
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Comparing Diffuse and True Coevolution in
a Physics-Based World

Gregory S. Hornby, Brian Mirtich

TR98-11 December 1999

Abstract

We compare two types of coevolutionary tournaments, true and diffuse, in contests using a
general-purpose, physics-based simulator. Previous work in coevolving agents has used true
coevolution and found that populations tend to enter mediocre states. One way of alleviating
these problems is through diffuse coevolution. Our results show that agents evaluated with dif-
fuse tournaments are less specialized than those evaluated with true tournaments.

1999 AAAI Genetic and Evolutionary Computation Conference

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1999
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Comparing Di�use and True

Coevolution in a Physics-Based World

Gregory S. Hornby � Brian Mirtich

TR-98-11 January 1999

Abstract

We compare two types of coevolutionary tournaments, true and di�use, in con-
tests using a general-purpose, physics-based simulator. Previous work in coevolv-
ing agents has used true coevolution and found that populations tend to enter
mediocre states. One way of alleviating these problems is through di�use coevo-
lution. Our results show that agents evaluated with di�use tournaments are less
specialized than those evaluated with true tournaments.

Submitted to 1999 Genetic and Evolutionary Computation Conference (GECCO)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1999

201 Broadway, Cambridge, Massachusetts 02139

�Computer Science Department, Brandeis University, Waltham, MA, 02454-9110

hornby@cs.brandeis.edu.



1. First printing, August 1998
2. Revision, TR98-11, January 1999



1

1 INTRODUCTION

Evolutionary algorithms have been used to optimize the behavior of a popu-
lation of agents through repeated modi�cations and �tness evaluations. Often
the agents fall into distinct populations or species that directly compete with
each other, as in a predator-prey situation. The individual species may be
evolved separately, although not independently, in a strategy termed coevolu-
tion. A good example of the technique is the work of Sims, in which three-
dimensional robots were evolved through competitions that involved controlling
a cube [Sims, 1994].

Coevolution has much promise as a means for automatically improving the
quality of the �tness landscape. As the populations improve, they provide more
di�cult challenges for each other, thereby raising the �tness bar. True coevolu-
tion describes a situation where exactly two species are simultaneously evolved
and compete head-to-head in the �tness trials. One problem with true coevo-
lution is that the species may become specialized to one another, each relying
on the opposing species' strategies and weaknesses. The species then stabi-
lize in mediocre states, and an agent from one of the species will not perform
well when pitted against a new type of opponent. To alleviate this problem,
[Bullock, 1995] proposes using di�use coevolution: allowing each species to com-
pete against multiple opposing species, which are all evolved separately. Since
each agent is tested against a wider diversity of opponents, more general strate-
gies can evolve. Similar ideas are echoed in [Reynolds, 1994]. The goal of this
research was to compare true and di�use coevolution using a relatively sophisti-
cated competition. Our results support the hypothesis that di�use coevolution
produces better agents than true coevolution.

We chose a predator-prey scenario to study coevolution. While one of the
simplest forms of coevolution, predator-prey coevolution may lead to a better
understanding of coevolution in general. Other reasons for studying predator-
prey coevolution are discussed in [Miller and Cli�, 1994], including applications
to software agents and robotics and relevance to other �elds such as game theory.

A meaningful study of predator-prey coevolution requires evolution of com-
plex strategies. One of the factors that limits the evolution of strategies is the
agent's environment. The environment comprises the objects the agent inter-
acts with as well as the rules, such as physical laws, governing these interactions.
The objects may be static entities, like oors and walls, or they may be other
agents inhabiting the same world.

