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Abstract

We introduce an entropic prior for multinomial parameter estimation problems
and solve for its maximuma posteriori(MAP) estimator. The prior is a bias for
maximally structured and minimally ambiguous models. In conditional probability
models with hidden state, iterative MAP estimation drives weakly supported pa-
rameters toward extinction, effectively turning them off. Thus structure discovery
is folded into parameter estimation. We then establish criteria for simplifying a
probabilistic model’s graphical structure by trimming parameters and states, with
a guarantee that any such deletion will increase the posterior probability of the
model. Trimming accelerates learning by sparsifying the model. All operations
monotonically and maximally increase the posterior probability, yielding structure-
learning algorithms only slightly slower than parameter estimation via expectation-
maximization (EM), and orders of magnitude faster than search-based structure
induction. When applied to hidden Markov model (HMM) training, the resulting
models show superior generalization to held-out test data. In many cases the
resulting models are so sparse and concise that they areinterpretable, with hidden
states that strongly correlate with meaningful categories.

1 Introduction

Probabilistic models are widely used to model and classify signals. There are efficient
algorithms for fitting models to data, but the user is obliged to specify the structure of
the model: How many hidden variables; which hidden and observed variables interact;
which are independent? This is particularly important when the data is incomplete
or has hidden structure, in which case the model’s structure is a hypothesis about
causal factors that have not been observed. Typically a user will make several guesses;
each may introduce unintended assumptions into the model. Testing each guess is
computationally intensive, and methods for comparing the results are still debated
[Dietterich, 1998]. The process is tedious but necessary: Structure is the primary
determinant of a model’s selectivity and speed of computation. Moreover, if one shares
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the view that science seeks to discover lawful relations between hidden processes
and observable effects, structure is theonly part of the model that sheds light on the
phenomenon that is being modeled.

Here we show how to fold structure learning into highly efficient parameter estima-
tion processes such as expectation-maximization (EM). We introduce an entropic prior
and apply it to multinomials, which are the building blocks of conditional probability
models. The prior is a bias for sparsity, structure and determinism in probabilistic
models. Iterative maximuma posteriori (MAP) estimation using this prior tends to
drive weakly supported parameters toward extinction, sculpting a lower-dimensional
model whose structure comes to reflect that of the data. To accelerate this process,
we establish when weakly supported parameters can be trimmed from the model.
Each transform removes the model from a local probability maximum, simplifies it,
and opens it to further training. All operations monotonically increase the posterior
probability, so that training proceeds directly to a (locally) optimal structure and pa-
rameterization. All of the attractive properties of EM are retained: polynomial-time
re-estimation; monotonic convergence from any non-zero initialization, and maximal
gains at each step.1

In this paper we develop an entropic prior, MAP estimator, and trimming criterion
for models containing multinomial parameters. We demonstrate the utility of the prior
in learning the structure of mixture models and hidden Markov models (HMMs). The
resulting models are topologically simpler and show superior generalization on av-
erage, where generalization is measured by the prediction or classification of held-out
data. Perhaps the most interesting property of the prior is that it leads to models that are
interpretable—one can often discover something interesting about the deep structure
of a dataset just by looking at the learned structure of an entropically trained model.

We begin by deriving the main results inx2. In x3 we use mixture models to
visually illustrate the difference between entropic and conventional estimation. In
x4 we develop a “train and trim” algorithm for the transition matrix of continuous-
output HMMs, and experimentally compare entropically and conventionally estimated
HMMs. In x5 we extend the algorithm to the output parameters of discrete-output
HMMs, and explore its ability to find meaningful structure in datasets of music and
text. In x6 we draw connections to the literatures on HMM model induction and
maximum-entropy methods. Inx7 we discuss some open questions and potential
weaknesses of our approach. Finally, we show that entropic MAP estimator solves
a classic problem in graph theory, and raise some interesting mathematical questions
that arise in connection with the prior.

2 A maximum-structure entropic prior

Even if one claims not to have prior beliefs, there are compelling reasons to specify a
prior probability density function. The likelihood function alone cannot be interpreted

1[Bauer et al., 1997] have pointed out that it is possible to have larger gains from initializations near the
solution at a cost of losing convergence guarantees from all initializations.
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as a density without specifying a measure on parameter space; this is provided by
the prior. If the modeler simply wants the data to “speak for itself,” then the prior
should be non-informative and invariant to the particular way the likelihood function is
parameterized. It is common to follow Laplace and specify a uniform priorPu(�)/1
on parameter values�=f�1; �2; �3; : : :g, as if one knows nothing about what parameter
values will best fit as-yet-unobserved evidence [Laplace, 1812]. The main appeal of
this non-informative prior is that the problem reduces to maximum likelihood (ML)
equations that are often conveniently tractable. However, the uniform prior is not
invariant to reparameterizations of the problem (e.g.,�0i=exp �i) and it probably un-
derestimates one’s prior knowledge: Even if one has no prior beliefs about the specific
problem, there are prior beliefs about learning and what makes a good model.

In entropic estimation, we assert that parameters that do not reduce uncertainty are
improbable. For example, in a multinomial distribution overK mutually exclusive
kinds of events, a parameter at chance�i =

1
K adds no information to the model, and

is thus a wasted degree of freedom. On the other hand, a parameter near zero removes
a degree of freedom, making the model more selective and more resistant to over-
fitting. In this view, learning is a process of increasing the specificity of a model, or
equivalently, minimizing entropy. We can capture this intuition in a simple expression2

which takes on a particularly elegant form in the case of multinomials:

Pe(�) / e�H(�) = exp
X
i

�i log �i =
Y
i

��ii = �
� (1)

Pe(�) is non-informative to the degree that it does not favor one parameter set over
another provided they specify equally uncertain models. It is invariant because entropy
is a function of the model’s distribution, not its parameterization. Alternatively, we can
define entropy in terms of the distribution’s canonical parameterization, if one exists.

In x6.1 we will discuss how this prior can be derived mathematically. Here we will
concentrate on its behavior. The bolded convex curve in figure 1a shows that this prior
is averse to chance values and favors parameters near the extremes of[0; 1].

Combining the prior with the multinomial yields the entropic posterior:

Pe(�j!) / P (!j�)Pe(�) /

 
NY
i

�!ii

! 
NY
i

��ii

!
=

NY
i

��i+!ii (2)

where non-negative!i is evidence for event typei.
As figure 1a shows, with ample evidence this distribution becomes sharply peaked

around the maximum likelihood estimate, but with scant evidence it flattens and skews
to stronger odds. Note that this is the opposite behavior that one obtains from a
Dirichlet prior Dir(�j�1; � � � ; �N ), often used in learning Bayes’ net parameters from
data [Heckerman, 1996]. With�i>1, the Dirichlet MAP estimate skews to weaker
odds.

