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Abstract

We introduce a method for structure discovery in data and use it to learn a normative the-
ory about the behavior of the visual world from coarse image representations. The theory
takes the form of a concise probabilistic automaton—specifically, a continuous-output
hidden Markov model (HMM)—but the induction method applies generally to any con-
ditional probability model. The learning algorithm introduces and exploits an entropic
prior for fast, simultaneous estimation of model structure and parameters. Although
not motivated as such, the prior and its maximuma posteriori(MAP) estimator can be
understood as an exact formulation of minimum description length (MDL) for Bayesian
point estimation; we present an exact solution for the MAP estimator which thus folds
MDL into the M-step of expectation-maximization (EM) algorithms. Consequently
there is no speculative or wasted computation as in search-based MDL approaches. In
contrast to conventionally trained HMMs, entropically trained models are so concise and
highly structured that they are interpretable, and can be automatically converted into a
flowchart and/or a map of characteristic activities (motion patterns) in the field of view.
In this paper we examine the model formed by the system from roughly a half-hour of
video of office activity, then demonstrate its ability to detect unusual behavior.
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Abstract

We introduce a method for structure discovery in data and use it to learn
a normative theory about the behavior of the visual world from coarse image
representations. The theory takes the form of a concise probabilistic automaton—
specifically, a continuous-output hidden Markov model (HMM)—but the induc-
tion method applies generally to any conditional probability model. The learning
algorithm introduces and exploits an entropic prior for fast, simultaneous estima-
tion of model structure and parameters. Although not motivated as such, the prior
and its maximuma posteriori (MAP) estimator can be understood as an exact
formulation of minimum description length (MDL) for Bayesian point estimation;
we present an exact solution for the MAP estimator which thus folds MDL into
the M-step of expectation-maximization (EM) algorithms. Consequently there
is no speculative or wasted computation as in search-based MDL approaches.
In contrast to conventionally trained HMMs, entropically trained models are so
concise and highly structured that they are interpretable, and can be automatically
converted into a flowchart and/or a map of characteristic activities (motion pat-
terns) in the field of view. In this paper we examine the model formed by the
system from roughly a half-hour of video of office activity, then demonstrate its
ability to detect unusual behavior.

1 Introduction

How visual entities behave is often more important than how they appear; from flies
to humans there are many examples of natural vision systems computing the former
without computing much of the latter. Behavioral descriptions support many key
inferences; in some cases they provide a better basis for recognition than appearance.
Here we consider learning a model of human behavior from medium- to long-term
ambient video. We shall take a pattern-discovery approach; by behavior, we mean
nothing more than spatio-temporal patterns in the motion, pose, and position of the
observed person. Desiderata for such a model include: It should partition the visual
data stream into coherent activities; it should allow the detection of anomalous behav-
iors; and it should be computationally lightweight. We find we can meet these criteria
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with a new algorithm that induces low-entropy probabilistic automata from time-series
of coarse image representations. These models are concise and interpretable, which
strongly contrasts with probabilistic models typically obtained from polynomial-time
algorithms (e.g., expectation-maximization),

The key to this result is a new M-step estimator for expectation-maximization (EM)
algorithms which effects simultaneous structure and parameter learning in conditional
probability models. Applied to hidden Markov models (HMM), the algorithm finds a
concise representation of the hidden structure of a signal by trimming uninformative
edges from the state transition graph and/or removing entire states. The basis of the
new M-step is an entropic prior on parameter values and a solution for the maximuma
posteriori(MAP) estimator. As we show below, the MAP estimate minimizes both the
entropy of the model and its cross-entropy with the data’s sufficient statistics, whereas
maximum likelihood (ML) methods only minimize the latter. Recursive estimation
tends to extinguish uninformative parameters, which can then be trimmed from the
model without loss of posterior probability. By recursively simplifying a randomly
initialized model we can induce the structure of relations between hidden variables.
We call this whole processentropic estimation.

Entropic estimation sparsifies the conditional probability table, yielding a concise
and computationally lightweight model. In practice, surviving states tend to be highly
correlated with meaningful partitions of the data, while surviving transitions provide a
nearly minimal perplexity model of the signal dynamics.

2 Related work

Vision: There is wide interest in learning normative models of activity from vision, but
the literature on learning over time spans greater than a few seconds is sparse. Brand
has compiled a normative model of animate/inanimate object interactions into a finite-
state machine, then learned the visual correlates of this model via couplings of HMMs,
producing parses of video on the scale of minutes [2]. Hogg et al. have shown how to
learn characteristic motion maps for pedestrian plazas, which are themselves represen-
tations of non-parametric distributions over collections of pedestrian trajectories on the
scale of hours [4, 6].

