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Abstract

We introduce a novel framework for simultaneous structure and parameter learning in
hidden-variable conditional probability models, based on an entropic prior and a so-
lution for its maximuma posteriori (MAP) estimator. The MAP estimate minimizes
uncertainty in all respects: cross-entropy between model and data; entropy of the model;
entropy of the data’s descriptive statistics. Iterative estimation extinguishes weakly sup-
ported parameters, compressing and sparsifying the model. Trimming operators accel-
erate this process by removing excess parameters and, unlike most pruning schemes,
guarantee an increase in posterior probability.Entropic estimationtakes a overcom-
plete random model and simplifies it, inducing the structure of relations between hidden
and observed variables. Applied to hidden Markov models (HMMs), it finds a con-
cise finite-state machine representing the hidden structure of a signal. We entropically
model music, handwriting, and video time-series, and show that the resulting models
are highly concise, structured, predictive, andinterpretable: Surviving states tend to
be highly correlated with meaningful partitions of the data, while surviving transitions
provide a low-perplexity model of the signal dynamics.
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Abstract
We introduce a novel framework for simultaneous structure and parameter learning in
hidden-variable conditional probability models, based on an entropic prior and a solution
for its maximuma posteriori(MAP) estimator. The MAP estimate minimizes uncertainty
in all respects: cross-entropy between model and data; entropy of the model; entropy
of the data’s descriptive statistics. Iterative estimation extinguishes weakly supported
parameters, compressing and sparsifying the model. Trimming operators accelerate this
process by removing excess parameters and, unlike most pruning schemes, guarantee
an increase in posterior probability.Entropic estimationtakes a overcomplete random
model and simplifies it, inducing the structure of relations between hidden and observed
variables. Applied to hidden Markov models (HMMs), it finds a concise finite-state
machine representing the hidden structure of a signal. We entropically model music,
handwriting, and video time-series, and show that the resulting models are highly concise,
structured, predictive, andinterpretable: Surviving states tend to be highly correlated
with meaningful partitions of the data, while surviving transitions provide a low-perplexity
model of the signal dynamics.

1 An entropic prior
In entropic estimation we seek to maximize the information content of parameters. For
conditional probabilities, parameters values near chance add virtually no information
to the model, and are therefore wasted degrees of freedom. In contrast, parameters
near the extremaf0; 1g are informative because they impose strong constraints on the
class of signals accepted by the model. In Bayesian terms, our prior should assert that
parameters that do not reduce uncertainty are improbable. We can capture this intuition in
a surprisingly simple form: For a model ofN conditional probabilities� = f�1; : : : ; �Ng
we write
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whence we can see that the prior measures a model’s freedom from ambiguity (H(�) is an
entropy measure). ApplyingPe(�) to a multinomial yields the posterior
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where!i is evidence for event typei. With extensive evidence this distribution converges
to “fair”(ML) odds for !, but with scant evidence it skews to stronger odds.



1.1 MAP estimator

To obtain MAP estimates we set the derivative of log-posterior to zero, using Lagrange
multipliers to ensure
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We obtain�i by working backward from the LambertW function, a multi-valued inverse
function satisfyingW (x)eW (x)=x. Taking logarithms and settingy = logx,

0 = �W (x)� logW (x) + logx = �W (ey)� logW (ey) + y
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Setting�i=z=W (ey), y=1+�+logz, andz=�!i, eqn. 4 simplifies to eqn. 3, implying

�̂i =
�!i

W (�!ie1+�)
(5)

Equations 3 and 5 together yield a quickly converging fix-point equation for� and therefore
for the entropic MAP estimate. Solutions lie in theW�1 branch of Lambert’s function. See
[Brand, 1997] for methods we developed to calculate the little-knownW function.

1.2 Interpretation

The negated log-posterior is equivalent to a sum of entropies:
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MaximizingPe(�j!) minimizes entropy in all respects: the parameter entropyH(�); the
cross-entropyD(!jj�) between the parameters� and the data’s descriptive statistics!;
and the entropy of those statisticsH(!), which are calculated relative to the structure
of the model. Equivalently, the MAP estimator minimizes the expected coding length,
making it a maximally efficient compressor of messages consisting of the model and the
data coded relative to the model. Since compression involves separating essential from
accidental structure, this can be understood as a form of noise removal. Noise inflates the
apparent entropy of a sampled process; this systematically biases maximum likelihood
(ML) estimates toward weaker odds, more so in smaller samples. Consequently, the
entropic prior is a countervailing bias toward stronger odds.