2We will use lower casep for probabilities, capitalP for probability distribution functions, and
subscriptedPe for p.d.f.’s having an entropy term.
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Figure 1: (a)
Entropic posterior distributions of binomial models �=f�h; �tg; �h+�t=1 for a
weighted coin whose sample statistics !=f!h; !tg; N=!h+!t indicate heads
twice as often as tails (!h=2!t). The mass of data is varied between curves.
The bolded convex curve Pe(�) / exp(�H(�)) shows how extremal values are
preferred in the absence of evidence (N=0). Dotted verticals show the MAP
estimates. (b) MAP estimates as a function of the mass of data. As N!1 the
MAP estimates converge to the ML estimates.
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The priorPe(�) was initially formulated to push parameters as far as possible from
their non-informative initializations. We subsequently discovered an interesting con-
nection to maximum entropy (ME) methods. ME methods typically seek the weakest
(most noncommittal) model that can explain the data. Here we seek the strongest
(sparsest, most structured and closest to deterministic) model that is compatible with
the data. In [Brand, 1999] we resolve this apparent opposition by showing that our
minimum-entropy prior can be constructed directly from maximum-entropy consider-
ations.

2.1 MAP estimator

The maximuma posterioriestimator yields parameter values that maximize the prob-
ability of the model given the data. When an analytic form is available, it leads to
learning algorithms that are considerably faster and more precise than gradient-based
methods. To obtain MAP estimates for the entropic posterior we set the derivative of
log-posterior to zero, using a Lagrange multiplier to ensure

P
�i = 1,

0 =
@

@�i

"
log

NY
i

�!i+�ii + �

 
NX
i

�i � 1

!#
(3)

=

NX
i

@

@�i
(!i + �i) log �i + �

NX
i

@

@�i
�i (4)

=
!i

�i
+ log �i + 1 + � (5)

This yields a system of simultaneous transcendental equations. It is not widely known
that non-algebraic systems of mixed polynomial and logarithmic terms such as eqn. 5
can be solved. We solve for�i using the LambertW function [Corless et al., 1996], an
inverse mapping satisfyingW (y)eW (y) = y and thereforelogW (y) +W (y) = log y.
Settingy = ex and working backwards towards eqn. 5,

0 = �W (ex)� logW (ex) + x (6)

=
�1

1=W (ex)
� logW (ex) + x+ log z � log z (7)

=
�z

z=W (ex)
+ log z=W (ex) + x� log z (8)

Settingx=1+�+log z andz=�!i, eqn. 8 simplifies to eqn. 5:

0= !i
�!i=W (e1+�+log�!i )

+log�!i=W (e1+�+log�!i)+1 + �+ log�!i � log�!i

=!i=�i +log �i +1+ �
(9)

which implies that

�i =
�!i

W (�!ie1+�)
(10)
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Eqns. 5 and 10 define a fix-point for�, which in turn yields a fast iterative procedure
for the entropic MAP estimator: Calculate� given�; normalize�; calculate� given�;
repeat.� may be understood as a measure of how much the dynamic range increases
from ! to �. Convergence is fast; given an initial guess of� =�

P
!i�hlog!i or

�i/!
1�1=

P
!i

i iff 8i!i�1, it typically takes 2-5 iterations to converge to machine
precision. Since many of these calculations involve adding values to their logarithms,
some care must be taken to avoid loss of precision near branch points, infinitesimals,
and at dynamic ranges greater than ulp(1)�1. In the last case, machine precision is
exhausted in intermediate values and we polish the result via Newton-Raphson. In
appendix A we present some recurrences for computingW .

2.2 Interpretation

The entropic MAP estimator strikes a balance which favors fair (ML) parameter values
when data is extensive, and biases toward low-entropy parameters when data is scarce
(figure 1b). Patterns in large samples are likely to be significant, but in small datasets,
patterns may be plausibly discounted as accidental properties of the sample, e.g., as
noise or sampling artifacts. The entropic MAP estimator may be understood to select
thestrongesthypothesis compatible with the data, rather thanfairest, or best unbiased
model. One might say it is better to start out with strong opinions that are later
moderated by experience; one’s correct predictions garner more credibility and one’s
incorrect predictions provide more diagnostic information for learning. Note that the
balance is determined by the mass of evidence, and may be artificially adjusted by
scaling!.

Formally, some manipulation of the posterior (eqn. 2) allows us to understand the
MAP estimate in terms of entropies:

�max
�

logPe(�j!)=min
�

� log

NY
i

��i+!ii (11)

=min
�

�

NX
i

(�i + !i) log �i (12)

=min
�

�

NX
i

(�i log �i + !i log �i � !i log!i + !i log!i)(13)

=min
�

�

NX
i

�i log �i +

NX
i

!i log
!i

�i
�

NX
i

!i log!i (14)

=min
�

H(�) +D(!k�) +H(!) (15)

In minimizing this sum of entropies, the MAP estimator reduces uncertainty in all
respects. Each term in this sum has a useful interpretation: The entropyH(�) measures
ambiguity within the model. The cross-entropyD(!k�) measures divergence between
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the parameters� and the data’s descriptive statistics!; it is the lower bound on the
expected number of bits needed to code aspects of the dataset not captured by the
model, e.g., noise. In problems with hidden variables, the expected sufficient statistics
! are computed relative to the structure of the model, thusH(!) is a lower bound on
the expected number of bits needed to specify which of the variations allowed by the
model is instantiated by the data. AsH(�) declines, the model becomes increasingly
structured and near-deterministic. AsH(!) declines, the model comes to agree with
the underlying structure of the data. Finally, asD(!k�) declines, the residual (aspects
of the data not captured by the model) become less and less structured, approaching
pure normally-distributed noise.

Alternatively, we can understand eqn. 15 to show that the MAP estimator minimizes
the lower bound of the expected coding lengths of the model and of the data relative
to it. In this light, entropic EM is a search-less and highly efficient form of structure
learning under a minimum description length constraint.

2.3 Training

The entropic posterior defines a distribution over all possible model structures and
parameterizations within a class; small, accurate models having minimal ambiguity in
their joint distribution are the most probable. To find these models, we simply replace
the M-step of EM with the entropic MAP estimator, with the following effect: First, the
E-step distributes probability mass unevenly through the model, because the model is
not in perfect accordance with the intrinsic structure of the training data. In the MAP-
step, the estimator exaggerates the dynamic range of multinomials in improbable parts
of the model. This drives weakly supported parameters toward zero and concentrates
evidence on surviving parameters, causing their estimates to approach the ML estimate.
Structurally irrelevant parts of the model gradually expire, leaving a skeletal model
whose surviving parameters become increasingly well-supported and accurate.