HMMs: The literature of structure-learning in HMMs is, to date, based entirely on
generate-and-test algorithms. These algorithms work by selecting a single state to be
merged [11] or split [12, 5], then retraining the model to see if any advantage has been
gained. Though these efforts use a variety of heuristic techniques and priors (including
MDL) to avoid failures, much of the computation is squandered and reported run-times
range from hours to days. Here we develop an EM structure-learning algorithm that
converges in seconds.

MDL: The entropic prior is simply related to the lower bound of the coding length
of the model (see eqn. 2), and thus entropic estimation is closely connected to mini-
mum description length methods and stochastic complexity (SC) [14, 8, 9]. Of recent
attempts to find or approximate MDL estimators, two stand out: Recently, Yamanishi
developed a general Monte Carlo approximation to computing the SC—one of the
first that is not heavily biased by the user’s choice of encoding scheme [16]. Vovk
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has derived a computable MDL estimator for single-parameter probability models over
discrete sample spaces [13]. Here we present an exact estimator for multi-parameter
models for continuous sample spaces. Our formulation provides a unified Bayesian
framework for two issues that are often treated separately in the MDL literature: 1)
estimating the number of parameters, and 2) estimating their values.

3 An entropic prior

In entropic estimation we want to move parameter values as far as possible from their
initial random values. Parameters at chance add virtually no information to the model,
and are therefore wasted degrees of freedom. In contrast, parameters near the extrema
f0; 1g are informative because they impose strong constraints on the class of signals
accepted by the model. In Bayesian terms, we desire a prior that asserts that parameters
that do not reduce uncertainty are improbable. We can capture this intuition in a
surprisingly simple form:

Pe(�i) / ��ii (1)

In a complete model ofN conditional probabilities� = f�1; : : : ; �Ng we write
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#
= e�H(�) (2)

whence we can see that the prior measures how free the model is from ambiguity.
The bolded convex curve in figure 1 shows how this prior is averse to chance values.
CombiningPe(�) with the multinomial yields the biased entropic prior:
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where!i is a bias for event typei.
This prior is obviously conjugate to the multinomial, so we may also consider!

to be evidence, in which case the posterior takes the same form as eqn. 3. As figure 1
shows, with scant evidence this distribution skews to stronger odds, but with increasing
evidence it converges to “fair” odds for!, and is thus consistent. Note that this is the
opposite behavior that one obtains from a Dirichlet prior, which skews to weaker odds
when data is scarce.

3.1 MAP estimator

To obtain MAP estimates we set the derivative of log-likelihood to zero, using Lagrange
multipliers to ensure
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Entropic distributions for 2:1 ratios, N = total # data points

entropic distributions over�1
Figure 1: Entropic distributions for binomial parameter� = f�1; �2g s.t.�1+�2 = 1,
where evidence!=f!1; !2g has been generated in the ratio!1=2!2 andN=!1+!2
is the total observed evidence for each distribution (plotted curve). The bolded convex
curveexp(�H(�)) shows how extremal values are preferred in the absence of evidence
(N=0). Dotted verticals show the MAP estimates, extremal atN=0 but converging to
the ML estimate (dashed line at�1=2=3) asN!1.
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We obtain�i by working backward from the LambertW function, a multivalued
inverse function satisfyingW (x)eW (x)=x. Taking logarithms and settingy = log x,

0 = �W (x)� logW (x) + logx (6)

= �W (ey)� logW (ey) + y

=
�1

1=W (ey)
+ log 1=W (ey) + log z + y � log z

=
�z

z=W (ey)
+ log z=W (ey) + y � log z (7)

Setting�i=z=W (ey), y=1+�+log z, andz=�!i, eqn. 7 simplifies to eqn. 5, im-
plying that

�̂i =
�!i

W (�!ie1+�)
(8)
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Equations 5 and 8 yield a fast iterative procedure for the entropic MAP estimate:
Calculate� given�, normalize�, calculate� given�, repeat. This typically converges
in 2-4 iterations. Solutions lie in theW�1 branch of Lambert’s function. (In practice,
some additional algebra is needed to handle intermediate values for whichW (�e�x)
has no real branch or where machine precision is exhausted.)