1.3 Model trimming

Because the prior rewards sparse models, it is possible to remove weakly supported
parameters from the model while improving its posterior probability, such that
Pe(�n�ijX) > Pe(�jX). This stands in contrast to most pruning schemes, which typically
try to minimize damage to the posterior. Expanding via Bayes rule and taking logarithms
we obtain

hi(�i) = H(�)�H(�n�i) > logP (Xj�)�logP (Xj�n�i) (7)

wherehi(�i) is the entropy due to�i. For small�i, we can approximate via differentials:

�i
@H(�)

@�i
> �i

@ logP (Xj�)

@�i
(8)

By mixing the left- and right-hand sides of equations 7 and 8, we can easily identify
trimmable parameters—those that contribute more to the entropy than the log-likelihood.
E.g., for multinomials we sethi(�i)=��i log �i against r.h.s. eqn. 8 and simplify to obtain
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Parameters can be trimmed at any time during training; at convergence trimming can
bump the model out of a local probability maximum, allowing further training in a lower-
dimensional and possibly smoother parameter subspace.

2 Entropic HMM training and trimming
In entropic estimation of HMM transition probabilities, we follow the conventional E-step,
calculating the probability mass for each transition to be used as evidence!:

j;i =

T�1X
t
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wherePijj is the current estimate of the transition probability from statej to statei;
pi(xt+1) is the output probability of observationxt+1 given statei, and�; � are obtained
from forward-backward analysis and follow the notation of Rabiner [1989]. For the M-
step, we calculate new estimatesfP̂ijjgi=� by applying the MAP estimator inx1.1 to
each!=fj;igi. That is,! is a vector of the evidence for each kind of transition out of
a single state; from this evidence the MAP estimator calculates probabilities�. (In Baum-
Welch re-estimation, the maximum-likelihood estimator simply setsP̂ijj = j;i=

P
i j;i.)

In iterative estimation, e.g., expectation-maximization (EM), the entropic estimator drives
weakly supported parameters toward zero, skeletonizing the model and concentrating
evidence on surviving parameters until their estimates converge to near the ML estimate.
Trimming appears to accelerate this process by allowing slowly dying parameters to
leapfrog to extinction. It also averts numerical underflow errors.

For HMM transition parameters, the trimming criterion of eqn. 9 becomes
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wherej(t) is the probability of statej at timet. The multinomial output distributions of a
discrete-output HMM can be entropically re-estimated and trimmed in the same manner.
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Entropic versus ML HMM models of Bach chorales
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Figure 1: Left: Sparsification, classification, and prediction superiority of entropically
estimated HMMs modeling Bach chorales. Lines indicate mean performance over 10
trials; error bars are 2 standard deviations.Right: High-probability states and subgraphs of
interest from an entropically estimated 35-state chorale HMM. Tones output by each state
are listed in order of probability. Extraneous arcs have been removed for clarity.

3 Structure learning experiments

To explore the practical utility of this framework, we will use entropically estimated HMMs
as a window into the hidden structure of some human-generated time-series.

Bach Chorales: We obtained a dataset of melodic lines from 100 of J.S. Bach’s 371
surviving chorales from the UCI repository [Merz and Murphy, 1998], and transposed all
into the key of C. We compared entropically and conventionally estimated HMMs in
prediction and classification tasks, training both from identical random initial conditions
and trying a variety of different initial state-counts. We trained with 90 chorales and
testing with the remaining 10. In ten trials, all chorales were rotated into the test
set. Figure 1 illustrates that despite substantial loss of parameters to sparsification, the
entropically estimated HMMs were, on average, better predictors of notes. (Each test
sequence was truncated to a random length and the HMMs were used to predict the first
missing note.) They also were better at discriminating between test chorales and temporally
reversed test chorales—challenging because Bach famously employed melodic reversal as a
compositional device. With larger models, parameter-trimming became state-trimming: An
average of 1.6 states were “pinched off” the 35-state models when all incoming transitions
were deleted.