2.4 Trimming

The MAP estimator increases the structure of a model by driving irrelevant parameters
asymptotically to zero. Here we explore some conditions under which we can reify this
behavior by altering the graphical structure of the model, i.e., removing dependencies
between variables. The entropic prior licenses simple tests that identify opportunities
to trim parametersandincrease the posterior probability of the model. One may trim a
parameter�i whenever the loss in the likelihood is balanced by a gain in the prior:

Pe(�n�ijX) � P (�jX) (16)

P (Xj�n�i)Pe(�n�i) � P (Xj�)Pe(�) (17)
Pe(�n�i)

Pe(�)
�

P (Xj�)

P (Xj�n�i)
(18)

logPe(�n�i)�logPe(�) � logP (Xj�)�logP (Xj�n�i) (19)
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H(�)�H(�n�i) � logP (Xj�)�logP (Xj�n�i) (20)

If �i is small and positive we can substitute in the following differentials:

�i
@H(�)

@�i
� �i

@ logP (Xj�)

@�i
(21)

In sum, a parameter can be trimmed when varying it increases the entropy faster than
the log-likelihood. Any combination of the left and right terms in eqns. 20 and 21
will yield a trimming criterion. For example, we may substitute the entropic prior on
multinomials into the left hand of eqn. 20 and set that against the right hand of eqn. 21,
yielding

h(�i) � �i
@ logP (Xj�)

@�i
(22)

whereh(�i) = ��i log �i. Dividing by��i and exponentiating, we obtain

�i � exp

�
�
@ logP (Xj�)

@�i

�
(23)

Conveniently, the gradient of the log-likelihood@ logP (Xj�)=@�i will have already
been calculated for re-estimation in most learning algorithms.

Trimming accelerates training by removing parameters that would otherwise decay
asymptotically to zero. Although the mathematics makes no recommendation when
to trim, as a matter of practice we wait until the model is at or near convergence.
Trimming then bumps the model out of the local probability maximum and into a
parameter subspace of simpler geometry, thus enabling further training. Trimming
near convergence also give us confidence that further training would not resuscitate a
nearly extinct parameter.

Note that if a model is to be used for life-long learning—periodic or gradual re-
training on samples from a slowly evolving non-stationary process—then trimming is
not advised, since nearly extinct parameters may be revived to model new structures
that arise as the process evolves.

3 Mixture models

Semi-parametric distributions such as mixture or cluster models usually require itera-
tive estimation of a single multinomial, the mixing parameters�. In the E-step of EM,
we calculate the expected sufficient statistic as usual:

!i=

NX
n

p(cijxn) (24)

wherep(cijxn) is the probability of mixture componentci given thenth data point.
Dividing by N yields the maximum likelihood estimate for the conventional M-step.



M BRAND: STRUCTURE LEARNING 9

initial entropicconventional

Figure 2: Mixture models estimated entropically (right) and conventionally
(center) from identical initial conditions (left). Dots are data-points sampled
from the annular region; ellipses are iso-probability contours of the Gaussian
mixture components.

For entropic estimation, we instead apply the entropic MAP estimator to! to obtain�.
The trimming criterion derives directly from eqn. 23:

�i � exp

�
�
@ logP (Xj�)

@�i

�
= exp

"
�

NX
n

p(xnjci)PM
i p(xnjci)�i

#
(25)

The well-known annulus problem [Bishop, 1995, p. 68] affords a good opportunity
to visually illustrate the qualitative difference between entropically and conventionally
estimated models: We are given 900 random points sampled from an annular region,
and 30 Gaussian components with which to form a mixture model. Figure 2 shows
that entropic estimation is an effective procedure for discovering the essential structure
of the data. All the components that might cause over-fitting have been removed,
and the surviving components provide good coverage of the data. The maximum
likelihood model is captive of the accidental structure of the data, e.g., irregularities
of the sampling. As is the case for all examples in the paper, entropic estimation took
roughly half again as many iterations as conventional EM.

Like conventional EM, this method can in theory cause excess Gaussian compo-
nents to collapse on individual data-points, leading to infinite likelihoods. This prob-
lem is ameliorated in the entropic framework because these components are typically
trimmed before they collapse.

4 Continuous-output HMMs

A hidden Markov model is a dynamically evolving mixture model, where mixing
probabilities in each time-step are conditioned on those of the previous time-step via
a matrix of transition probabilities. In HMMs, the mixture components are known as
states. The transition matrix is a stack of multinomials, e.g., the probability of statei
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initial conventional entropic

Figure 3:Initial, Baum-Welch, and entropically re-estimated transition matrices.
Each row depicts transition probabilities from a single state; white is zero. The
first two matrices are fully upper-diagonal; the rightmost is sparse.

given statej is theith element of rowj. For entropic estimation of HMM transition
probabilities, we once again use a conventional E-step to obtain the probability mass
for each transition:

j;i =

T�1X
t

�j(t) �ijj p(xt+1jsi)�i(t+ 1) (26)

�ijj is a transition probability from statej, p(xt+1jsi) is the probability of statei out-
putting data-pointxt+1, and�; � are E-step statistics obtained from forward-backward
analysis as per [Rabiner, 1989]. For the MAP-step we calculate new estimatesfP̂ijjgi=�
by applying the entropic MAP estimator to each!=fj;igi. (For conventional Baum-
Welch re-estimation with a uniform prior, one simply setsP̂ijj = j;i=

P
i j;i.)

We compared entropically and conventionally estimated continuous-output HMMs
on sign-language gesture data provided by a computer vision lab [Starner and Pentland, 1997].
Experimental conditions for this and all subsequent tests are detailed in appendix B.
Entropic estimation consistently yielded HMMs with simpler transition matrices hav-
ing many parameters at or near zero (e.g., figure 3)—lower-entropy dynamical models.
When tested on held-out sequences from the same source, entropically trained HMMs
were found to over-fit less in that they yielded higher log-likelihoods on held-out test
data than conventionally trained HMMs. (Analysis of variance indicates that this result
is significant atp<10�3; equivalently, this is the probability that the observed superi-
ority of the entropic algorithm is due to chance factors.). This translated into improved
classification: The entropically estimated HMMs also yielded superior generalization
in a binary gesture classification task (p<10�2, measuring the statistical significance
of the mean difference in correct classifications).

Most interestingly, the dynamic range of surviving transition parameters was far
greater than that obtained from conventional training. This remedies a common com-
plaint about continuous-output HMMs — that model selectivity is determined mainly
by model structure, secondly by output distributions, and only lastly by transition prob-
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abilities, because they have the smallest dynamic range [Bengio, 1997]. (Historically
some users have found structure so selective that parameter values can be ignored, e.g.,
[Sakoe and Chiba, 1978]).

4.1 Transition trimming

To obtain a trimming criterion for HMM transition parameters, we substitute the E-step
statistics into eqn. 23, yielding

�ijj � exp

�
�
@ logP (Xj�)

@�ijj

�
(27)

= exp

"
�

PT�1

t=1 �j(t)p(xt+1jsi)�i(t+ 1)PN
k �k(T )

#
(28)

This test licenses a deletion when the transition is relatively improbable and the source
state is seldom visited. Note that�ijj must indeed be quite small, since the gradient of
the log-likelihood can be quite large. Fortunately, the MAP estimator brings many or
most parameter values within trimming range.