In simple environments simple behaviors are generally su�cient, and thus
complex behaviors do not evolve. As the environment becomes more com-
plex there is room for complex behaviors to evolve. Hence there is a trend
in predator-prey coevolution towards richer environments. The environment
used by Reynolds to evolve tag players was a simple one: agents were mod-
eled as circles existing in a discrete-time, at, two-dimensional world with-
out momentum, friction or other objects [Reynolds, 1994]. Reynolds states
that a world with more realistic physics could produce more interesting mo-
tion and a rich environment for future studies. More complex physics was

MERL-TR-98-11 January 1999



2

used in [Cli� and Miller, 1995] and [Cli� and Miller, 1996]. This environment,
while two-dimensional, was continuous-time and included momentum. Again,
no other objects existed in the at world. In [Floreano and Nol�, 1997] a Khep-
era simulator simulator was used followed by coevolution with actual Kheperas
in [Floreano and Nol�, 1998]. They used the real world|or a good simulation
of it|but the environment was simple and essentially at. Another limitation
is that only Kheperas (simple robots) can be used and it cannot be extended to
more complex agents or environments.

For our own experiments, we use predator-prey competitions similar in prin-
ciple to those previously mentioned, but driven by a general-purpose, three-
dimensional, rigid-body simulator. The agents are tricycles, with independently
controled wheels. Competitions take place in an enclosed ring with an obstacle
in the center (Figure 1). The obstacle in the center prevents trivial strategies
from developing. The competitions last 90 simulated seconds. The combination
of the outer wall and long simulation time forces agents into close quarters,
encouraging them to be reactive. Although the environment is basically at,
the three-dimensional nature of the simulator plays a de�nite role in the evolu-
tion of strategies: agents ip over if they cut corners too tightly or experience
destabilizing collisions. Using the simulator to drive the competitions, we com-
pare two types of tournaments for predator-prey coevolution, one based on true
coevolution and the other based on di�use coevolution.

Figure 1: Pursuer-Evader Environment

The rest of the paper is organized as follows. We discuss some details of the
physical simulator used for our experiments in Section 2. This section includes
pointers to source code for some of the publicly available modules used in the
simulator; these may be useful to others wishing to use physics-based simulation
as a tool for evolving agents. Details of the competitions and computation of
�tness scores are described in Section 3. Next we describe our evolutionary

MERL-TR-98-11 January 1999



3

algorithm in Section 4 and our neural control system, which drives the agents,
in Section 5. We present, and discuss, our results in Section 6. Concluding
remarks and directions for future work are in Section 7.

2 SIMULATOR

The contests between the pursuer and evader vehicles were carried out using
a general-purpose, dynamic simulator for three-dimensional, rigid bodies. This
research tool is a compilation of many algorithms developed in the graphics
and physics-based modeling community. The simulator enforces physical laws
governing momentum, friction, and collisions; these have a signi�cant bearing
on the predator-prey competitions. Simulating the contest could generally be
done faster than real time: a 90 second contest takes 30-60 seconds to simu-
late. Nonetheless, the large number of competitions needed to evolve agents
mandated overnight runs. A detailed discussion of the principles underlying the
simulator is beyond the current scope, but this section summarizes the salient
points. More information can be found in [Mirtich, 1996].

2.1 GEOMETRY AND COLLISION DETECTION

The geometries of all parts of the agents and environment are described by poly-
hedra; curved surfaces like spheres and cylinders are suitably approximated. For
instance, the tricycle wheels are modeled as extruded 30-sided regular polygons.
Along with each rigid part, either a mass or a density is speci�ed. The simu-
lator uses this information, along with the geometry to automatically compute
the inertial properties needed for simulation: total mass, the coordinates of the
center of mass, the principle axes of inertia, and the corresponding moments of
inertia. Source code for these computations is publicly available.1

The starting point for rigid body simulation is an analysis of what bodies
are in contact or colliding. This is what creates interesting motion; without
collision or contact, bodies follow the simple ballistic trajectories of Newtonian
physics. The collision detection system is responsible for reporting collisions and
contacts between di�erent bodies. From a geometric standpoint, each tricycle
comprises four individual pieces: the chassis and three wheels; each of these
must be tested individually for collisions with the environment.