While the conventionally estimated HMMs were wholly uninterpretable, in the entropically
estimated HMMs one can discern several basic musical structures (figure 1, right),
including self-transitioning states that output only tonic (C-E-G) or dominant (G-B-D)
triads, lower- or upper-register diatonic tones (C-D-E or F-G-A-B), and mordents (A-]G-
A). We also found chordal state sequences (F-A-C) and states that lead to the tonic (C) via
the mediant (E) or the leading tone (B).

Handwriting: We used 2D Gaussian-output HMMs to analyze handwriting data. Training
data, obtained from the UNIPEN web site [Reynolds, 1992], consisted of sequences of
normalized pen-position coordinates taken at 5msec intervals from 10 different individuals
writing the digits 0-9. The HMMs were estimated from identical data and initial conditions
(random upper-diagonal transition matrices; random output parameters). The diagrams
in Figure 2 depict transition graphs of two HMMs modeling the pen-strokes for the digit
“5,” mapped onto the data. Ellipses indicate each state’s output probability iso-contours
(receptive field);�s and arcs indicate state dwell and transition probabilities, respectively,
by their thicknesses. Entropic estimation induces an interpretable automaton that captures
essential structure and timing of the pen-strokes. 50 of the 80 original transition parameters
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Figure 2: (a & b): State machines of conventionally and entropically estimated hidden
Markov models of writing “5.” (c & d): Confusion matrices for all digits.

were trimmed. Estimation without the entropic prior results in a wholly opaque model, in
which none of the original dynamical parameters were trimmed. Model concision leads to
better classification—the confusion matrices show cumulative classification error over ten
trials with random initializations. Inspection of the parameters for the model in 2b showed
that all writers began in states 1 or 2. From there it is possible to follow the state diagram
to reconstruct the possible sequences of pen-strokes: Some writers start with the cap (state
1) while others start with the vertical (state 2); all loop through states 3-8 and some return
to the top (via state 10) to add a horizontal (state 12) or diagonal (state 11) cap.

Office activity: Here we demonstrate a model of human activity learned from medium-
to long-term ambient video. By activity, we mean spatio-temporal patterns in the pose,
position, and movement of one’s body. To make the vision tractable, we consider the
activity of a single person in a relatively stable visual environment, namely, an office.

We track the gross shape and position of the office occupant by segmenting each image
into foreground and background pixels. Foreground pixels are identified with reference
to an acquired statistical model of the background texture and camera noise. Their
ensemble properties such as motion or color are modeled via adaptive multivariate
Gaussian distributions, re-estimated in each frame. A single bivariate Gaussian is
fitted to the foreground pixels and we record the associated ellipse parameters [meanx,
meany, �meanx, �meany, mass,�mass, elongation, eccentricity]. Sequences of these
observation vectors are used to train and test the HMMs.

Approximately 30 minutes of data were taken at 5Hz from an SGI IndyCam. Data
was collected automatically and at random over several days by a program that started
recording whenever someone entered the room after it had been empty 5+ minutes.
Backgrounds were re-learned during absences to accommodate changes in lighting and
room configuration. Prior to training, HMM states were initialized to tile the image
with their receptive fields, and transition probabilities were initialized to prefer motion
to adjoining tiles. Three sequences ranging from 1000 to 1900 frames in length were used
for entropic training of 12, 16, 20, 25, and 30-state HMMs.

Entropic training yielded a substantially sparsified model with an easily interpreted state
machine (see figure 3). Grouping of states into activities (done only to improve readability)
was done by adaptive clustering on a proximity matrix which combined Mahalonobis
distance and transition probability between states. The labels are the author’s description
of the set of frames claimed by each state cluster during forward-backward analysis of
test data. Figure 4 illustrates this analysis, showing frames from a test sequence to which
specific states are strongly tuned. State 5 (figure 3 right) is particularly interesting—it has a
very non-specific receptive field, no self-transition, and an extremely low rate of occupancy.
Instead of modeling data, it serves tocompressthe model by summarizing transition
patterns that are common to several other states. The entropic model has proven to be
quite superior for segmented new video into activities and detecting anomalous behavior.
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Figure 3: Top: The state machine found by entropic training (left) is easily labeled and
interpreted. The state machine found by conventional training (right) is not, begin fully
connected.Bottom: Transition matrices after (1) initialization, (2) entropic training, (3)
conventional training, and (4 & 5) entropic training from larger initializations. The top row
indicates initial probabilities of each state; each subsequent row indicates the transition
probabilities out of a state. Color key:2 = 0; = 1. The state machines above are
extracted from 2 & 3. Note that 4 & 5 show the same qualitative structure as 2, but sparser,
while 3 shows no almost no structure at all.

