
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Real-Time Communicating Tasks on
COTS-based Distributed Platforms: Task

Models and End-to-End Scheduling

Chia Shen, Oscar Gonzalez

TR98-17 December 1998

Abstract

This paper describes our current work on scheduling communicating real-time tasks in a dis-
tributed environment. Unique challenges are presented when one tries to build distributed real-
time applications using standard off-the-shelf systems which are in common use but are not
necessarily designed for real-time systems. In particular, one must deal with (1) mapping appli-
cation real-time requirements into system schedulable entities, (2) end-to-end scheduling in the
face of possible priority inversion, (3) limited real-time scheduling support and limited number
of priorities, and (4) integrating real-time and non-real-time tasks in the same platform. Due to
space limitations, this paper focuses on solving the first two challenges. The complete solution
will be presented in a forthcoming paper. We have implemented these solutions in our network
middleware MidART running on PCs with Windows NT operating system over Ethernet LANs.

1998 Real-Time Systems Symposium, Work-In-Progress Proceedings, December 2-6, 1998. Madrid,
Spain

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Real-Time Communicating Tasks on COTS-based Distributed

Platforms: Task Models and End-to-End Scheduling

Chia Shen Oscar Gonz�alez�

MERL - A Mitsubishi Electric Research Lab. Computer Science Department

201 Broadway University of Massachusetts

Cambridge, MA 02139 Amherst, MA 01003

1 Introduction

It is becoming more and more evident that dis-
tributed industrial real-time applications, such as pro-
cess control, factory automation and plant control sys-
tems, will move towards using open, standard, com-
mercially available and more general purpose comput-
ers, operating systems and networks. For example,
more expensive workstations will be replaced with o�-
the-shelf PCs, and adoption of Windows NT will al-
low for increased control at the PC level [5]. There is
also a lot of momentum toward making control net-
work IP-based [2]. Moreover, Ethernet o�ers cost and
support advantages over industrial �eldbuses as a con-
trol and device-level network [1]. MidART [7, 4, 6] is
an ongoing real-time network middleware project to
lead this movement towards open and integrated sys-
tem construction for industrial applications. MidART
is a network middleware with a distributed real-time
application development software package providing
easy-to-use programming interface for real-time data
acquisition and communication.

Unique challenges are present when one tries to
build distributed real-time applications using standard
o�-the-shelf systems which are in common use but are
not necessarily designed for real-time systems. In par-
ticular, one must deal with (1) mapping application
real-time requirements into system schedulable enti-
ties, (2) end-to-end scheduling in the face of possi-
ble priority inversion, (3) limited real-time scheduling
support and limited number of priorities, and (4) inte-
grating real-time and non-real-time tasks in the same
platform. In this paper, we propose solutions to these
challenges, and implement our solutions in MidART
running on PCs with Windows NT operating system
over UDP/IP and Ethernet LANs. Due to space lim-
itations, this paper focuses on solving the �rst two
challenges. The complete solution will be presented in
a forthcoming paper.

�The research has been done during this author's internship

at MERL.

2 MidART and Its Application Do-

main
To understand how we solve the end-to-end

scheduling problem, we need to �rst give a brief
overview of MidART and how the application tasks
are supported.

2.1 MidART Overview

The MidART middleware provides a set of real-
time application speci�c but network transparent pro-
gramming abstractions that support individual appli-
cation data monitoring and control requirements. The
focus of our middleware is to support the end-to-end
application real-time data transfer requirements with
a set of easy-to-use communication service program-
ming interfaces. The two key services provided by
MidART are Selective Channels [6] and Real-Time
Channel-Based Reective Memory (RT-CRM) [7].

Selective Channels allow applications to dynami-
cally choose the remote node(s) which data is to be
viewed from and sent to at run time. This is accom-
plished via a set of channel start and stop protocols,
and channel bandwidth resource overbooking schemes.