For a simulation with n bodies, the number of possible interactions at any
given time is O(n2). To reduce processing time, the collision detection system
has two phases. The broad phase culls most of the O(n2) pairs of bodies from fur-
ther consideration. It uses simple bounding boxes around the objects to quickly
determine which pairs are in no danger of colliding. The bounding boxes are
stored in a multi-resolution spatial hash table as described in [Overmars, 1992].
This data structure can e�ciently report which bounding boxes overlap a region
of three-dimensional space.

1www.merl.com/people/mirtich/berkeleyHtml/
massProps.html

MERL-TR-98-11 January 1999



4

The pairs which the broad phase can not eliminate are passed to the slower
but more precise narrow phase of the collision detection system. The narrow
phase considers the exact geometry of the objects and determines if they are
intersecting, in contact, or separated. There are many choices for narrow-phase
detectors[Lin, 1993, Hubbard, 1994, Gottschalk et al., 1996, Cameron, 1997]; our
simulator uses the publicly available V-Clip algorithm [Mirtich, 1998].2 The
algorithm was designed for speed and robustness to geometric degeneracies.
This makes it well-suited to our task of performing thousands of simulations
in overnight runs. Together, the two phases result in a fast collision detection
system that does not dominate the computational cost of the simulation.

2.2 COLLISION RESOLUTION AND CONTACTMOD-

ELING

After the collision detection is performed, impulses must be applied to bodies
that are colliding. These impulses instantaneously change the velocities of the
bodies and prevent them from penetrating. Impulses are computed using a
practical algebraic formulation described in [Chatterjee and Ruina, 1998]. This
method is easy to implement and has several desirable properties. For instance,
it is guaranteed not to create energy during a collision, which is a weakness of
many algebraic formulations. It also incorporates friction and restitution, each
of which is described by a pair of coe�cients.

More di�cult than resolving collisions is the problem of modeling the in-
teractions between bodies in persistent contact, such as the wheel of a tricycle
rolling along the ground. For much of this interaction, our simulator uses a
novel approach known as impulse-based simulation. In this paradigm, persistent
contact is modeled through trains of small, rapid collision impulses. These can
approximate a steady contact force well under the right conditions. More details
of the method are in [Mirtich, 1996]. The primary advantages of impulse-based
simulation are that it is simple to implement, robust, and in many situations
fast, however it slows down considerably when there are many persistent con-
tacts. In our tricycle competitions, there were usually six wheels rolling along
the ground at any given time. To improve performance in such situations, our
simulator also employs a constraint-based contact modeler. Constraint-based
formulations are described in detail in [Bara�, 1989, Bara�, 1992]. They work
by computing the forces exerted between bodies in contacts. Our approach
uses a linear programming technique similar to but not as sophisticated as the
standard complementarity formulations [Bara�, 1992, Pang and Trinkle, 1996].
Both static and dynamic friction are supported.

The transition between impulse-based contact and constraint-based contact
is a smooth one in our simulator. Impulses are used to resolve collisions, and also
to prevent penetration between bodies that are in transient contact, as when
the chassis of a tricycle momentarily rubs along the outer wall of the arena.
As the frequency of impulses between two contact points increases, the contact

2www.merl.com/projects/vclip

MERL-TR-98-11 January 1999



5

is switched over to a constraint-based approach, with a genuine contact force
applied. This is usually the case with the wheel-ground contacts. Comput-
ing the contact forces is the dominant cost in the simulation system, generally
accounting for over 75% of the computation time.

2.3 MULTIBODY DYNAMICS AND CONTROL

The simulator supports multibodies: collections of rigid bodies connected by
idealized joints. Both revolute (rotating) and prismatic (sliding) joints are sup-
ported, although only revolute joints are needed for the tricycles. The dynamics
of multibodies are more complicated than those of unlinked rigid bodies but can
be computed by classical algorithms. Many algorithms for computing the accel-
erations of an n-link multibody have O(n3) complexity, however Featherstone
invented an elegant O(n) method [Featherstone, 1983]. The simulator uses a
publicly available implementation of Featherstone's algorithm.3

The multibody dynamics algorithms takes as input the current joint posi-
tions and velocities, as well as any external torques applied by simulated joint
motors. This is the sole means by which the evolved behavioral systems, de-
scribed in Section 5, can inuence the course of the simulation. Beyond the
joint torques, everything is governed by physics alone.

