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Abstract

This report proposes ämultidrawing̈approach to graph drawing. Current graph-drawing systems
typically produce only one drawing of a graph. By contrast, the multidrawing approach calls for
systematically producing many drawings of the same graph, where the drawings presented to the
user represent a balance between aesthetics and diversity. This addresses a fundamental problem
in graph drawing, namely, how to avoid requiring the user to specify formally and precisely all
the characteristics of a single nice drawing. We present a proof-of-concept implementation with
which we produce diverse selections of symmetric-looking drawings for small graphs.
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1 Introduction

Imagine you have a graph and you want a nice drawing of it. You don't know what a nice
drawing for this graph looks like, but you think you can recognize one when you see it.
What do you do? First, you try a known graph-drawing method. The drawing it returns is
not ideal, so you modify the system's constraints or parameters or random-number seed in
the hope of producing a drawing you like better. This typically results in a haphazard and
tedious exploration of drawings which may or may not result in one that you like.

You might prefer instead to look at an organized selection of drawings that were chosen to
show the diversity of drawings possible, subject perhaps to very general aesthetic guidelines
that you supply. Then you could pick the ones that you like best, and maybe even ask the
computer for more drawings similar to those. In this way, you and the computer would be
collaborating in a systematic way to learn what you mean by \nice" for this graph, and to
produce one or several suitable drawings. The main result of this paper is to introduce (in
Section 2) the multidrawing approach as a realization of this idealized graph-drawing system,
and to present a simple proof-of-concept implementation (Section 3). Our implemented
system is called smile (for SymmetricMultIdrawing Layout Experiment), and it generates
a diverse selection of symmetric-looking drawings for a given small input graph. Section 4
gives several directions that future experimentation and research might take, and Section 5
concludes.

2 Graph Multidrawing

Graph multidrawing is best explained operationally. The canonical multidrawing system has
four principal subsystems:1

Layout: The layout subsystem must be capable of producing a wide variety of drawings
of the same graph, either by exploiting randomization or by varying the input parameters.
Fortunately, many drawing algorithms have this capability inherently (e.g., those based on
spring simulation), and many other algorithms can be modi�ed to have it.

Since many layouts of the same graph are to be generated, either the graph should be
small or the layout subsystem should be fast.

Dispersion: The dispersion subsystem seeks to produce a selection of aesthetically pleasing
drawings that cover the space of possible drawings of a given graph. These twin consider-
ations of aesthetics and diversity typically require compromise: optimizing with respect to
aesthetic criteria (e.g., number of edge crossings, degree of symmetry, distribution of edge
lengths, etc.) usually implies a small number of optimal drawings, yet diversity implies
a large number of di�erent drawings. Thus, a good dispersion heuristic should consider
aesthetics, but not optimize with regard to them.

1The progenitor of the multidrawing approach is the Design GalleryTM project of Marks et al. [7], in which
a similar approach is taken to a variety of computer-graphics and animation production tasks.
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Since an e�ective dispersion heuristic must also achieve diversity, a way to quantify
diversity is needed. This in turn requires a way to measure the (dis)similarity of two drawings.
The emergence of measuring drawing similarity as an important concept is thus one of the
interesting consequences of the multidrawing approach.

Presentation: How to present as many as several hundred drawings computed by the
dispersion subsystem is an important practical issue. An organized display, in which similar
drawings are grouped together so that they can be browsed in a systematic fashion, is
obviously preferable to an arbitrary arrangement of drawings.

Feedback: In any diverse selection of graph drawings, some will be preferred over others.
The ideal feedback subsystem would give the user an easy way to request a further selection
of \good" drawings, with fewer \bad" drawings included.

The next section describes our smile multidrawing system, which has complete layout,
dispersion and presentation subsystems, but (currently) no feedback capabilities.

3 Smile: A Proof-of-Concept Implementation

As a proof-of-concept, we have implemented the smile multidrawing system, which generates
a diverse selection of symmetric-looking drawings for a given input graph.

We chose to experiment with the symmetry aesthetic for two reasons. First, it has been
hypothesized to lead to attractive drawings [6], and yet it has been found relatively unhelpful
for certain common graph-comprehension tasks [10]. Our hope was that multidrawing might
contribute to the debate regarding symmetry in graph drawing. Secondly, we had available
the glide system [11] to use as a layout subsystem. Glide uses a spring-based layout
algorithm that can be readily tailored to foster symmetric-looking layouts.