DPA-thread i

DPA-thread_0

Reader’s thread ithread
Writer’s

Writer’s Node

Network

Reflective
memory area

(local copy)

Reader’s Node

area
memroy

Reflective

Figure 1: RT-CRM High Level Architecture

Figure 1 depicts the high level architecture of RT-
CRM. RT-CRM is an association between a writer's
memory and a reader's memory on two di�erent nodes
in a network with a set of protocols for memory chan-
nel establishment and data update transfer. A writer
has a memory area where it stores its current data
(e.g., a PLC stores all the sensor data), while a reader



establishes a corresponding memory area on its own
local node to receive the data reected from the writer
(e.g., an operator station receives and displays mon-
itoring data). Data reection is accomplished by a
data push agent thread, a DPA-thread, residing on
the writer's node and sharing the writer's memory
area. This agent thread represents the reader's QoS
and data reection requirements. A virtual channel is
established between the agent thread and the reader's
memory area, through which the writer's data is ac-
tively transmitted and written into the reader's local
memory area. In this architecture, we support the
following features:

� A reader memory area may be connected to mul-
tiple remote writer memory areas simultaneously.
However, at any moment only one writer is per-
mitted to write into the reader's memory area via
the associated agent thread. The selection of the
particular writer at any time is done via Selective
Channel protocols.

� A writer memory area may be connected to
many remote reader memory areas simultane-
ously. Data is pushed to each reader according
to their individual requirements.

In particular, given a reective memory area D,
since a DPA-thread is a separate thread of control
from the writer's application thread, RT-CRM can
support the following types of data push operations
and data reception operations:

� Data Push Operations:

{ Synchronous Data Push: Pushes are trig-
gered by application writes.

{ Asynchronous Data Push: Pushes are per-
formed periodically, with independent tim-
ing from that of the writer's application.

� Data Reception Operations:

{ Blocking Read: Application reads block
while awaiting the arrival of a data update
message from the writer's node. When the
message is received, the reader application
thread is signalled.

{ Non-Blocking Read: Application reads re-
turn the current contents of the reective
memory area. That is, the reader's appli-
cation will not be noti�ed upon the arrival
of data update messages.

For more details of Selective Channels and RT-
CRM, readers are refered to [6] and [7]. The unique-
ness of MidART lies in the simplicity of services pro-
vided and the exibility of data reection models.
This simplicity leads to ease of understanding and ease
of use by application builders, while its exiblity suf-
�ciently serves the needs of the class of real-time ap-
plications MidART is designed for.

2.2 Application Characteristics

To design approriate scheduling algorithms, we
must �rst understand what is the application domain
at hand. For industrial applications, we have derived
the following characterization of the most common
types of distributed application tasks:

� Command and control: Sporadic activities which
need immediate data transmission and delay
bounded data reception.

� Video/audio: Periodic transmission, requiring
low jitter display.

� Plant monitoring: Sporadic data collection and
transmission, including alarms, and immediate
data display upon reception.

� Trend graph: Periodic data collection and trans-
mission, and periodic data display upon recep-
tion.

� Background: Non-real-time activities such as log-
ging data to disk, reviewing video segments, and
sending email. Best e�ort data transmission and
reception.

With the set of data push and reception opera-
tion modes provided by MidART, we can support the
above application requirements with many combina-
tions of operation modes. Table 1 lists two possible
such combinations { SB and AN.

Modes Data Type Deadline Application

SB Sporadic G Command issuing
AN Periodic G Trend graph
SB Sporadic G Plant data
AN Periodic G Video/Audio
SB Sporadic NG Background

Table 1: S = Synch., A = Async., B = Blocking, N =
Non-blocking, G = Deadline Guaranteed, NG = No
Guarantee.

In the rest of this paper, we will concentrate on de-
veloping solutions for the challenges listed in the In-
troduction, i.e., mapping of application requirements
into schedulable entities, end-to-end scheduling, lim-
ited number of priorities and accommodating both
real-time and non-real-time application tasks in the
same system, on COTS-based platforms.

3 Integrated End-to-End Scheduling
It is clear from the previous section that any

scheduling solutions for the industrial application do-
main must provide support for:

� Periodic and sporadic real-time tasks with end-
to-end deadlines. For example, an operator
command-and-control task usually requires a spe-
ci�c delay bound from the command issuing time
to the command actuation time.



� Non-real-time tasks which can be either dynamic
or periodic.

� Jitter control.

� Communications with bounded delay.

