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Abstract

We propose a novel technique for direct visual matching of images for the purposes of face
recognition and database search. Specifically, we argue in favor of a probabilistic measure of
similarity, in contrast to simpler methods which are based on standard Euclidean L2 norms (tem-
plate matching) or subspace-restricted norms (eigenspace matching). The proposed similarity
measure is based on a Bayesian analysis of image differences: we model two mutually exclusive
classes of variation between two facial images: intra-personal (variations in appearance of the
same individual, due to different expressions or lighting) and extra-personal (variations in ap-
pearance due to a difference in identity). The high-dimensional probability density functions for
each respective class are then obtained from training data using an eigenspace density estimation
technique and subsequently used to compute a similarity measure based on the a posteriori prob-
ability of membership in the intra-personal class, which is used to rank matches in the database.
The performance advantage of this probabilistic matching technique over standard Euclidean
nearest-neighbor eigenspace matching is demonstrated using results from ARPA’s 1996 FERET
face recognition competition, in which this algorithm was found to be the top performer.
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Abstract

We propose a novel technique for direct visual matching of images for the purposes of face
recognition and database search. Specifically, we argue in favor of a probabilistic measure of
similarity, in contrast to simpler methods which are based on standard Euclidean L; norms (e.g.,
template matching) or subspace-restricted norms (e.g., eigenspace matching). The proposed
similarity measure is based on a Bayesian analysis of image differences: we model two mutually
exclusive classes of variation between two facial images: intra-personal (variations in appearance
of the same individual, due to different expressions or lighting) and eztra-personal (variations in
appearance due to a difference in identity). The high-dimensional probability density functions
for each respective class are then obtained from training data using an eigenspace density
estimation technique and subsequently used to compute a similarity measure based on the a
posterior: probability of membership in the intra-personal class, which 1s used to rank matches
in the database. The performance advantage of this probabilistic matching technique over
standard Euclidean nearest-neighbor eigenspace matching is demonstrated using results from
ARPA’s 1996 “FERET?” face recognition competition, in which this algorithm was found to be
the top performer.

1 Introduction

Current approaches to image matching for visual object recognition and image database retrieval
often make use of simple image similarity metrics such as Fuclidean distance or normalized cor-
relation, which correspond to a standard template-matching approach to recognition [2, 5]. For
example, in its simplest form, the similarity measure S(I1, I2) between two images I; and I can be
set to be inversely proportional to the norm ||I; — I1||. Such a simple formulation suffers from a
major drawback: it does not exploit knowledge of which type of variations are critical (as opposed
to incidental) in expressing similarity. In this paper, we formulate a probabilistic similarity measure
which is based on the probability that the image intensity differences, denoted by A = I; — I, are
characteristic of typical variations in appearance of the same object. For example, for purposes of
face recognition, we can define two classes of facial image variations: intrapersonal variations €
(corresponding, for example, to different facial expressions of the same individual) and extrapersonal
variations Qg (corresponding to variations between different individuals). Our similarity measure is
then expressed in terms of the probability

S(h,I;) = P(AeQr) = P(QrA) (1)

where P(€27|A) is the a posteriori probability given by Bayes rule, using estimates of the likelihoods
P(A|Qr) and P(A|Q2g) which are derived from training data using an efficient subspace method



for density estimation of high-dimensional data [7]. This Bayesian (MAP) approach can also
be viewed as a generalized nonlinear extension of Linear Discriminant Analysis (LDA) [9, 3] or
“FisherFace” techniques [1] for face recognition. Moreover, our nonlinear generalization has distinct
computational /storage advantages over these linear methods for large databases.

2 Analysis of Intensity Differences

We now consider the problem of characterizing the type of differences which occur when matching
two images in a face recognition task. We define two distinct and mutually exclusive classes: Qj
representing intrapersonal variations between multiple images of the same individual (e.g., with
different expressions and lighting conditions), and Qg representing eztrapersonal variations which
result when matching two different individuals. We will assume that both classes are Gaussian-
distributed and seek to obtain estimates of the likelihood functions P(A|Qr) and P(A|Qg) for a
given intensity difference A =11 — I.