While it might have been possible to have the behavioral system learn to
control the joint torques directly, this was deemed an unnecessarily di�cult
task. Real robot controllers are hierarchical: high-level controllers command
particular joint positions and velocities to low-level controllers that directly
determine motor torque. This division is natural and still admits a wide variety
of control strategies. The interaction between the low-level controllers and the
actual motors is a standard problem of control theory. The simulator provides
standard low-level controllers, such as proportional derivative (PD) controllers,
to actuate the multibody joints. In evolving agents, our interest is in the high-
level (behavioral) control: what are the appropriate positions and velocities to
command? At a 4 Hz rate, the behavioral system uses a neural network to
determine the desired velocities for the three wheels and a desired position for
the steering joint. These are passed to low-level controllers that attempt to
maintain the desired values until new values are computed. External forces and
collisions cause discrepancies between the actual and desired values.

3 EXPERIMENTAL METHOD

For our experiments the pursuer-evader game is between two wheeled vehicles.
The contest takes place in a ring of radius 700 units. In the center of the ring is a
circular barrier of radius 100. The pursuing and evading vehicles are physically
identical tricycles with rough dimensions of 150� 80� 50 units. The two rear

3www.merl.com/people/mirtich/
multibodyDynamics.html

MERL-TR-98-11 January 1999



6

wheels spin about a transverse axis; the front wheel is mounted in a fork to
provide steering.

Each contest lasts 90 seconds with the initial vehicle positions as shown in
Figure 1, with the pursuer on the left and the evader on the right. The object of
the contest is for the pursuing vehicle to catch the evading vehicle. In practice, a
triangle 1.3 times the size of each vehicle is placed around each vehicle, and the
pursuing vehicle catches the evading vehicle when the triangles intersect each
other.

The maximum distance dmax and minimum distance dmin between the pur-
suer and evader are monitored during the game. Scores for a game are deter-
mined by these distance and whether the pursuer caught the evader. If the
pursuer does not catch the evader then the score of the evader is ((dmin +
dmax)=400)� 2, lying in the range 0 to 7. The pursuer's score is the negative of
this value. If the pursuer catches the evader at time t, its score is (90� t)=30,
lying in the range 0 to 3. The evader's score is the negative of this value.

4 EVOLUTIONARY ALGORITHM

The di�erence between our di�use and true coevolutionary systems is the num-
ber of species against which individuals compete. In one system individuals
compete against only one other species of individuals. We call this system true-
coevolutionary tournaments (TC-tournaments). With the other system individ-
uals compete against four di�erent species of opponents. We call this system
di�use-coevolutionary tournaments (DC-tournaments). We now describe our
coevolutionary algorithm.

In both cases two populations of 96 individuals are used. Each population
is split into four independent subpopulations of 24 individuals. We call each of
these subpopulations a species. There is no migration between the species. Each
species is decomposed into 4 demes of 6 individuals. The demes are arranged
in a ring. In this way each species has a spatial structure. At the end of a
generation each deme passes its second best individual to the next deme in the
ring (Figure 2). Evolution is performed for 80 generations.

We are interested in the e�ects of varying the number of species an individual
competes against. To eliminate dependencies on population sizes, we coevolve
four independent pairs of pursuer and evader species in the TC-tournaments.
Future work might compare the trade-o�s between using single populations
coevolving against each other with multi-species populations coevolving against
each other.

