine,
pages 97{136, 1997.

[6] P. Domingos and M. Pazzani. Beyond independence:
conditions for the optimality of the simple bayesian clas-
si�er. In Proc. 13th Int. Conf. Machine Learning, pages
105{112, 1996.

[7] R.O. Duda and P.E. Hart. Pattern Classi�cation and
Scene Analysis. Wiley, 1973.

[8] A. Golding and D. Roth. Applying winnow to context-
sensitive spelling correction. In Proc. 13th Int. Conf.
Machine Learning, pages 180{190, 1996.

[9] D.M Hart and P.R Cohen. Predicting and explaining
success and task duration in the phoenix planner. In
Proceedings of the First International Conference on AI
Planning Systems, pages 106{115, 1992.

[10] H. Kucera and W.N. Francis. Computational Analysis of
Present-Day American English. Brown University Press,
Providence, RI, 1967.

[11] D. Kudenko and H. Hirsh. Feature generation for se-
quence categorization. In Proc. 15th Nat. Conf. AI,
pages 733{739, 1998.

[12] N. Kushmerick, S. Hanks, and D. Weld. An Algo-
rithm for Probabilistic Planning. J. Arti�cial Intelli-
gence, 76:239{286, 1995.

[13] N. Lesh, N. Martin, and J. Allen. Improving big plans.
In Proc. 15th Nat. Conf. AI, pages 860{867, 1998.

[14] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm. Ma-
chine Learning, 2:285{318, 1988.

[15] B. Liu, W. Hsu, and Y. Ma. Integrating classi�cation
and association rule mining. In Proc. 4th Int. Conf. on
KDD, pages 80{86, 1998.

[16] D.G. Lowe. Similarity metric learning for a variable-
kernal classi�er. Neural Computation, 7(1):72{85, 1995.

[17] D. McDermott. Improving robot plans during execution.
In Proc. 2nd Intl. Conf. AI Planning Systems, pages 7{
12, June 1994.

[18] T. Oates and P. Cohen. Searching for planning opera-
tors with context-dependent and probabilistic e�ects. In
Proc. 13th Nat. Conf. AI, pages 863{868, 1996.

[19] Richard Segal and Oren Etzioni. Learning decision lists
using homogeneous rules. In Proc. 12th Nat. Conf. AI,
pages 619{25, 1994.

[20] M.J Zaki, N. Lesh, and M. Ogihara. Planmine: Sequence
mining for plan failures. In Proc. 4th Int. Conf. on KDD,
pages 369{373, 1998.

MERL-TR-98-22 December 1998

	Title Page
	Title Page
	page 2

	Mining Features for Sequence Classification
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