1: entering the room 10: at the computer 3: at the white-board 6: sitting

12: getting the phone 9: looking for a key 8: writing 11: swiveling right

Figure 4: Some sample frames assigned high state-specific probabilities by the model. Note
that some states are tuned to velocities, hence the difference between states 6 and 11.

4 Related work

HMMs: The literature of structure-learning in HMMs is based almost entirely on generate-
and-test algorithms. These algorithms work by merging [Stolcke and Omohundro, 1994]
or splitting [Takami and Sagayama, 1991] states, then retraining the model to see if any
advantage has been gained. Space constraints force us to summarize a recent literature
review: There are now more than 20 variations and improvements on these approaches, plus
some heuristic constructive algorithms (e.g., [Wolfertstetter and Ruske, 1995]). Though
these efforts use a variety of heuristic techniques and priors (including MDL) to avoid
detrimental model changes, much of the computation is squandered and reported run-times
often range from hours to days. Entropic estimation is exact, monotonic, and orders of
magnitude faster—only slightly longer than standard EM parameter estimation.

MDL: Description length minimization is typically done via gradient ascent or search via
model comparison; few estimators are known. Rissanen [1989] introduced an estimator for
binary fractions, from which Vovk [1995] derived an approximate estimator for Bernoulli



models over discrete sample spaces. It approximates a special case of our exact estimator,
which handles multinomial models in continuous sample spaces. Our framework provides
a unified Bayesian framework for two issues that are often treated separately in MDL:
estimating the number of parameters and estimating their values.

MaxEnt: Our prior has different premises and an effect opposite that of the “standard”
MaxEnt priore��D(�k�0). Nonetheless, our prior can be derived via MaxEnt reasoning
from the premise that the expectation of the perplexity over all possible models is finite
[Brand, 1998]. More colloquially, we almost always expect there to be learnable structure.

Extensions: For simplicity of exposition (and for results that are independent of model
class), we have assumed prior independence of the parameters and takenH(�) to be the
combined parameter entropies of the model’s component distributions. Depending on the
model class, we can also provide variants of eqns. 1-8 forH(�) =conditional entropy or
H(�) =entropy rate of the model. In Brand [1998] we present entropic MAP estimators
for spread and covariance parameters with applications to mixtures-of-Gaussians, radial
basis functions, and other popular models. In the same paper we generalize eqns. 1-8
with a temperature term, obtaining a MAP estimator that minimizes the free energy of the
model. This folds deterministic annealing into EM, turning it into a quasi-global optimizer.
It also provides a workaround for one known limitation of entropy minimization: It is
inappropriate for learning from data that is atypical of the source process.

Open questions:Our framework is currently agnostic w.r.t. two important questions: Is
there an optimal trimming policy? Is there a best entropy measure? Other questions
naturally arise: Can we use the entropy to estimate the peakedness of the posterior
distribution, and thereby judge the appropriateness of MAP models? Can we also directly
minimize the entropy of the hidden variables, thereby obtaining discriminant training?

5 Conclusion
Entropic estimation is highly efficient hillclimbing procedure for simultaneously estimating
model structure and parameters. It provides a clean Bayesian framework for minimizing all
entropies associated with modeling, and an E-MAP algorithm that brings the structure of a
randomly initialized model into alignment with hidden structures in the data via parameter
extinction. The applications detailed here are three of many in which entropically estimated
models have consistently outperformed maximum likelihood models in classification and
prediction tasks. Most notably, it tends to produce interpretable models that shed light on
the structure of relations between hidden variables and observed effects.
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