To reduce the amount of time for processing the population is distributed
amongst four processors. Each processor contains one deme from each species
and operates asynchronously. As with demes, processors are treated as being
in a ring. At the end of a generation the processor writes its population to �le
for the next processor to read and it reads the population �le of the previous
processor. Using four R1000 processors of an SGI Reality Engine, 96 generations
of evolution took approximately 100 hours.

MERL-TR-98-11 January 1999



7

18 - 23

0 - 5

species 3

0 - 5

species 1

0 - 5

species 0

18 - 23

evaders

pursuers

18 - 23 18 - 23 18 - 23

18 - 2318 - 23

species 2

0 - 5

Processor 0 (deme 0)

evaders

pursuers

.

.

.

species 3

0 - 5

0 - 5

species 2species 0

0 - 5

species 1

0 - 5

Processor 3 (deme 3)

species 0 species 2

species 2species 0
18 - 23

species 1 species 3

species 1 species 3

Figure 2: Population Structure

Selection and reproduction are similar to other work. In each deme of 6
individuals the best two individuals are copied to the next generation. Parents
for creating individuals for the next four slots are selected stochastically based
on rank. The probability of creating new individuals through mutation and

MERL-TR-98-11 January 1999



8

recombination are 0.4 and 0.6, respectively.
The DC-tournaments and TC-tournaments di�er in how opponents are paired.

In both algorithms individuals are evaluated by their total �tness over four
games. In TC-tournaments individuals are evaluated against four individuals
from the same opponent species (i.e. individuals from species 0 only play oppo-
nents from species 0; individuals from species 1 only play opponents from species
1; etc.). In DC-tournaments individuals are played against one individual from
each opponent species.

5 NETWORK ARCHITECTURE

The control system of each agent is a recurrent, arti�cial neural network. The
network architecture is based on the GNARL system ([Angeline et al., 1994])
with the main modi�cation being individuals are evolved under a standard evo-
lutionary algorithm with both recombination and mutation. Our networks also
have some inuence from continuous-time networks ([Beer and Gallagher, 1992]).

Networks have a �xed number of processing units allowing a network data
structure to be a �xed size. A network data structure consists of: w, a matrix of
real-valued weights; f , a vector of processing functions; �, a real-valued vector
of input biases; �, a real-valued vector of output biases; � , a real-valued vector
of time constants; and s, a vector of boolean values signifying if a processing
unit is a stepping unit. The value of the ith row and jth column of the weight
matrix is the value of the weight from the ith processing unit to the j processing
unit. The ith value of the vectors is the attribute for the ith processing unit. A
processing unit functions as follows:

a0i = �iai�old + (1� �)[f(
X

j

wjiaj + �i) + �i] (1)

If si is true, then the unit is a stepping unit. In which case if a0i is greater than
0 then ai is set to 1, otherwise ai is set to 0. If the processing unit is not a
stepping unit then ai is set to a0i.

The inputs to each vehicle's control system are the desired angular velocity
for all three wheels, and the desired steering angle. The maximum desired wheel
velocity is 240 degrees per second for the pursuer, and 200 degrees per second
for the evader, giving the pursuer a 20% speed advantage. For both vehicles,
the maximum desired steering angle is 40 degrees in the left or right direction.

Each vehicle uses its own neural network to drive the inputs to its control
system. A network consists of twenty processing units. Eight processing units
receive the following inputs: the actual wheel velocity of one of the rear wheels;
the actual steering angle; the heading to the other vehicle; the distance to the
other vehicle; and four inputs giving the nearest distance to a wall at angles
30, 0, -30 and 180 degrees. Two of the processing units are used as outputs,
giving desired values for wheel velocity and steering angle. The remaining ten
processing units are hidden units.

MERL-TR-98-11 January 1999



9

The initial population of networks consists of randomly generated networks.
The weight matrix is created by setting an initial connectivity of 4 to 14 input
links for each processing unit. Weights and real-valued vectors are assigned a
random value with uniform distribution in the range [-1, 1]|except for � , the
vector of time constants, which has values assigned with a uniform distribution
in the range [0, 1]. Processing functions are randomly selected to be one of

fx; sin(x); 2atan(x)
�

; ex; 1
1+e�x

g. The values of s are randomly selected to either
true or false.