Eqn. 28 is conservative since it does not take into account the effect of renor-
malizing the multinomial parameters. We may also consider the gain obtained from
redistributing to trimmed probability mass to surviving parameters, in particular, the
parameter�kjj that maximizes@Pe(�jX)=@�kjj . This leads to a more aggressive
trimming test:

h(�ijj)� �ijj
@H(�)

@�kjj
� �ijj

�
@ logP (Xj�)

@�ijj
�
@ logP (Xj�)

@�kjj

�
(29)

log �ijj � 1� log �kjj � �

�
@ logP (Xj�)

@�ijj
�
@ logP (Xj�)

@�kjj

�
(30)

�ijj � �kjje
1+

@ log P (Xj�)
@�kjj

�
@ log P (Xj�)

@�ijj (31)

The gesture-data experiments were repeated with deletion using the trimming cri-
terion of eqn. 28. We batch deleted one exit transition per state between re-estimations.
There was a small but statistically significant improvement in generalization (p < 0:02),
which is to be expected since deletions free the model from local maxima. The resulting
models were simpler and faster, removing 81% of transitions on average for 15-state
models, 42% from 10-state models, and 6% from 5-state models (thought to be the
ideal state count for the gesture data set). Since complexity is linear in the number of
transitions, this can produce a considerable speed-up.

In continuous-output HMMs, entropic training can produce two kinds of states:
data-modeling, having output distributions tuned to subsets of the data; andgating,
having near-zero durations (�iji � 0) and often having highly non-selective output
probabilities. Gating states appear to serve as branch-points in the transition graph,
bracketing alternative sub-paths (e.g., figure 4). Their main virtue is that they compress
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Figure 4: Entropic training reserves some states for purely transition logic. In
the graphical view at right, gating state 1 forks to several sub-paths; gating
state 4 collects two of the branches and forwards to state 7.
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Figure 5:Even when beginning with a near-optimal number of states, entropic
training will occasionally pinch off a state by deleting all incoming transitions.
In this problem, state 2 was removed. Graphical views are shown at right.

the transition graph by summarizing common transition patterns.
One benefit of trimming is that sparsified HMMs are much more likely to suc-

cessfully encode long-term dependencies. Dense transition matrices cause diffusion
of credit, thus learning a long-term dependency gets exponentially harder with time
[Bengio and Frasconi, 1995]. Sparsity can dramatically reduce diffusion. Bengio and
Frasconi suggested hand-crafted sparse transition matrices or discrete optimization
over the space of all sparse matrices as remedies. Entropic training with trimming
essentially incorporates this discrete optimization into EM.

4.2 State trimming

One of the more interesting properties of entropic training is that it tends to reduce the
occupancy rate of states that do little to direct the flow of probability mass, whether
by vice of broad output distributions or non-selective exit transitions. As a result
their incoming transitions become so attenuated that such states are virtually pinched
off from the transition graph (e.g., figure 5). As with transitions, one may detect a
trimmable statesi by balancing the prior probability of all of its incoming and exit
transitions against the probability mass that flows through it (eqn. 18).

P (Xj�nsi)

P (Xj�)
� �

�iji
iji

NY
j 6=i

�
�jji
jji �

�ijj
ijj (32)
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N deleted+gated �log-likelihood �error perplexity

5 0.08+0.24 -0.00003412,p > 2 -0.02,p < 1 2.74
10 0.76+1.45 0.1709, p < 0:03 -1.02,p < 0:3 2.90
15 1.36+2.79 0.2422, p < 0:008 -1.85,p < 0:02 2.93
20 1.87+3.91 1.249, p < 10�5 -2.39,p < 10�3 2.84

Table 1: Average state deletions and conversions as a function of initial state
counts. �Log-likelihood is the mean advantage over conventionally trained models
in recognizing held-out data, in nats/data-point;p is the statistical significance of this
mean.�error, measuring the mean difference in errors in binary classification, shows
that the entropically estimated models were consistently better.

P (Xj�nsi) can be computed in a modified forward analysis in which we set the output
probabilities of one state to zero (8tp(xtjsi) 0). However, this is speculative com-
putation, which we wish to avoid. We propose a non-speculative heuristic that we found
equally effective: We bias transition-trimming to zero self-transitions first. Continued
entropic training then drives an affected state’s output probabilities to extremely small
values, often dropping the state’s occupancy low enough to lead to its being pinched off.
In experiments measuring the number of states removed and the resulting classification
accuracy, we found no statistically significance difference between the two methods.

We ran the gesture data experiments again with the addition of state trimming. The
average number of states deleted was quite small; the algorithm appears to prefer to
keep superfluous states for use as gating states (table 1). Clearly that the algorithm
did not converge to an “ideal” state count, even discounting gating states. Given that
the data records continuous motion trajectories, it is not clear that there is any such
ideal. Note however, that models of various initial sizes do appear to converge to a
constant perplexity (in conventional HMMs perplexity is typically proportional to the
state count). This strongly suggests that entropic training is finding adynamically
simplest model of the data, rather than astaticallysimplest model.

4.3 Ambient video

In [Brand, 1997] we used the full algorithm to learn a concise probabilistic automa-
ton (HMM) modeling human activity in an office setting from a motion time-series
extracted from 1/2 hour of video (again, see appendix B for details). We compared
the generalization and discrimination of entropically trained HMMs, conventionally
trained HMMs, and entropically trained HMMs with transition parameters subsequently
flattened to chance. Four data sets were employed: train; test; test reversed; and
altered behavior (the video subject had large amounts of coffee). Figure 6 shows
that the entropically trained HMM did best in discriminating out-of-class sequences.
The conventional HMM shows more over-fitting of the training set and little ability
to distinguish the dynamics of the three test datasets. The flattened case shows that
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Figure 6: Log-likelihoods of three different classes of video, normalized to
sequence length and compared to those of the test class.

the classes do not differ substantially in the static distribution of points, only in their
dynamics.

5 Discrete-output HMMs

Discrete-output HMMs are composed entirely of cascaded multinomials; in the follow-
ing experiments we entropically estimate both transition and output probabilities. In
both cases we simply replace the M-step with the MAP estimator. We liberalize the
state-pinching criterion by also considering the gain in the prior obtained by discarding
the state’s output parameters.

5.1 Bach Chorales

The “chorales” is a widely-used dataset containing melodic lines from 100 of J.S.
Bach’s 371 surviving chorales. Modeling this dataset with HMMs, we seek to find an
underlying dynamics that accounts for the melodic structure of the genre. We expected
this dataset to be especially challenging because entropic estimation is predicated on
noisy data but the chorales are noiseless. In addition, the chorales are sampled from a
non-stationary process: Bach was highly inventive and open to influences; his compos-
ing style evolved considerably even in his early years at Leipzig [Breig, 1986].