Given these likelihoods we can define the similarity score S(I1,I3) between a pair of images
directly in terms of the intrapersonal a posterior: probability as given by Bayes rule:

S = P(Q]A)
— P(A[Q)P(S2) (2)
P(A|Q)P(Qr) + P(A|QR)P(Qp)

where the priors P(£2) can be set to reflect specific operating conditions (e.g., number of test images
vs. the size of the database) or other sources of a priori knowledge regarding the two images being
matched. Additionally, this particular Bayesian formulation casts the standard face recognition task
(essentially an M-ary classification problem for M individuals) into a binary pattern classification
problem with Q7 and Qg. This much simpler problem is then solved using the maximum a posterior:
(MAP) rule — i.e., two images are determined to belong to the same individual if P(Q7|A) >
P(Qg|A), or equivalently, if S(I1, 1) > 1.

2.1 Density Modeling

One difficulty with this approach is that the intensity difference vector is very high-dimensional, with
A € RN and N = O(10*). Therefore we typically lack sufficient independent training observations
to compute reliable 2nd-order statistics for the likelihood densities (i.e., singular covariance matrices
will result). Even if we were able to estimate these statistics, the computational cost of evaluating
the likelihoods is formidable. Furthermore, this computation would be highly inefficient since the
wntrinsic dimensionality or major degrees-of-freedom of A for each class is likely to be significantly
smaller than N.

Recently, an efficient density estimation method was proposed by Moghaddam & Pentland
[7] which divides the vector space RY into two complementary subspaces using an eigenspace
decomposition. This method relies on a Principal Components Analysis (PCA) [4] to form a low-
dimensional estimate of the complete likelihood which can be evaluated using only the first M
principal components, where M << N. This decomposition is illustrated in Figure 1 which shows
an orthogonal decomposition of the vector space RY into two mutually exclusive subspaces: the
principal subspace F' containing the first M principal components and its orthogonal complement
F, which contains the residual of the expansion. The component in the orthogonal subspace F is
the so-called “distance-from-feature-space” (DFFS), a Euclidean distance equivalent to the PCA
residual error. The component of A which lies in the feature space F' is referred to as the “distance-
in-feature-space” (DIFS) and is a Mahalanobis distance for Gaussian densities.

As shown in [7], the complete likelihood estimate can be written as the product of two independent
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Figure 1: (a) Decomposition of RY into the principal subspace F' and its orthogonal complement F' for a Gaussian
density, (b) a typical eigenvalue spectrum and its division into the two orthogonal subspaces.
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where Pp(A[Q) is the true marginal density in /7, Pr(A|Q) is the estimated marginal density in the
orthogonal complement F', y; are the principal components and ¢(A) is the residual (or DFFS).

The optimal value for the weighting parameter p is then found to be simply the average of the F
eigenvalues

p= o 2N (4)

We note that in actual practice, the majority of the F' eigenvalues are unknown but can be estimated,
for example, by fitting a nonlinear function to the available portion of the eigenvalue spectrum and
estimating the average of the eigenvalues beyond the principal subspace.

3 Experiments

To test our recognition strategy we used a collection of images from the FERET face database. This
collection of images consists of hard recognition cases that have proven difficult for all face recognition
algorithms previously tested on the FERET database. The difficulty posed by this dataset appears
to stem from the fact that the images were taken at different times, at different locations, and under
different imaging conditions. The set of images consists of pairs of frontal-views (FA/FB) and are
divided into two subsets: the “gallery” (training set) and the “probes” (testing set). The gallery
images consisted of 74 pairs of images (2 per individual) and the probe set consisted of 38 pairs
of images, corresponding to a subset of the gallery members. The probe and gallery datasets were
captured a week apart and exhibit differences in clothing, hair and lighting (see Figure 2).
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Figure 2: Examples of FERET {frontal-view image pairs used for (a) the Gallery set (training) and (b) the Probe set
(testing).

Figure 3: The face alignment system

Before we can apply our matching technique, we need to perform an affine alignment of these
facial images. For this purpose we have used an automatic face-processing system which extracts
faces from the input image and normalizes for translation, scale as well as slight rotations (both
in-plane and out-of-plane). This system is described in detail in [7] and uses maximum-likelihood
estimation of object location (in this case the position and scale of a face and the location of
individual facial features) to geometrically align faces into standard normalized form as shown in
Figure 3. All the faces in our experiments were geometrically aligned and normalized in this manner
prior to further analysis.