The mutation operator has a 0.6 probability of mutating weights in the
weight matrix, a 0.15 probability of adding or deleting links (setting to 0 or
setting to a random value an element in the weight matrix) and a probability
of 0.25 of mutating the other properties of each processing unit. In mutating a
real value a Gaussian random number (� = 0:01) is added to it. In mutating
the processing function vector a new function is randomly selected. In mutating
the boolean value signifying whether or not a unit is a stepping unit, true and
false are assigned with equal probability.

Recombination between two networks consists of making a copy of the �rst
parent then selecting one attribute and making that a recombination of the
values of both parents. There is a probability of 0.6 of recombining the weight
matrix with the remaining 0.4 divided amongst the other attributes. When
both parents genes have non-zero values, real-valued recombination uses the
equation,

vc = vp1 + �(vp1 � vp2) (2)

where � is a number randomly generated with a uniform distribution in the
range [-1, 1]. Otherwise the child's value is randomly selected to be the value
of one of the parents. The weight matrix is recombined by applying the real-
valued recombination to each corresponding pairs of elements in the parents'
weight matrices. Vector recombination consists of applying the real-valued re-
combination operator to the corresponding values in the parents' vectors to
generate the values of the child's vector. The exception is the s vector which is
created through uniform crossover of the parents' s vectors.

6 RESULTS

The �rst few seconds of a contest set the stage for the rest of the match. Mov-
ing forward was the initial action evolved by both pursuers evaders. With a
wall ahead both agents needed to choose between turning left or right. If the
pursuer guessed correctly and turned in the same direction as the evader it had
the evader in front of it in a favorable position for catching. By steering di-
rectly towards the evader and moving ahead at full speed a pursuer was almost
guaranteed a win. At this point some pursuers were more successful than oth-
ers with pro�ciency improving over the generations. It should be mentioned
that pursuers also had a tendency, especially in early generations, to go straight
towards the evader, without turning to avoid the intervening obstacle.

MERL-TR-98-11 January 1999



10

With TC-tournaments the four pursuer species each coevolved against a
di�erent evader species. In early generations vehicles moved about randomly
and were unresponsive to each other. By generation 30 contests settled into
two types: where both pursuer and evader turned left or both turned right;
and where one turned right and the other left. After this point agents did not
change their steering much. Evaders would continue going around the ring in
varying sized arcs. Pursuers would drive in the general direction of the evader.
Figure 3 plots the win ratios for the di�erent species of the pursuer population.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80

w
in

 r
at

io

generation

species 0
species 1
species 2
species 3

Figure 3: TC-tournament Results

Agents evolved with DC-tournaments were more interesting. Three of the
four species of evaders evolved strategies similar to those of the previous system|
although later investigation showed them to be more reactive. Evaders of the
fourth species came up with a novel strategy of starting by going in reverse for
a few seconds before going forward. This began in generation 30 with an indi-
vidual that started going backwards a little, then stopped and went forwards
and to the right around the ring. By generation 60 this strategy dominated that
species. In one case, after its initial turn-around the evader would go straight
for the middle barrier in such a way that the pursuer had to go on the other
side to catch him. The evader then stopped with the barrier in between and
then went backward as the pursuer passed. Similarly, in other games agents
from this species would stop on the outside of the wall if the pursuer was far
away. They would sit and do nothing until the pursuer started getting close.
And they would move in reverse to get away. Figure 4 plots the win ratios for
the di�erent species of the pursuer population.