3.2 Interpretation

Entropy: Some manipulation of the negative log-posterior (which is minimized) al-
lows us to understand the MAP estimate in terms of entropy:

� log
Y
i

��i+!i

i = �
X
i
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WhenH(!) is fixed, the MAP estimate minimizes the sum of the parameter entropy
H(�) and the cross-entropyD(!jj�) between the parameters�and the data’s sufficient
statistics!. Equivalently, it minimizes coding length. As we will see inx4.1, we can
also simplify the structure of the model, such that the data’s sufficient statistics change
andH(!) declines as well.

An extended discussion of the meaning of the multinomial MAP estimator, its use
in other probabilistic models, and its relation to problems in graph theory can be found
in [3]. We have also derived minimum-entropy MAP estimators for covariance, mean,
and weight parameters; a forthcoming paper describes applications to mixtures-of-
Gaussians, radial basis functions, neural networks, and other popular models.

4 Use in entropic HMM training

In entropic estimation of HMM transition probabilities, we follow the conventional
E-step, calculating the probability mass for each transition to be used as evidence!:

j;i =

T�1X
t

�j(t)Pijj p(yt+1jsi)�i(t+ 1) (11)

where�; � are obtained from forward-backward analysis and follow the notation of
Rabiner [7].Pijj is the current estimate of the probability that stateiwill follow statej.

For the M-step, we calculate new estimatesfP̂ijjgi=� by applying the MAP estimator
in x3.1 to each!=fj;igi. That is,! is a vector of the evidence for each kind of
transition out of a single state; from this evidence the MAP estimator calculates prob-
abilities�. (In Baum-Welch reestimation, the maximum-likelihood estimator simply
setsP̂ijj = j;i=

P
i j;i.)
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In recursive estimation (e.g., EM), the entropic estimator drives weakly supported
parameters toward zero, concentrating evidence on surviving parameters until their
estimates converge to near the ML estimate, at which point the algorithm terminates.

4.1 Model trimming

In [3] we show that HMM parameters remaining near zero can also be deleted with no
loss of probability mass iff

Pijj � exp

"
�

T�1X
t=1

j(t)

#
(12)

wherej(t) is the probability of statej at timet. This is derived by balancing any loss
in the likelihood with a gain in the prior. More generally, trimming is licensed forany
probabilistic model with an entropic prior on�i when

�i
@

@�i
H(�) � �

@

@�i
logP (Dj�) (13)

Trimming bumps the model out of a local probability maximum and allows further
training in a lower-dimensional and possibly smoother parameter subspace. A similar
test licenses state deletion. There is an interesting question as to how much state
trimming is always desirable, since overfitting is generally due to excess parameters,
not states. Perhaps this is why we find that entropic training naturally reserves some
excess states for representing common subpaths in the transition graph; this is a form of
compression that reduces the coding length and computational expense of the model.
We call such statesgating states as opposed to conventionaldata-modelingstates
because their output probabilities are near-zero almost everwhere and typically do not
need to be computed. In the example developed below, state number 5 is a particularly
good example of a gating state.

We have observed that entropic training has a number of interesting properties:
(1) Smaller transition probabilities are driven toward zero, at which point the entire
transition can be deleted from the model, reducing compute time and ambiguity. (2)
Entropically trained HMMs tend to generalize better to held out test data than conven-
tionally trained HMMs and also classify more accurately. (3) State output distributions
tend to have slightly tighter covariances and states are more clearly identified with
regions of the signal. (4) Entropically trained HMMs tend to attain the same low per-
plexity regardless of initial conditions, while the perplexity of conventionally trained
HMMs is a function of their initial state count. Properties (1) and (2) can be proven;
properties (3) and (4) have merely been observed in trials with datasets drawn from
vision, genetics, handwriting, and speech, and will be demonstrated in the second half
of this paper.

5 Learning a model of office activity

HMMs are the probabilistic model of choice for modeling signals from humans, princi-
pally because they are robust to variations in the timing and sequencing of signal struc-
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tures, and they make optimal use of contextual information in time. They are essentially
nondeterministic finite-state automata with probabilistic outputs. Although there is a
strong conjecture that human signals such as language have recursive (context-free or
-sensitive) structure, it is also widely admitted that the recursion depth is quite finite
and therefore finite-state machines are probably adequate models for many tasks.