The features and problems often found in contem-
porary operating systems, such as Windows NT, IRIX
and Solaris, include:

� Features:

Preemptive priority-based scheduling and/or
round-robin scheduling.

Non-degradable priorities.

Mechanisms for priority adjustment (e.g., set pri-
ority of a process or thread to a di�erent level).

Periodic timers to trigger periodic events and re-
lease of thread execution.

� Problems:

No priority inheritance among processes/threads,
and no priority tracking from user threads to
system/network protocol stack threads { This
makes real-time end-to-end scheduling with net-
work communication very di�cult. For example,
the execution of socket level calls do not neces-
sarily follow the priorities assigned to the threads
which make the socket calls.

Limited number of priorities { This implies that
we cannot use a unique priority for all the real-
time tasks.

No speci�c support for guaranteeing timing con-
straints for tasks besides basic priority-based
scheduling.

3.1 Model Precedence Constrained Tasks
with Release Jitter

In general, when tasks need to communicate over IP
across a LAN, the end-to-end computation and com-
munication entities include the application threads,
socket level send and receive, network interface and
network transmission. In particular, Figure 2 de-
picts the tasks involved in an end-to-end scenario1.
The Application writes and reads are application pro-
cesses/threads that include MidART library calls.
ReMA is the Reective Memory Area, set up as shared
memory between the applications and MidART. DPA
and DRA are Data Push and Data Receive Agent
threads in MidART, both of them use sockets for com-
munication over UDP/IP. mbuf is the memory used
by the sockets. Since we have no control of the net-
work interface and network transmission, these two

1This is a simple pictorial representation. The computation

time and memory size are not drawn to scale.

have been merged into the black box of Network. C x
is the worst case computation/communication time of
the respective task entity x.

ReMA

reads

ReMA
Application Application

DPAwrites

mbuf

C_ntwk

A-to-A delay bound

M-to-M delay bound

P_ata

P_mtm

Network

C_read

IP send DRA

mbuf

IP recv

C_DPA C_DRAC_write

Figure 2: End-to-end computation and communica-
tion.

In [7], we have classi�ed end-
to-end into application-to-application, and memory-
to-memory. Some of the application activities, such
as command-and-control, require application to ap-
plication (A-to-A) delay bound guaranee, while the
others, such as trend graphs, only require memory to
memory (M-to-M) guarantee. To support A-to-A, we
must schedule all the tasks from application writes
to application reads as a precedence constrained task
graph. On the other hand, to support M-to-M, we can
schedule application writes and reads independently,
while treating all the rest of the tasks as one prece-
dence constrained task set. Therefore, in Figure 2
P ata and P mtm are the periods of an A-to-A task
set and a M-to-M task set respectively. Note that the
synchronous data push as well as the blocking read
modes impose precedence constraints between the en-
tities involved by de�nition, while the asynchronous
data push and the non-blocking read modes support
independent task representation naturally.

To enable the end-to-end scheduling (for both
A-to-A and M-to-M) on any COTS-based platform
with only priority-based scheduling support, we model
precedence constrained tasks as independent periodic
tasks with release jitter as follows.

� Let Jy be the jitter of task entity y.
� In the case of A-to-A:

Jwrite = 0, JDPA = Cwrite,
JDRA = JDPA + CDPA + Cntwk,
Jread = JDRA + CDRA.

� In the case of M-to-M:

Jwrite = 0, Jread = 0,
JDPA = 0, JDRA = CDPA + Cntwk.

To map application timing requirements into our
system schedulable components, we take the following
approach:
� Application writers and readers specify their pe-
riods/delay bound, synchronous or asynchronous
data reception, as well as blocking or non-
blocking data retrieval semantics.



� With reference to Table 1, timing requirements
are mapped as follows:

(1) SB mode: The writer's period and delay
bound are used for all the tasks end-to-end, and
the release jitters of tasks are calculated accord-
ing to the A-to-A case as above.

(2) AN mode: Reader and Writer will have their
independent periods/delay bounds. Computation
and communication tasks C DPA, C ntwk and
C DRA will use reader's period and delay bound,
and their respective release jitter will be calcu-
lated according to the M-to-M case as above.

� All the C x values are derived via a MidART pro-
�ler. Due to space limitation, we will not discuss
this further.