MERL-TR-98-11 January 1999



11

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80

w
in

 r
at

io

generation

species 0
species 1
species 2
species 3

Figure 4: DC-tournament Results

Figure 5 depicts two 80th-generation contests: one from the TC-tournament
and one from the DC-tournament. The left column depicts the TC contest:
(1) the pursuer discovers the center obstacle as the evader hugs the perimeter;
(2) a velocity reversal looks like a winning pursuer strategy until (3) reckless
turning speeds cause the pursuer to ip over while the unimaginative evader
sneaks by. The right column depicts the DC contest: (1) the pursuer closes in
on the retreating evader; (2) a sneaky evader spin leads to a momentary escape;
and (3) the pursuer reacts, reverses, and eventually tags the evader.

In comparing the two systems, agents using TC-tournaments evolved simpler
strategies. Prey almost never went backwards. In competitions between agents
from di�erent species, the agents played against phantom opponents from the
species they were coevolved against. That is, agents moved along predetermined
paths and were not reactive to their actual opponent. Sometimes the predator
would drive right past the prey, ignoring it as it tried to catch its phantom
opponent. Also, even in the last �ve generations predators drove straight into
the barrier in the pursuit of the prey. Strategies consisted of prey oscillating
over the generations between going left or going right with the predators follow-
ing suit. This oscillation between two mediocre (non-reactive) strategies may
explain the large di�erence in a species' performance variation between the two
systems. In contrast, agents evolved in DC-tournaments were more responsive
to their inputs. Prey would stop and go backward when it was the better option.

Finally we compared agents from the two systems against each other. Fig-
ure 6 is a graph of win ratios for evaders from one system playing against pur-
suers from the other system. Each point represents the average win-ratios for

MERL-TR-98-11 January 1999



12

Figure 5: TC And DC Contest Snapshots

MERL-TR-98-11 January 1999



13

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80

w
in

 r
at

io

generation

diffuse
true

Figure 6: Di�use Vs. True

the best individuals from each pursuer species competing against the best evader
agents from each species from every 10 generations. From this graph it can be
seen that pursuer agents evolved using DC-tournaments maintained a 10% to
14% higher win-ratio than did pursuer agents evolved using TC-tournaments.
This result con�rms that diversity in competitors is important.

7 CONCLUSION

In this paper we compared two types of tournaments, TC-tournaments and
DC-tournaments, for coevolution of pursuers and evaders. Experiments used a
general-purpose, physics-based simulator for our contests. With TC-tournaments
agents coevolve against only one other species. With DC-tournaments agents
coevolve against multiple species. Our results show that coevolving against a
diversity of opponent species, as with DC-tournaments, produces agents with
more general strategies.

One of our beliefs is that the environment has a large inuence on the types
of behaviors that can be evolved. To date, predator-prey experiments have used
simple worlds consisting of just a predator and a prey agent. While results have
been interesting none of have been truly amazing. In the real world, interaction
between agents occurs in a much richer environment. Increasing the complexity
of experimental environment, whether by adding more features to the landscape
or including more agents, may lead to the evolution of much more interesting
agents.

MERL-TR-98-11 January 1999



14

References
[Angeline et al., 1994] Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary

algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks,
5(1):54{65.

[Bara�, 1989] Bara�, D. (1989). Analytical methods for dynamic simulation of non-penetrating
rigid bodies. Computer Graphics, 23(3):223{232.

[Bara�, 1992] Bara�, D. (1992). Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD
thesis, Department of Computer Science, Cornell University.

[Beer and Gallagher, 1992] Beer, R. D. and Gallagher, J. G. (1992). Evolving dynamical neural
networks for adaptive behavior. Adaptive Behavior, 1(1):91{122.

[Bullock, 1995] Bullock, S. (1995). Co-evolutionary design: Implications for evolutionary robotics.
In CSRP 384, University of Sussex.

[Cameron, 1997] Cameron, S. (1997). Enhancing GJK: Computing minimum penetration distances
between convex polyhedra. In Proceedings of International Conference on Robotics and Au-
tomation. IEEE.