3.1 Eigenface Matching

As a baseline comparison, we first used an eigenface matching technique for recognition [10]. The
normalized images from the gallery and the probe sets were projected onto a 100-dimensional
eigenspace and a nearest-neighbor rule based on a Fuclidean distance measure was used to match
each probe image to a gallery image. We note that this method corresponds to a generalized
template-matching method which uses a Fuclidean norm type of similarity S(I, I2), which is



Figure 4: Standard Eigenfaces.
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Figure 5: (a) Distribution of the two classes in the first 3 principal components (circles for 2, dots for Q) and (b)
schematic representation of the two distributions showing orientation difference between the corresponding principal
eigenvectors.

restricted to the principal component subspace of the data. A few of the lower-order eigenfaces
used for this projection are shown in Figure 4. We note that these eigenfaces represent the principal
components of an entirely different set of images — i.e., none of the individuals in the gallery or
probe sets were used in obtaining these eigenvectors. In other words, neither the gallery nor the
probe sets were part of the “training set.” The rank-1 recognition rate obtained with this method
was found to be 84% (64 correct matches out of 76), and the correct match was always in the top 10
nearest neighbors. Note that this performance is better than or similar to recognition rates obtained
by any algorithm tested on this database, and that it is lower (by about 10%) than the typical
rates that we have obtained with the FERET database [6]. We attribute this lower performance to
the fact that these images were selected to be particularly challenging. In fact, using an eigenface
method to match the first views of the 76 individuals in the gallery to their second views, we obtain
a higher recognition rate of 89% (68 out of 76), suggesting that the gallery images represent a less
challenging data set since these images were taken at the same time and under identical lighting
conditions.

3.2 Bayesian Matching

For our probabilistic algorithm, we first gathered training data by computing the intensity differences
for a training subset of 74 intrapersonal differences (by matching the two views of every individual
in the gallery) and a random subset of 296 extrapersonal differences (by matching images of different
individuals in the gallery), corresponding to the classes Q2 and Qp, respectively.



Figure 6: “Dual” Eigenfaces: (a) Intrapersonal, (b) Extrapersonal

It is interesting to consider how these two classes are distributed, for example, are they linearly
separable or embedded distributions? One simple method of visualizing this is to plot their mutual
principal components — i.e., perform PCA on the combined dataset and project each vector onto
the principal eigenvectors. Such a visualization is shown in Figure 5(a) which is a 3D scatter plot
of the first 3 principal components. This plot shows what appears to be two completely enmeshed
distributions, both having near-zero means and differing primarily in the amount of scatter, with {2
displaying smaller intensity differences as expected. It therefore appears that one can not reliably
distinguish low-amplitude extrapersonal differences (of which there are many) from intrapersonal
ones.

However, direct visual interpretation of Figure 5(a) is very misleading since we are essentially
dealing with low-dimensional (or “flattened”) hyper-ellipsoids which are intersecting near the origin
of a very high-dimensional space. The key distinguishing factor between the two distributions is their
relative orientation. Fortunately, we can easily determine this relative orientation by performing a
separate PCA on each class and computing the dot product of their respective first eigenvectors.
This analysis yields the cosine of the angle between the major axes of the two hyper-ellipsoids,
which was found to be 124°, implying that the orientation of the two hyper-ellipsoids is quite
different. Figure 5(b) is a schematic illustration of the geometry of this configuration, where the
hyper-ellipsoids have been drawn to approximate scale using the corresponding eigenvalues.