Entropically estimation can remove excess parameters and therefore show some
resistance to overfitting and improved generalization; this we will demonstrate in fig-
ure 8. However, because of their facility for discovering concise structural models, we
are more interested in using entropically trained HMMs to learn the structure of longer
term behavior in visual domains such as traffic intersections, factory floors, animal
colonies, etc. Office activity is a particularly good test because of the challenging
range of time spans: Fast events such as answering the phone may take a few seconds
while slow activities such as writing take hours. Here we demonstrate that much of
this structure can be discovered via entropic estimation from lightweight, coarse visual
tracking data.

5.1 Image representation

Continuous-output HMMs require a reasonably short observation vector which repre-
sents the content of each image. Different image representations will lead to models
that emphasize different coherencies in the data. We experimented with two kinds of
observation vectors: a “stripe” representation and a “blob” representation. Stripe data
consists of mean location and extent of foreground pixels in a vertical or horizontal
stripe across the image. Blob data consists of ellipse parameters fitting the single largest
connected set of foreground pixels in the image.

In both cases foreground pixels are identified with reference to an acquired sta-
tistical model of the background texture and camera noise. The foreground consists
of pixels that change substantially, ostensibly due to motion. These are modeled
via multivariate gaussian distributions over color and location, and are re-estimated
in each frame. Pixels are sorted into foreground or background by likelihood ratio;
morphological dilation connects the foreground pixels using a seed from the previous
frame [15]. For stripe data 5-10 stripes were used in each direction; the observation
vector consisted of [mean, extent,�mean,�extent] for each stripe. For blob data a
single bivariate gaussian (ellipse) was fitted to the foreground pixels; the observation
vector consisted of [meanx, meany, �meanx, �meany, mass,�mass, elongation,
eccentricity]. One of the goals of training is to tune model states to interesting regions
in this signal; for the rest of the paper we will refer to this tuning interchangeably as
“output distribution” and “receptive field.”

Note that we are making some important simplifications of the task: We are inter-
ested in the behavior of a single person in a relatively stable environment, hence our
choice of office work. Highly dynamic environments will “break” the vision front end.
However, we did contend with variation in the form of moving shadows, natural light
from the window, uncontrolled light from nearby cubicles, moved objects and furniture
in the room, and pedestrians visible in the hallway. The image processing is robust to
these variations in lighting insofar as they fit the learned background noise model.
Similarly, motion in the background does not register if it is not visually connected to
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the person being tracked; a second person entering the room is ignored unless there is
a contact or occlusion with the person being tracked. Arguably, such visual events are
highly informative and their inclusion in the feature vector is a good thing.

5.2 Training

Approximately 30 minutes of data were taken at 5Hz from an SGI IndyCam. Data
was collected automatically and at random over several days by a program that started
recording whenever someone entered the room after it had been empty 5+ minutes.
Backgrounds were re-learned during these absences to accommodate changes in light-
ing and room configuration. After automatic deletion of blank frames (when the subject
exits the room and field of view), roughly 21 minutes of training data remained.

Three sequences ranging from 1000 to 1900 frames in length were used for entropic
training of 12, 16, 20, 25, and 30-state HMMs. States were initialized to tile the image
with their receptive fields. Transition probablities were initialized to prefer motion
to adjoining tiles; first-state probabilities were set to zero for non-edge states. It was
found that variation in the initial receptive fields or state counts made little difference
in the gross structure or performance of the final model. Training took six seconds on
an SGI R10000 running Matlab.

As might be expected, models built on blob data have receptive fields tuned primar-
ily to location, motion, and gross shape; models built on stripe data are more sensitive
to body articulations (e.g., having one’s arm out to write on a whiteboard or pick up
a phone), and less attuned to gross shape and attitude. In both cases the results are
similar; we will concentrate on the blob data since the results lend themselves to clearer
visualizations.

5.3 Results

Entropic training yielded a substantially sparsified transition matrix (figure 2) which is
easily converted into a human-readable representation of characteristic office activity.
Figure 3 shows the corresponding state machine, or flowchart. The graph is automati-
cally generated from the transition matrix; grouping of states into activities was done by
adaptive clustering on a proximity matrix which combined Mahalonobis distance and
transition probability between states. (Clustering is purely for improving the layout and
readability of the graph, and has no algorithmic value—even without the clustering the
graph is intelligible.) Labels were added by the author after training and clustering.