3.1 What smile does

Smile takes a graph as input and produces as output a large number (128 for the examples
shown below) of di�erent drawings of it. How smile works is detailed in the next subsection.
Here we describe the interface to the presentation subsystem, and show a sampling of the
128 di�erent drawings that the system produced for each of a few well-known graphs.

Figure 1 shows smile's browser interface, with which the user can inspect the computed
set of drawings for a given input graph. This interface is similar to those described in detail
in [2] and [7]: using a multidimensional-scaling layout method, similar drawings are located
near each other in the main window; this window can be panned and zoomed interactively
and interesting drawings can be viewed in their own individual pop-up windows.

Figure 2 shows several drawings of graph K6 computed by smile. Although K6 is a rela-
tively simple graph, the drawings illustrate well the complicated interplay between aesthetics
and diversity that makes graph multidrawing an interesting idea. For example, this selec-
tion shows that there is more to making pleasing drawings than just symmetry. It is clear
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Figure 1: The browser interface.
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Figure 2: Several di�erent drawings of K6 computed by smile.

from inspection that edge crossings, edge lengths, and vertex and edge gestalts (perceptual
grouping) all play important if ill-de�ned and subjective roles in the way humans perceive
drawings.

We have also experimented with the K3;5 and Petersen graphs. Although only slightly
larger and less uniform in structure than K6, the variety of drawings for these graphs pro-
duced by smile is considerably greater, as shown in Figures 3 and 4.

Figure 3: Several di�erent drawings of K3;5 computed by smile.
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Figure 4: Several di�erent drawings of the Petersen graph computed by smile.

3.2 How smile does it

Now we describe how smile's layout and dispersion subsystems work.2

Layout: The layout subsystem was derived from the glide system [11]. Given an arbitrary
initial con�guration of a graph's vertices, it attempts to produce a straight-line drawing in
which the vertices and edges are symmetric about a vertical axis, or about both vertical and
horizontal axes. Given di�erent initial con�gurations of vertices, it will produce di�erent
drawings. Of course it cannot achieve a perfectly symmetric-looking drawing if the initial
input graph has no symmetry, and it also sometimes fails to produce a symmetric-looking
drawing even when one is possible. In both such cases, the typical result is a drawing that
looks fairly symmetric, with perhaps one or two asymmetric vertices or edges.

The underlying layout algorithm uses a generalized notion of spring force to move vertices
from their initial to �nal positions. The spring forces are of two kinds: one kind discourages
vertex-vertex and vertex-edge overlaps in an obvious fashion. The other kind encourages
symmetry explicitly, unlike the implicit propensity towards symmetry that arises in more
conventional spring-based systems [5]. The layout algorithm di�ers from the original glide
algorithm in two small, but signi�cant ways. First, the computation of symmetry-inducing
forces in the original algorithm requires that each vertex be matched with another vertex
or with itself; in the current algorithm, vertex matchings that promote edge symmetry are
favored over those that do not. Second, the spring-force simulation is run to quiescence
once without vertex-edge forces in e�ect, and then once again with them in e�ect. This aids
greatly in avoiding unfortunate local energy minima of the simulated physical system.

Dispersion: One way to achieve dispersion is to distill a large number of randomly gen-
erated drawings down to a small, diverse set; an alternative method is to re�ne repeatedly

2The elements of the presentation subsystem are described in [2] and [7].
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a current set of drawings so as to diversify the set. Both methods were tried by Marks et
al. [7], with the latter current-set method exhibiting markedly superior performance. How-
ever, this earlier work sought only to achieve pure diversity, and did not balance diversity
with aesthetics, as called for by our multidrawing application.

The dispersion heuristic used by smile extends the previous current-set method by con-
sidering both diversity and aesthetics (i.e., symmetry) in the set of drawings. Each member
of the current set consists of both an initial vertex con�guration that gets passed to the
layout subsystem, and the resulting drawing that gets returned. A new candidate mem-
ber can then be generated by randomly selecting an existing member of the current-set,
perturbing its initial vertex con�guration, and computing a new resulting drawing. The
dispersion subsystem works by repeatedly generating candidate members, and substituting
them for existing members whenever the substitution will improve the current set. In our
case, improvement is quanti�ed by a combination of higher symmetry scores and greater
nearest-neighbor distances between drawings in the current set.3

Symmetry scores are straightforward: they are a weighted sum of the number of vertices
and edges that are drawn symmetrically with respect to the chosen symmetry axis or axes.
Given the capabilities of our layout subsystem, many drawings will have the same symmetry
scores.