3.3 Dual Eigenfaces

We note that the two mutually exclusive classes €25 and Qg correspond to a “dual” set of eigenfaces
as shown in Figure 6. Note that the intrapersonal variations shown in Figure 6-(a) represent subtle
variations due mostly to expression changes (and lighting) whereas the extrapersonal variations in
Figure 6-(b) are more representative of general eigenfaces which code variations such as hair color,
facial hair and glasses. Also note the overall qualitative similarity of the extrapersonal eigenfaces
to the standard eigenfaces in Figure 4. This suggests the basic intuition that intensity differences
of the extrapersonal type span a larger vector space similar to the volume of facespace spanned by
standard eigenfaces, whereas the intrapersonal eigenspace corresponds to a more tightly constrained
subspace. It is the representation of this intrapersonal subspace that is the critical part of formulating
a probabilistic measure of facial similarity. In fact our experiments with a larger set of FERET images
have shown that this intrapersonal eigenspace alone is sufficient for a simplified mazimum likelihood
measure of similarity (see Section 3.4).

Finally, we note that since these classes are not linearly separable, simple linear discriminant



1.00

Q
o 0.90
(@]
(%]
e
e
£
0 0.80
b= \ \ —= MIT Sep 96
S | | <—<MIT Mar 95
£ i N A—2 UMD
o070 - .| | ¥—¥Excalibur
probe: 3816 B Iy Rutgers
gallery: 1196 ‘ ‘
scored probe: 1195 | | *_* ARL EF
0.60 | | |
0 10 20 30 40
Rank

Figure 7: Cumulative recognition rates for frontal FA/FB views for the competing algorithms in the FERET 1996
test. The top curve (labeled “MIT Sep 96”) corresponds to our Bayesian matching technique. Note that second
placed is standard eigenface matching (labeled “MIT Mar 957).

techniques (e.g., using hyperplanes) can not be used with any degree of reliability. The proper
decision surface is inherently nonlinear (quadratic, in fact, under the Gaussian assumption) and is
best defined in terms of the « posteriori probabilities — i.e., by the equality P(£27]A) = P(Qg|A).
Fortunately, the optimal discriminant surface is automatically implemented when invoking a MAP
classification rule.

Having analyzed the geometry of the two distributions, we then computed the likelihood estimates
P(A|Qr) and P(A|Qg) using the PCA-based method outlined in Section 2.1. We selected principal
subspace dimensions of My = 10 and Mg = 30 for Q; and Qg, respectively. These density estimates
were then used with a default setting of equal priors, P(Qr) = P(Qg), to evaluate the a posteriori
intrapersonal probability P(Q7|A) for matching probe images to those in the gallery.

Therefore, for each probe image we computed probe-to-gallery differences and sorted the match-
ing order, this time using the a posteriori probability P(£27]A) as the similarity measure. This
probabilistic ranking yielded an improved rank-1 recognition rate of 89.5%. Furthermore, out of the
608 extrapersonal warps performed in this recognition experiment, only 2% (11) were misclassified
as being intrapersonal — i.e., with P(£2]A) > P(Qg|A).

3.4 The 1996 FERET Competition Results

This approach to recognition has produced a significant improvement over the accuracy we
obtained using a standard eigenface nearest-neighbor matching rule. The probabilistic similarity
measure was used in the September 1996 FERET competition (with subspace dimensionalities of
M; = Mg = 125) and was found to be the top-performing system by a typical margin of 10-
20% over the other competing algorithms [8] (see Figure 7). Figure 8(a) shows the performance
comparison between standard eigenfaces and the Bayesian method from this test. Note the 10%
gain in performance afforded by the new Bayesian similarity measure. Similarly, Figure 8(b) shows
the recognition results for “duplicate” images which were separated in time by up to 6 months
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Figure 8: Cumulative recognition rates for with standard eigenface matching and the newer Bayesian similarity metric:
(a) frontal FA/FB views, (b) frontal duplicate views.

(a much more challenging recognition problem) which shows a 30% improvement in recognition
rate with Bayesian matching. Thus we note that in both cases (FA/FB and duplicates) the new
probabilistic similarity measure has effectively halved the error rate of eigenface matching.

We have recently experimented with a more simplified probabilistic similarity measure which uses
only the nirapersonal eigenfaces with the intensity difference A to formulate a mazimum likelihood
(ML) matching technique using

S" = P(A|Qy) (5)

instead of the mazimum a posteriori (MAP) approach defined by Equation 2. Although this
simplified measure has not yet been officially FERET tested, our own experiments with a database of
size 2000 have shown that using S’ instead of S results in only a minor (2%) deficit in the recognition
rate while cutting the computational cost by a factor of 1/2 (requiring a single eigenspace projection
as opposed to two).