3.2 Priority Inversion Prevention

In order to prevent or minimize priority inversion
at the socket level and at the network, We deviced
three schemes { rate control, uniform message size,
and asynchronous DPA server for all asynchronous
data push operations. Through a MidART pro�ler,
we identify the optimal message size So for any par-
ticular network setup. The message size will serve
as the non-preemptive unit of computation time and
transmission time (Thereafter, we will use So as both
the unit message size and the time needed to send
and receive a message of this size.). All data to be
pushed is divided into messages of this unit size. To
ensure that a higher priority data push request only
su�ers blocking time due to priority inversion for at
most So time units, instead of using a DPA thread
for each corresponding remote reader application, we
employ a DPA server (ADS) that pushes data on be-
half of all the asynchronous data push requests. Since
asynchronous data pushes are all periodic with pos-
sible release jitters, ADS implements a modi�ed dual
priority scheduling algorithm [3]. The ADS acts as the
central scheduler and rate controller for all the asyn-
chronous data pushes that have been admitted into
the system.

3.3 Mapping Applications to System Pri-
orities

Here we present how we deal with the problem of
limited number of priority levels. In Section 2.2, we
described �ve types of application activities. They
represent tasks with real-time constraints, as well as
task without real-time requirements. The real-time
activities fall into synchronous data pushes and asyn-
chronous data pushes. In general, the synchronous
data pushes are more urgent, time critical tasks, while
the asynchronous ones are periodic in nature. The
non-real-time activities can be serviced with best ef-
fort. With this characterization, we have developed

the following scheme for mapping application activi-
ties into system priorities:
� All end-to-end tasks requesting mode SB will be
assigned the highest priority P highest. Usually,
there are only one or two such application entities
in a system.

� All the application entities requesting mode AN
with timing constraints will be serviced by ADS
according to their respective periodicity and data
size. As described in the last subsection, ADS
implements a dual priority algorithm such that
each communication request is not serviced until
its promotion time. Thus, in essense, the ADS
resides in a lowest priority P low until the pro-
motion time of some task, at which time ADS is
promoted to a high priority P high < P highest.

� All the non-real-time activities are assigned a pri-
ority that is between P high and P low.

4 Status and Future Work
With limited space, we have very briey described

our current work on end-to-end scheduling of real-time
communiating tasks on COTS-based distributed sys-
tems. We are developing our scheduling scheme on a
PC-based Windows NT platform with Ethernet as the
LAN. We have already obtained initial experimental
results to show how our server-based solution allevi-
ates the socket level priority inversion problem. We
are also developing analysis to show the quantitative
bound of our end-to-end dual priority scheduling algo-
rithm with release jitters. In a forthcoming paper, we
will demonstrate the full potential of our task model-
ing and scheduling approach.

References
[1] Dick Caro and Rich Mullen. Ethernet as a Control

Network. CONTROL Magazine, Putman Publishing

Co, February 1998.
[2] Deborah Claymon. Control Freaks: Control networks

will regulate every factory, house, and o�ce . The Red
Herring, March 1998.

[3] R. Davis and A. Wellings. Dual Priority Scheduling. In
IEEE Real-Time Systems Symposium, December 1995.

[4] O. Gonzalez, C. Shen, I. Mizunuma, and M. Takegaki.
Implementation and Performance of MidART. In IEEE
Workshop on Middleware for Distributed Real-Time

Systems and Services, December 1997.
[5] John A. Hill. 10th Annual Control Market Outlook:

Software Taking Control. InTech: The International

Journal for Measurement and Control, January 1997.
[6] I. Mizunuma, C. Shen, and M. Takegaki. Middleware

for Distributed Industrial Real-Time Systems on ATM
Networks. In 17th IEEE Real-Time Systems Sympo-

sium, December 1996.
[7] C. Shen and I. Mizunuma. RT-CRM: Real-Time

Channel-Based Reective Memory. In IEEE Real-Time

Technology and Applications Symposium, June 1997.


	Title Page
	Title Page
	page 2


	Real-Time Communicating Tasks on COTS-based Distributed Platforms: Task Models and End-to-End Scheduling
	page 2
	page 3
	page 4