Devising a useful distance or similarity measure between drawings is much harder. We
experimented with several measures before arriving at the following one: We greedily match
compatible vertices that are at similar places in the two drawings, and sum up a measure of
their distance. More precisely, for each vertex u in drawing D1 we �nd the unmatched vertex
v in D2 such that u and v have the same set of neighbors, and such that u and v are closest
according to a composite distance measure. This distance measure is a combination of the
Euclidean distance between the vertices' locations in their respective drawings (normalized
about the centers of their bounding boxes), and the di�erences in their horizontal and vertical
rankings in their respective drawings. Once this matching of vertices is complete, the distance
between two drawings D1 and D2 is just the sum of the pairwise composite distances between
matched vertices.

Figure 1 illustrates anecdotally how the inverse of our distance measure corresponds to
perceived similarity. The drawings in the two pop-up windows on the lower left are rated as
very similar to each other, and the drawings in the pop-up windows on the lower right are
also rated similar to each other. However, each drawing in the left pair is rated as having
little similarity with each drawing in the right pair. Although smile's current similarity
measure correlates positively with perceived similarity, we anticipate that deriving better
measures of drawing (dis)similarity will be one of the main technical challenges of e�ective
graph multidrawing.

3For each graph it processed, smile used a current set of 128 members, and considered 5,000 candidate
members. This takes from 19 minutes (for K6) up to 95 minutes (for the Petersen graph) on a MIPS R10000
processor. See [7] for more details about the dispersion process.
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4 Future Directions

In this section we speculate on possible further developments of the four components in the
multidrawing architecture: layout, dispersion, presentation, and feedback.

4.1 Layout

We would like to incorporate other layout techniques into our current system architecture.
Developing such techniques will typically require modi�cation of existing algorithms to make
them produce multiple di�erent drawings of a given graph. Promising candidates include
specialized algorithms, such as those for drawing trees, hierarchical graphs, and those for
drawing planar graphs or subgraphs.

4.2 Dispersion

With respect to the dispersion component, the main challenge is to �ne a better measure of
similarity of two drawings. This is crucial not only for dispersion, but also for organizing
drawings logically in the presentation subsystem, and perhaps also for exploiting user feed-
back (e.g., by providing useful responses to the command: \Generate more drawings like
this one.").

Similarity measures may be categorized as follows:4

� Topological similarity is the similarity of the planar graphs obtained by planarizing
two drawings. Two drawings are topologically identical if they induce the same planar
graph in the same planar embedding with the same outerface ([8], p. 32).

� Metric similarity measures the similarity of two point sets, which for us are the drawn
vertices [1]. To extend the usefulness of this technique to graphs may require matching
labeled point sets, i.e., matching each point in one set with a speci�c point in the other
set [4].

� Positional similarity measures the positions of nodes relative to one another, for exam-
ple by computing for each pair of nodes whether they are in the same relative horizontal
position in both drawings, and in the same relative vertical positions in both drawings.

� Feature similarity exploits the notion of prominent features, such as a few faces of big
area, the shape of the convex hull, or a piece that \looks like a tail."

� Operational similarity can be measured by computing the number and/or magnitude
of operations needed to transform one drawing to another. An operation is applied to
some piece of the drawing, e.g., reection of the piece about an edge, or a change in
its proportions.5

4For another taxonomy of similarity measures, see [3].
5According to this categorization, the smile system currently uses a combination of metric, positional,

and operational similarities.
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4.3 Presentation and Feedback

If the only goal is to achieve diversity of a set of drawings, user feedback is of limited
relevance: at most, the user might indicate a new degree or type of diversity for a future
run. However, graph multidrawing combines diversity and aesthetics. The incorporation of
aesthetic criteria makes it more desirable, even necessary, for the user to provide feedback.
For example, once the user has selected some \nice" drawings, the system could generate
a new batch with similar characteristics. To accomplish this, the system must identify
which qualities the user \likes" in a drawing, and then map them onto the relevant system
parameters in order to generate more drawings of the desired quality.

5 Conclusion

Instead of producing a single \optimal" drawing, a graph-drawing system should generate
a diverse selection of acceptable drawings for the user's perusal. This restatement of the
computer's role in the graph-drawing enterprise introduces many new challenges: modifying
existing algorithms to generate multiple layouts; formalizing the notion of diversity for a set
of drawings and devising heuristics to achieve it; and designing interfaces to support the
user's browsing task.
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