We compared entropically and conventionally estimated HMMs in prediction and
classification tasks, using a variety of different initial state-counts. Figure 7 illustrates
the resulting differences. Despite substantial loss of parameters to sparsification, the
entropically estimated HMMs were, on average, better predictors of notes in the test
set than the conventionally estimated HMMs. They also were better at discriminating
between test chorales and temporally reversed test chorales—challenging because Bach
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Figure 7: Entropic modeling of the Bach chorales. Lines indicate mean
performance over 10 trials; error bars are 2 standard deviations.

famously employed melodic reversal as a compositional device. On the other hand, the
entropically estimated HMMs also showed greater divergence between the per-note
likelihoods of training and test sequences. This raises the possibility that the estimator
does pay a price for assuming noise where there is none. Another possibility is that the
entropically estimated models are indeed capturing more of the dynamical structure
of the training melodies, and therefore are able to make deeper distinctions between
melodies in different styles. This accords with our observation that six chorales in
particular had low likelihoods when rotated into the test set.3

Perhaps the most interesting difference is while the conventionallyestimated HMMs
were wholly uninterpretable, one can discern in the entropically estimated HMMs
several basic musical structures (figure 8), including self-transitioning states that output
only tonic (C-E-G) or dominant (G-B-D) triads, lower- or upper-register diatonic tones

3Unfortunately, the dataset is unlabeled and we cannot relate this observation to the musicology of Bach’s
371 chorales.
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Figure 8: High-probability states and subgraphs of interest from a 35-state
chorale HMM. Tones output by each state are listed in order of probability.
Extraneous arcs are removed for clarity
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Figure 9: A nearly-deterministic subgraph from a text-modeling HMM. Nodes
show state number and symbols output by that state, in order of probability.

(C-D-E or F-G-A-B), and trills and mordents (A-]G-A). Dynamically, we found states
that lead to the tonic (C) via the mediant (E) or the leading tone (B), as well as chordal
state sequences (F-A-C). Generally, these patterns were easier to discern in larger,
sparser HMMs. We explore this theme briefly in the modeling of text.

5.2 Text

Human signals such as music and language have enormous amounts of hidden state.
Yet interesting patterns can be discovered via entropic training of HMMs having mod-
est numbers of states. For example, we entropically and conventionally trained 100-
state, 30-symbol discrete-output HMMs on the abstract and introduction of the original
version of this article. Entropic training pinched off 4 states and trimmed 94% of the
transition parameters and 91% of the output parameters, leaving states that output an
average of 2.72 symbols. Some states within the HMM formed near-deterministic
chains, e.g., figure 9 shows a subgraph that can output the word fragmentsrate, that,
rotation, tradition, etc. When used to predict the next character given random text
fragments taken from the body of the paper, the entropic HMM scored 27% correct,
while the conventional HMM scored 12%. The subgraph in figure 9 probably ac-
counts for the entropic HMM’s correct prediction given the word fragment “expectat”.
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Figure 10: Above: Nonzero entries of the transition and output matrices for a
96-state text model. Below: Prediction of entropic and conventional HMMs for
the letter following “expectat” ( = whitespace).

Figure 10 shows that the entropic model correctly predicts ‘i’ and a range of less likely
but plausible continuations. The conventionally-trained model makes less specific
predictions and errs in favor of typical first-order effects, e.g., ‘h’ often follows ‘t’.
In predicting ‘i’ over ‘ ’, ‘h’ and ‘e’, the entropic model is using context going back
at least three symbols, since “expectation”, “demonstrate”, “motivated”, “automaton”,
and “patterns” all occurred in the training sequence.

Entropic estimation of undersized models seeks hidden states that optimally com-
press the context, therefore we should expect to see some interesting categories in the
finished model. Using the same data and a five state initialization, we obtained the
model shown in figure 11. The hidden states in this HMM are highly correlated with
of phonotactic categories—regularities ofspokenlanguage that give rise, indirectly, to
the patterns of written language:

1. Consonants that begin words and consonant clusters (e.g., “str”)
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Figure 11:Graphical model of a five-state HMM trained on this text.

2. Vowels and semi-vowels.

3. Whitespace and punctuation (inter-word symbols).

4. Common word endings (e.g., the plural “s”)

5. Consonants in all other contexts.

We identified these categories by using forward-backward analysis to assign most
probable states to each character in a text, e.g.,

T h e c r o s s - e n t r o p y s t a t i s t i c s a r e
1 1 4 3 1 5 2 5 5 1 2 5 1 5 2 5 2 3 1 5 2 5 2 1 5 2 5 4 3 2 5 4

We stress that our interpretation is correlative; the true genesis of the states is probably
as follows: Having discovered the statistically most salient categories (vowels vs. con-
sonants vs. inter-word symbols), entropic estimation went on to identify phenomena
that reliably happen at the boundaries between these categories (word endings and
consonant cluster beginnings).

6 Related work

Extensive literature searches suggest that the entropic prior, MAP estimator, and trim-
ming criteria are novel. However, the prior does have antecedents in the maximum
entropy literature, which we turn to now.

6.1 Maximum entropy and geometric priors

“Maximum entropy” (ME) refers to set of methods for constructing probability distri-
butions from prior knowledge without introducing unintended assumptions [Jaynes, 1996].
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These “ignorance-preserving” distributions have maximum entropy with regard to un-
knowns, and will avoid modeling patterns that have inadequate evidentiary support.
Classic ME deals with assertions about the expectations of a random variable, rather
than about samples from it. Probabilistic modelers typically deal only with samples.
For this, one uses Bayesian ME, in which ignorance-preserving considerations lead
to the construction of a prior. While is no unique ME prior, in the ME community the
phrase “entropic prior” has come to connote the form [Skilling, 1989, Rodriguez, 1991,
Rodriguez, 1996]:

PME(d�j�;�0) / e��D(�k�
0
)
p
jJ(�)j d� (33)

whereD(�) is the cross-entropy between the current parameter set and a reference
model�0; � is a positive constant indicating confidence in�0; andJ(�) is the Fisher
information matrix of the model parameterized by�.

The exponentiated term is not applicable in our setting, as we typically have no
reference model. The second term,

p
jJ(�)j, is Jeffreys’ non-informative prior. It

is typically motivated from differential geometry as a uniform prior in the space of
distributions, and therefore invariant to changes of parameterization. It has an interest-
ing relation to our minimum-entropy priore�H(�): Given a distribution specified by�,
Jeffreys’ prior divides the posterior by the volume of parameterizations that would yield
equivalent distributions (given infinite data) [Balasubramanian, 1997]; the minimum-
entropy prior divides the posterior by the volume of the distribution’s typical set (small
typical sets have few equivalent parameterizations). Both priors measure specificity;
the Jeffreys prior is actually a stronger bias. In some cases Jeffreys felt that

p
jJ(�)j

was problematic and he recommended other non-informative priors such as1=� for
N (�; �2) for 1D Gaussian variance estimation [Jeffreys, 1961]—this can be derived
from the general form of the entropic priore�H(�). In [Brand, 1999] we show that
our prior can be derived directly from a classical maximum entropy treatment of the
assertion “The expected unpredictability of the process being modeled is finite.”