[Chatterjee and Ruina, 1998] Chatterjee, A. and Ruina, A. (1998). A new algebraic rigid body
collision law based on impulse space considerations. Journal of Applied Mechanics, 65:939{951.

[Cli� and Miller, 1995] Cli�, D. and Miller, G. F. (1995). Tracking the red queen: Measurements
of adaptive progress in co-evolutionary simulations. In Mor�an, F., Moreno, A., Merelo, J. J.,
and Chac�on, P., editors, Advances in Arti�cial Life: Proc. of the Third European Conf. on
Arti�cial Life, pages 200{218, Berlin. Springer Verlag.

[Cli� and Miller, 1996] Cli�, D. and Miller, G. F. (1996). Co-evolution of pursuit and evasion II:
Simulation methods and results. In Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., and Wilson,
S. W., editors, From Animals to Animats 4, pages 506{515, Cambridge, MA. MIT Press Bradford
Books.

[Featherstone, 1983] Featherstone, R. (1983). The calculation of robot dynamics using articulated-
body inertias. International Journal of Robotics Research, 2(1):13{30.

[Floreano and Nol�, 1997] Floreano, D. and Nol�, S. (1997). Adaptive behavior in competing co-
evolving species. In Husbands, P. and Harvey, I., editors, Proceedings of the Fourth European
Conference on Arti�cial Life, Cambridge, MA. MIT Press.

[Floreano and Nol�, 1998] Floreano, D. and Nol�, S. (1998). Competitive co-evolutionary robotics:
From theory to practice. In Pfeifer, R., editor, From Animals to Animats V. MIT Press.

[Gottschalk et al., 1996] Gottschalk, S., Lin, M. C., and Manocha, D. (1996). Obb-tree: A hier-
archical structure for rapid interference detection. In Computer Graphics Proceedings, Annual
Conference Series, Proceedings of SIGGRAPH 96. ACM SIGGRAPH.

[Hubbard, 1994] Hubbard, P. M. (1994). Collision Detection for Interactive Graphics Applica-
tions. PhD thesis, Department of Computer Science, Brown University.

[Lin, 1993] Lin, M. C. (1993). E�cient Collision Detection for Animation and Robotics. PhD
thesis, University of California, Berkeley.

[Miller and Cli�, 1994] Miller, G. F. and Cli�, D. (1994). Protean behavior in dynamic games:
Arguments for the co-evolution of pursuit-evasion tactics. In Cli�, D., Husbands, P., Meyer,
J.-A., Pollack, J., and Wilson, S. W., editors, From Animals to Animats 3, pages 411{420,
Cambridge, MA. MIT Press Bradford Books.

[Mirtich, 1996] Mirtich, B. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD thesis, University of California, Berkeley.

[Mirtich, 1998] Mirtich, B. (1998). V-Clip: fast and robust polyhedral collision detection. ACM
Transactions on Graphics, 17(3):177{208. Mitsubishi Electric Research Lab Technical Report
TR97{05.

[Overmars, 1992] Overmars, M. (1992). Point location in fat subdivisions. Information Processing
Letters, 44:261{265.

MERL-TR-98-11 January 1999



15

[Pang and Trinkle, 1996] Pang, J. and Trinkle, J. (1996). Complementarity formulations and exis-
tence of solutions of dynamic multi-rigid-body contact problems with coulomb friction. Mathe-
matical Programming.

[Reynolds, 1994] Reynolds, C. W. (1994). Competition, coevolution and the game of tag. In Brooks,
R. and Maes, P., editors, Proceedings of the Fourth Workshop on Arti�cial Life, pages 59{69,
Boston, MA. MIT Press.

[Sims, 1994] Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Brooks,
R. and Maes, P., editors, Proceedings of the Fourth Workshop on Arti�cial Life, pages 28{39,
Boston, MA. MIT Press.

MERL-TR-98-11 January 1999


	Title Page
	Title Page
	page 2


	Comparing Diffuse and True Coevolution in a Physics-Based World
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17