3.5 Eigenface vs. Probabilistic Matching

It 1s interesting to compare and contrast the conceptual and operational difference between
standard eigenface matching based on FEuclidean-norm type of similarity and the new probabilistic
similarity computation. This is shown in Figure 9 which represents the signal flow graphs for the two
methods. With eigenface matching both the probe and gallery images are projected onto a single
“universal” set of eigenfaces, afterwhich their respective coefficients are differenced and normed to
compute a Euclidean distance metric which is the basis of the similarity score. With probabilistic
matching on the other hand, the two registered probe and gallery images are first differenced and
then projected onto two sets of eigenfaces which are used to compute the two likelihoods P(A|€r)
and P(A|Qg), from which the a posterioriprobability P(Qr|A) is computed by application of Bayes
rule as in Eq. 2. Alternatively, the likelihood P(A|Qr) alone can be computed to form the more
simplified similarity in Eq 5. As noted in the previous section use of S’ instead of S reduces the
computational requirments by a factor of two, while only compromising the overall recognition rate
by a few percentage points.
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Figure 9: Operational signal flow diagrams for (a) Eigenface similarity and (b) Probabilistic similarity.

4 Discussion

We have proposed a novel technique for direct visual matching of images for the purposes of
recognition and search in a large face database. Specifically, we have argued in favor of a probabilistic
measure of similarity, in contrast to simpler methods which are based on standard Ls norms
(e.g., template matching [2], “warped” template matching [5]) or subspace-restricted norms (e.g.,
eigenspace matching [10]). The proposed similarity measure is based on a Bayesian analysis of image
differences: we model two mutually exclusive classes of variation between two face images: intra-
personal (variations in appearance of the same individual, due to different expressions or lighting,
for example) and extra-personal (variations in appearance due to different identity). The high-
dimensional probability density functions for each respective class are then obtained from training
data using an eigenspace density estimation technique and subsequently used to compute a similarity
measure based on the a posterior: probability of membership in the intra-personal class, which 1s
used to rank and find the best matches in the database.

The performance advantage of our probabilistic matching technique has been demonstrated using
both a small database (internally tested) as well as a large (800+) database with an independent
double-blind test as part of ARPA’s September 1996 “FERET” competition, in which Bayesian
similarity out-performed all competing algorithms (at least one of which was using an LDA /Fisher



type method). We believe that these results clearly demonstrate the superior performance of
probabilistic matching over eigenface, LDA/Fisher and other existing techniques.

This probabilistic framework is particularly advantageous in that the intra/extra density esti-
mates explicitly characterize the type of appearance variations which are critical in formulating a
meaningful measure of similarity. For example, the deformations corresponding to facial expression
changes (which may have high image-difference norms) are, in fact, irrelevant when the measure of
similarity is to be based on tdentity. The subspace density estimation method used for representing
these classes thus corresponds to a learning method for discovering the principal modes of variation
important to the classification task. Furthermore, by equating similarity with the a posterior:
probability we obtain an optimal non-linear decision rule for matching and recognition. This aspect of
our approach differs significantly from recent methods which use simple linear discriminant analysis
techniques for recognition (e.g., [9, 3]). Our Bayesian (MAP) method can also be viewed as a
generalized nonlinear (quadratic) version of Linear Discriminant Analysis (LDA) [3] or “FisherFace”
techniques [1]. The computational advantage of our approach is that there is no need to compute
and store an eigenspace for each individual in the gallery (as required with LDA). One (or at most
two) eigenspaces are sufficient for probabilistic matching and therefore storage and computational
costs are fixed and do not increase with the size of the database (as with LDA /Fisher methods).

Finally, the results obtained with the simplified ML similarity measure (S’ in Eq. 5) suggest a
computationally equivalent yet superior alternative to standard eigenface matching. In other words,
a likelihood similarity based on the intrapersonal density P(A|Sr) alone is far superior to nearest-
neighbor matching in eigenspace while essentially requiring the same number of projections. For
completeness (and a slightly better performance) however, one should use the a posteriori similarity
S in Eq. 2, at twice the computational cost of standard eigenfaces.
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