Some states deserve special explanation: State 5 is a gating state that does not
model data but simplifies paths between other states; state 7 responds mainly to elon-
gation and represents getting up and sitting down; state 10 represents staring at the
screen; state 9 represents looking down to and up from the keyboard. Note that most
of the transitions were trimmed, and many of the transitions are reversible, since many
office activities have symmetric transitions, e.g., going to and from the whiteboard.
Figure 4 shows how the states map onto regions in the field of view. Figure 5 show
some frames from a non-training sequence to which specific states are strongly tuned.
However, since several states respond mainly to characteristic velocities rather than to
pose or position, these images are not entirely representative.
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final modelinitialization

Figure 2: Transition matrix before and after entropic training. The top row
indicates prior probabilities of each state; each subsequent row indicates the transition
probabilities out of a state. Color key:� = 0; � ! 1.
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Figure 3: An activity graph generated by entropic training.

Even though 12 states is probably suboptimal, one state was reserved for gating
rather than data-modeling. Entropic training with larger initial state counts resulted in
even sparser models with similar qualitative structure (figure 6). Conventional training,
of course, does not produce sparse or interpretable models (see figure 7).
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Figure 4: Locative receptive fields for the states in figure 3, projected onto a typical
image. Thetimess and ellipses show per-state means and covariances for the centroid
of the visual blob. (Ellipsesdo notshow blob extent, shape, or velocity). Thickness
of timess indicate dwell probabilities; thickness of arc-lines indicate transition
probabilities.

5.4 Anomaly detection

To study the significance of the entropically trained parameters, we compared the
ability of entropically trained and conventionally trained HMMs to detect anomalous
data—in this domain, unusual behavior. Four data sets were used: (a) training data;
(b) held out test data; (c) reversed held out test data; (d) data taken after the subject
had consumed 4 cups of espresso. These data sets differ principally in the ordering,
rhythm, and timing of actions, and therefore emphasize the discriminative power of the
transition parameters. (The coffee sequence was originally part of the held-out data
but it was found to have an unusually low probability; later, consulting the recording
logs, we found out why.) There were three test conditions: (1) entropically estimated
parameters; (2) conventionally estimated parameters; (3) transition parameters flat-
tened to chance. Condition (3) tests whether the transitions or output parameters are
responsible for the model’s selectivity. Figure 8 shows that the entropic HMM has
a smaller train-test divergence (e.g., better generalization) and was most successful
in distinguishing abnormal behavior (backwards and jittery). The performance of the
flattened model shows that little of that selectivity is due just to the output parameters.

This addresses a common criticism of continuous-output HMMs—that model se-
lectivity is determined mainly by model structure, secondly by output distributions, and
only lastly by transition probabilities, because they have the smallest dynamic range
[1]. (Historically some users have found structure so selective that parameter values
can be ignored, e.g., [10]). Entropic estimation makes transition parameters first-
class citizens by expanding their dynamic range—to infinity, in fact, if one considers
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1: entering the room 6: sitting

2: swiveling left 11: swiveling right

12: picking up the phone 7: getting up

3: at the whiteboard 8: writing

10: at the computer 9: looking for a key

Figure 5: Sample frames assigned high state-specific probabilities by the model.

trimmed parameters. Another advantage of blurring the distinction between parameter
values and model structure is that as the parameter matrix sparsifies, credit assignment
in learning becomes exponentially less diffuse and more effective [1].

6 Conclusion

We have shown how a computer can form concise theories of behavior from gigabyte-
scale video streams using very coarse representations of change in the image. Given a
half-hour of ambient video of office activity, the system generates a probabilistic model
of normative activity, a readable flow-chart of work activities, and a map of significant
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20 states16 states

Figure 6: Entropic training with more states results in increasingly sparse models with
similar structure.

conventionally trained

1

4

5

8

2

3

6

7

9

10

11 12

Figure 7: Conventional training fails to discover a structured model, though hints of
the the entropic model are faintly visible. The equivalent flowchart is shown at right.
Compare with figures 2 and 3

events and processes in the field of view. In contrast to what one gets from conventional
estimation methods, the learned model is so concise and sparse that it is interpretable
as a theory of the signal.

The key to this result is an algorithm that exploits an entropic prior to do simul-
taneous structure and parameter estimation for conditional probability models. The
expectation-maximizationalgorithm simultaneously minimizes the entropy of the model
and its cross-entropy with the data; can escape local probability maxima through model
simplifications; is monotonic; and converges in seconds. As a result, the entire system
can learn or monitor the behavior of its environment using less than one-fourth of a
modern workstation’s compute power.
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Figure 8: Model log-likelihoods normalized to sequence length. The entropic model is
by far the most discriminative. Likelihoods are plotted relative to the test set because
that is thede factostandard of normal activity.
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