6.2 HMM induction

The literature of HMM structure induction is almost wholly based on generate-and-
test searches over the space of discrete-output HMMs, using state splitting or merging
to perturb the model followed by parameter estimation to test for improvement. For
example, Vasko et al. proposed a heuristic scheme in which a set of randomly pruned
HMMs are compared, looking for model that combines a small loss of likelihood and a
large number of prunings [Vasko et al., 1996]. Stolcke and Omohundro begin with the
disjunction of all possible samples (a maximally over-fit model) and iteratively merged
states using a Dirichlet prior and Bayesian posterior probability criterion to test for suc-
cess, failure, and completion [Stolcke and Omohundro, 1994]. Takami and Sagayama
took an opposite approach, beginning with a single state and heuristically splitting
states and adding transitions [Takami and Sagayama, 1991, Takami and Sagayama, 1994].
Ikeda presented a similar scheme with an objective function built around Aikake’s
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Information Criterion to limit over-fitting [Ikeda, 1993]. The speech recognition lit-
erature now contains numerous variants of this strategy, including maximum likeli-
hood criteria for splitting [Ostendorf and Singer, 1997]; search by genetic algorithms
[Yada et al., 1996, Takara et al., 1997]; and splitting to describe exceptions [Fujiwara et al., 1995,
Valtchev et al., 1997]. Nearly all of these algorithms use beam search (generate-and-
test with multiple heads) to compensate for dead-ends and declines in posterior prob-
ability; most of the computation is squandered. Reported run times are typically in
hours or days — and discrete-output HMMs are computational lightweights compared
to continuous-output HMMs. In contrast, our hill-climbing algorithm applies to any
kind of state-space Markov model and takes only slightly longer than classic EM; the
examples in this paper required only a few seconds of CPU time.

Other proposals include two-stage methods in which data is statically clustered to
yield a state-space and transition topology [Falaschi and Pucci, 1991, Wolfertstetter and Ruske, 1995].
The second stage is conventional training. MDL methods can be applied to prevent
over-fitting in the first stage. However, it is fairly easy to construct problems that will
thwart two-stage methods, e.g., uniformly distributed samples that have structure only
by virtue of their patterns through time.

Entropic estimation is similar in spirit to neural network pruning schemes, partic-
ularly weight elimination, in which a heuristic regularization term in the objective func-
tion causes small weights to decay toward zero [Hanson and Pratt, 1989, Lang and Hinton, 1990].
In fact, weights decay tonearzero [Bishop, 1995]; it is then necessary to add a pruning
step at a cost of some increase in error [LeCun et al., 1990] although the damage can
be minimized via small adjustments to the surviving weights [Hassibi and Stork, 1993].
All of these schemes require one or more hand-chosen regularization parameters. In
[Brand, 1998a] we propose entropic training and trimming rules for nonlinear dynam-
ical systems, including recurrent neural networks.

Outside of probabilistic modeling, there is a small but growing combinatorial op-
timization literature which embeds discrete problems in continuous functions having
hidden indicator variables. Gradient descent on a combined entropy and error function
forces the system to broadly explore the search space and then settle into a syntactically
valid and near-optimal state. [Stolorz, 1992] gave traveling salesman problems this
treatment; in [Brand, 1998a] we show that TSP can be reformulated as a MAP problem.

7 Limitations and open questions

At present, we believe entropic estimation is best used to sculpt a well-fit model out
of an over-fit model. Given an under-fit or a structurally “correct” model, we have no
reason to believe that entropically estimated parameters, being biased, are superior to
maximum likelihood parameters, except perhaps as a correction to noise. Indeed, it
might be advisable to “polish” an entropically estimated model with a few cycles of
maximum likelihood re-estimation.

We caution that our framework is presently agnostic and thus vulnerable to ambigu-
ities with regard to one’s choice of entropy measure. For example, with sequence data
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one may choose the entropy or the entropy rate (entropy per symbol). The case of con-
tinuous distributions is complicated by the fact that differential entropy(�

R
P (x) logP (x)dx)

has some pathologies that can lead to absurdities such as infinitely negative entropy.
Finally, for many kinds of complex models there is no analytically tractable form for
the entropyH(�). In cases such as these, we decompose the model into simpler
distributions whose entropies are known. By the subadditivity principle, the sum
of these entropies will upper-bound the true entropy, hence the MAP estimator will
always reduce entropies. In this scheme the sum of entropies in eqn. 15 has a clear
interpretation as a description length. Inx4-5 we upper-bounded the entropy rate of the
HMM in this manner. Alternatively, we could use conditional entropies in the prior—
in the case of Markov models conditional entropy and entropy rate are asymptotically
equal:

Per(�) / exp
X
j

pj
X
i

�ijj log �ijj =
Y
j

 Y
i

�
�ijj
ijj

!pj

(34)

In the context of HMMs,pj is the stationary probability of statej, which can be esti-
mated from the data. The MAP estimate can easily be obtained by scaling!j = f!1jj ; !2jj ; !3jj ; : : :g
and� by 1=pj in eqns. 10 and 5.

Much work remains to be done on the mathematical characterization of the entropic
prior, including a closed-form solution for the Lagrangian term� and normalization
terms for multivariate priors
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A normalized posterior will also be necessary for comparing different models of the
same data.

Now we turn to questions about the prior that open connections to related fields.

7.1 Graph theory

Readers of combinatorics will recognize in eqn. 10 the tree functionT (x) = �W�1(�x),
used in the enumeration of trees and graphs on sets of labeled vertices [Wright, 1977,
Janson et al., 1993] and in computing the distribution of cycles in random mappings
[Flajolet and Soria, 1990]. Connections to dynamical stability via theW function and
to sparse graph enumeration via theT function are very intriguing and may lead
to arguments as to whether the entropic prior is optimal for learning concise sparse
models.

We offer a tantalizing clue, reworking and solving a partial result from mid-century
work on the connectivity of neural tissue [Solomonoff and Rapoport, 1951] and ran-
dom graphs [Erd˝os and R´enyi, 1960]: If n people (vertices) have an average ofa

acquaintances (edges) apiece and one individual starts a rumor, the probability that
a randomly selected individual has not heard this rumor (is not connected) is ap-
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proximatelyp = e�a(1�p) [Landau, 1952]. Solving forp via W we can now ob-
tain p = [�a=W (�ae�a)]�1. Note that the bracketed term is essentially the MAP
estimator of eqn. 10 with the Lagrange multiplier set to� = �! � 1. We may
thus understand the MAP estimator as striking a compromise between extreme graph
sparsity and minimally adequate graph reachability; the compromise is governed by
the statistics of the training set. Sincea is essentially the perplexity of the rumor-
mongering population, we see here the glimmerings of a formal connection between the
entropic MAP estimate, the connectedness of the transition graph, and the perplexity
of the data.

7.2 Optimization

Entropic estimation pushes the model into one of the corners of the infinite-dimensional
hypercube containing the parameter space. Typically, many of the local optima in
different corners will be identical, modulo permutations of the parameter matrix and
hidden variables. This is why we must work with the MAP estimator and not the
posterior mean, which is a meaningless point in the center of the hypercube. We seek
the region of the posterior having the greatest probability mass, yet the the posterior
is multimodal and very spiky. (This is a hallmark of discrete optimization problems.)
Unfortunately, initial conditions determine the particular optimum found by EM (in-
deed, by any finite-resource optimizer). One approach is to improve the quality of the
local optimum found by a single trial of EM; in particular we have found a simple
generalization of the entropic MAP estimator that automatically folds deterministic
annealing into EM [Brand, 1999]. An open question of some relevance here is whether
EM can be generalized to yield successively better optima given additional compute
time.

Finally, the general priore�H(�) has a specific form for virtually any probability
density function; it remains to solve for the MAP estimators and trimming criteria. In a
forthcoming companion paper, we extend the entropic structure-discovery framework
with similar results for covariances, weights, and a variety of other parameter types, and
demonstrate applications to other models of interest including generalized recurrent
neural networks and radial basis functions [Brand, 1998a].

8 Conclusion

We have presented a mathematical framework for simultaneously estimating param-
eters and simplifying model structure in probabilistic models containing hidden vari-
ables and multinomial parameters, e.g., hidden Markov models. The key is an entropic
prior which prefers low entropy estimates to fair estimates when evidence is limited, on
the premise that small datasets are less representative of generating process and more
profoundly contaminated by noise and sampling artifacts. Our main result is a solution
for the MAP estimator, which drives weakly supported parameters toward extinction,
effectively turning off excess parameters. We augment the extinction process with
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explicit tests and transforms for parameter deletion; these sparsify the model, accelerate
learning, and rescue EM from local probability maxima. In HMMs, entropic estimation
gradually zeroes superfluous transitions and pinches off non-selective states, sparsi-
fying the model. Sparsity provides protection against over-fitting; experimentally,
this translates into superior generalization in prediction and classification tasks. In
addition, entropic estimation converts some data-modeling states into gating states,
which effectively have no output distributions and serve only to compress the transition
graph. Perhaps most interesting, the structure discovered by entropic estimation can
often shed light on the hidden process that generated the data.

Entropic estimation monotonically and maximally hill-climbs in posterior probabil-
ity; there is no wasted computation as in backtracking or beam search. Consequently,
we are able to “train and trim” HMMs and related models in times comparable to
conventional EM, yet produce simpler, faster, and better models.
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A Appendix: Computing W

W is multi-valued, having an infinite number of complex branches and two partly
real branches,W0 andW�1. W�1(�e

x) is real onx 2 (�1;�1] and contains the
solution of eqn. 5. All branches of theW function can be computed quickly via
Halley’s method, a third-order generalization of Newton’s method for finding roots.
The recurrence equations are

�j = wje
wj � z (36)

wj+1 = wj �
�j

ewj (wj + 1)�
�j(wj+2)

2(wj+1)

(37)

See [Corless et al., 1996] for details on selecting an initial valuew0 that leads to the
desired branch.

We found it is sometimes necessary to computeW (z) for z=�e�x that are well
outside the range of values of digital floating-point representations. For such cases we
observe thatW (ex)+logW (ex)=x, which licenses the swiftly converging recurrence
for W�1(�e

�x):

wj+1 = �x� log jwj j (38)

w0 = �x (39)
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B Appendix: Experimental details

Gesture data: 100 trials with a database of sign language gestures obtained from
computer vision. 1/3 of the sequences for a particular gesture was taken randomly
for training in each trial. The remaining 2/3 were used for testing. Identical initial con-
ditions were provided to the entropic and conventional training algorithms. Transition
matrices were initialized with�ijj =

�
2j�i=(2j � 1) if j � i else0

	
which imposes

a forward topology with skip-ahead probabilities that decline exponentially with the
size of the jump. This topology was mainly for ease of analysis; our results were
generally more pronounced when using full transition matrices. To make sure results
were not an artifact of the data set, we checked for similar outcomes in a duplicate set of
experiments with synthetic datayt = fsin((t+ k1)=100); sin((t+ k1)=(133� k2))g,
k1; k2 random, corrupted with Gaussian noise (� = 1

2 ).
Office activity data: Roughly one-half hour of video was taken at 5 frames/second

randomly over the course of three days. Adaptive statistical models of background
pixel variation and foreground motion were used to identify a foreground figure in
each frame. The largest set of connected pixels in this foreground figure were modeled
with a single 2D Gaussian. The iso-probability contour of this Gaussian is an ellipse;
we recorded the 5 parameters necessary to describe the ellipse of each frame, plus their
derivatives, as the time-series for each video episode. Roughly 2/3 of the time series
were used for training. Training was initialized with fully dense matrices of random
parameters.

Bach chorales: The dataset was obtained from the UCI machine-learning repos-
itory [Merz and Murphy, 1998]. Each sequence tracks the pitch, duration, key, and
time signature of one melody. We combined pitch and key information to obtain a 12-
symbol time series representing pitch relative to the tonic. We compared entropically
and conventionally estimated HMMs by training with 90 of the chorales and testing
with remaining 10. In ten trials, all chorales were rotated into the test set. Prior to
experimentation, the full dataset was randomly reordered to minimize non-stationarity
due to changes in Bach’s composing style. HMMs were estimated entropically and
conventionally from identical initial conditions, with fully dense random transition and
output matrices. For the note prediction task, each test sequence was truncated to a
random length and the HMMs were used to predict the first missing note.

Text: The first 2000 readable characters of this article (as originally submitted)
were used for training. The original character set was condensed to 30 symbols: 26
letters, a whitespace symbol, and three classes of punctuation. HMMs were estimated
entropically and conventionally from identical initial conditions, with fully dense ran-
dom transition and output matrices. After training, the prior probabilities of hidden
states were set to their average occupancy probabilities, so that the HMMs could be
tested on any text sequence that did not start with the first symbol of the training set.
For the prediction task, 100 test sequences of 20 symbols each were taken randomly
from the body of the text.
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[Erdős and R´enyi, 1960] Erd˝os, P. and R´enyi, A. (1960). On the evolution of random
graphs.MTA Mat. Kut. Int. K̈ozl., 5:17–61. Also see Collected Papers of A. R´enyi.

[Falaschi and Pucci, 1991] Falaschi, A. and Pucci, M. (1991). Automatic derivation
of HMM alternative pronunciation network topologies. InProc., 2nd European
Conference on Speech Communication and Technology, volume 2, pages 671–4.

[Flajolet and Soria, 1990] Flajolet, P. and Soria, M. (1990). Gaussian limiting
distributions for the number of components in combinatorical structures.Journal
of Combinatorial Theory, Series A, 53:165–182.

[Fujiwara et al., 1995] Fujiwara, Y., Asogawa, M., and Konagaya, A. (1995). Motif
extraction using an improved iterative duplication method for HMM topology
learning. InPacific Symposium on Biocomputing ’96, pages 713–14.

[Hanson and Pratt, 1989] Hanson, S. J. and Pratt, L. Y. (1989). Comparing biases for
minimal network construction with back-propagation. In Touretzky, D. S., editor,
Advances in Neural Information Processing Systems, volume 1, pages 177–195.
Morgan Kauffman.

[Hassibi and Stork, 1993] Hassibi, B. and Stork, D. (1993). Second order derivatives
for network pruning: optimal brain surgeon. In Hanson, S., Cowan, J., and Giles,
C., editors,Advances in Neural Information Processing Systems, volume 5, pages
177–185. MIT Press.

[Heckerman, 1996] Heckerman, D. (1996). A tutorial on learning with Bayesian
networks. Technical Report MSR-TR-95-06, Microsoft Research. Available via
WWW at ftp://ftp.research.microsoft.com/pub/tr/TR-95-06a.html.

[Ikeda, 1993] Ikeda, S. (1993). Construction of phoneme models — Model search of
hidden Markov models. InInternational Workshop on Intelligent Signal Processing
and Communication Systems, Sendai.

[Janson et al., 1993] Janson, S., Knuth, D. E., Luczak, T., and Pittel, B. (1993). The
birth of the giant component.Random Structures and Algorithms, 4:233–358.

[Jaynes, 1996] Jaynes, E. T. (1996). Probability theory: The logic of science.
Fragmentary edition of March 1996, available via WWW.

[Jeffreys, 1961] Jeffreys, H. (1961).Theory of Probability. Oxford University Press.

[Landau, 1952] Landau, H. G. (1952). On some problems of random nets.Bulletin of
Mathematical Biophysics, 14:203–212.

[Lang and Hinton, 1990] Lang, K. and Hinton, G. (1990). Dimensionality reduction
and prior knowledge in E-set recognition. In [Touretzky, 1990], pages 178–185.

[Laplace, 1812] Laplace, P. S. (1812).Theorie Analytique des Probabilities. Courceir,
Paris.



M BRAND: STRUCTURE LEARNING 27

[LeCun et al., 1990] LeCun, Y., Denker, J., and Solla, S. (1990). Optimal brain
damage. In [Touretzky, 1990], pages 178–185.

[Merz and Murphy, 1998] Merz, C. and Murphy, P. (1998). UCI repository of machine
learning databases.

[Ostendorf and Singer, 1997] Ostendorf, M. and Singer, H. (1997). HMM topology
design using maximum likelihood successive state splitting.Computer Speech and
Language, 11(1):17–41.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden Markov models and
selected applications in speech recognition.Proceedings of the IEEE, 77(2):257–
286.

[Rodriguez, 1991] Rodriguez, C. C. (1991). Entropic priors. Technical report, SUNY
Albany Department of Mathematics and statistics.

[Rodriguez, 1996] Rodriguez, C. C. (1996). Bayesian robustness: a new look from
geometry. In Heidbreder, G., editor,Maximum Entropy and Bayesian Methods.
Kluwer Academic Publishers.

[Sakoe and Chiba, 1978] Sakoe, H. and Chiba, C. (1978). Dynamic programming
algorithm optimization for spoken word recognition. InIEEE Transactions on
Acoustics, Speech, and Signal Processing, volume ASSP-26, pages 43–49.

[Skilling, 1989] Skilling, J. (1989). Classical MaxEnt data analysis. In Skilling, J.,
editor,Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers.

[Solomonoff and Rapoport, 1951] Solomonoff, R. and Rapoport, A. (1951). Connec-
tivity of random nets.Bulletin of Mathematical Biophysics, 13:107–117.

[Starner and Pentland, 1997] Starner, T. and Pentland, A. P. (1997). A wearable-
computer based American sign language recognizer. InInternational Symposium
on Wearable Computing, volume 1. IEEE Press.

[Stolcke and Omohundro, 1994] Stolcke, A. and Omohundro, S. (1994). Best-first
model merging for hidden Markov model induction. Technical Report TR-94-003,
International Computer Science Institute, 1947 Center St., Berkeley, CA, 94704,
USA.

[Stolorz, 1992] Stolorz, P. (1992). Recasting deterministic annealing as constrained
optimization. Technical Report 92-04-019, Santa Fe Institute.

[Takami and Sagayama, 1994] Takami, J. and Sagayama, S. (1994). Automatic
generation of hidden Markov networks by a successive state splitting algorithm.
Systems and Computers in Japan, 25(12):42–53.



M BRAND: STRUCTURE LEARNING 28

[Takami and Sagayama, 1991] Takami, J.-I. and Sagayama, S. (1991). Automatic
generation of the hidden Markov model by successive state splitting on the
contextual domain and the temporal domain. Technical Report SP91-88, IEICE.

[Takara et al., 1997] Takara, T., Higa, K., and Nagayama, I. (1997). Isolated word
recognition using the HMM structure selected by the genetic algorithm. InIEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages 967–70.

[Touretzky, 1990] Touretzky, D. S., editor (1990).Advances in Neural Information
Processing Systems, volume 2. Morgan Kauffman.

[Valtchev et al., 1997] Valtchev, V., Odell, J., Woodland, P., and Young, S. (1997).
MMIE training of large vocabulary recognition systems.Speech Communication,
22(4):303–314.

[Vasko et al., 1996] Vasko, Jr., R., El-Jaroudi, A., and Boston, J. (1996). An algorithm
to determine hidden Markov model topology. InIEEE International Conference on
Acoustics, Speech, and Signal Processing Conference, volume 6, pages 3577–80.

[Wolfertstetter and Ruske, 1995] Wolfertstetter, F. and Ruske, G. (1995). Structured
Markov models for speech recognition. InInternational Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages 544–7.

[Wright, 1977] Wright, E. M. (1977). The number of sparsely connected edged
graphs.Journal of Graph Theory, 1:317–330.

[Yada et al., 1996] Yada, T., Ishikawa, M., Tanaka, H., and Asai, K. (1996).
Signal pattern extraction from DNA sequences using hidden Markov model and
genetic algorithm.Transactions of the Information Processing Society of Japan,
37(6):1117–29.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR98-18.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30


