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Abstract

In this paper, we describe our experience in the im-
plementation of MidART { Middleware and network
Architecture for distributed Real-Time systems. Our
MidART project addresses the problem of middleware
design to support high speed network based distributed
real-time applications. The uniqueness of MidART
lies in the simplicity of services provided and the ex-
ibility of data reection models, compared with more
general purpose but much more complicated middle-
ware such as CORBA implementations. This sim-
plicity leads to ease of understanding and ease of use
by application builders, while its exiblity su�ciently
serves the needs of the class of real-time applications
MidART is designed for.

1 Introduction
It is becoming ever more important for both in-

dustry and academia to design distributed real-time
systems using open, standard, commercially available
computers and networks. This is largely due to (1)
network and processor technology advances, (2) cost
considerations, and (3) the desire for easy system in-
tegration and evolution. Currently, there is no net-
work middleware for open standard networks and op-
erating systems for real-time applications. Existing
systems are largely proprietary. On the other hand,
socket interface is cumbersome and di�cult to use for
application builders. Moreover, real-time applications
need end-to-end quality of service provision. To facili-
tate the construction of distributed real-time applica-
tions on open o�-the-shelf systems, we must �rst pro-
vide easy-to-use real-time programming models and
services to the real-time application designers.

In this paper, we describe our experience in the im-
plementation of MidART { Middleware and network
Architecture for distributed Real-Time systems [5].
Our MidART project addresses the problem of mid-
dleware design to support high speed network based
distributed real-time applications. The class of appli-
cations we are dealing with are those in which humans
need to interact (e.g., control and monitoring) with
instruments and devices in a networked environment
through computer-based interfaces. Examples of such
applications include distributed industrial plant con-
trol systems, multi-machine surgical simulation sys-
tems, virtual labs, and large telescope control systems.
The end-to-end delay requirements for these applica-
tions range from one or two milliseconds to hundreds
of milliseconds.

Our initial proof of concept prototype was con-
structed on PC running QNX real-time operating sys-
tem over ATM networks as reported in [5]. Currently
the project has evolved to implement the entire mid-
dleware in C++ on Windows NT as well as Unix plat-
forms with Fast Ethernet. In this paper, we report our
experience and insights gained, as well as performance
�ndings of this implementation.

1.1 Overview of MidART

The MidART middleware provides a set of real-
time application speci�c but network transparent pro-
gramming abstractions that support individual ap-
plication data monitoring and control requirements.
The focus of our middleware is to support the end-to-
end application real-time data transfer requirements
with a set of easy-to-use communication service pro-
gramming interfaces. The two key services provided
by MidART are Real-Time Channel-Based Reective
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Figure 1: RT-CRM High Level Architecture

Memory (RT-CRM) [7] and Selective Channels [5].
Selective Channels allow applications to dynamically
choose the remote node(s) which data is to be viewed
from and sent to at run time. This is accomplished via
a set of channel start and stop protocols, and channel
bandwidth resource overbooking schemes.

Figure 1 depicts the high level architecture of RT-
CRM. RT-CRM is an association between a writer's
memory and a reader's memory on two di�erent nodes
in a network with a set of protocols for memory chan-
nel establishment and data update transfer. A writer
has a memory area where it stores its current data,
while a reader establishes a corresponding memory
area on its own local node to receive the data reected
from the writer. Data reection is accomplished by a
data push agent thread, a DPA-thread, residing on
the writer's node and sharing the writer's memory
area. This agent thread represents the reader's QoS
and data reection requirements. A virtual channel is
established between the agent thread and the reader's
memory area, through which the writer's data is ac-
tively transmitted and written into the reader's local
memory area. In this architecture, we support the
following features:

� A reader memory area may be connected to mul-
tiple remote writer memory areas simultaneously.
However, at any moment only one writer is per-
mitted to write into the reader's memory area via
the associated agent thread. The selection of the
particular writer at any time is done via Selective
Channel protocols.

� A writer memory area may be connected to
many remote reader memory areas simultane-
ously. There can be many data push agent
threads representing many readers associated
with the same writer memory area.

� RT-CRM supports both synchronous and asyn-
chronous data reection models.

For more detail of Selective Channels and RT-
CRM, readers are refered to [5] and [7].
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The uniqueness of MidART lies in the simplic-
ity of services provided and the exibility of data
reection models, compared with more general pur-
pose but much more complicated middleware such as
CORBA implementations [3] [6]. This simplicity leads
to ease of understanding and ease of use by applica-
tion builders, while its exiblity su�ciently serves the
needs of the class of real-time applications MidART is
designed for.

2 MidART Architecture
MidART in essense is a simple distributed comput-

ing environment designed to support the development
of real-time applications on open o�-the-shelf systems.
To be e�ective and capable of supporting a wide va-
riety of applications with di�erent requirements, Mi-
dART is organized in layers and it is highly modu-
larized and object oriented. The layered architecture
reduces the complexity of the design and allows a clean
separation of the application from the middleware and
its services. Moreover, a modular design increases the
exibility of the middleware by allowing the addition,
removal and modi�cation of services without changes
to other modules. In addition, it facilitates the im-
plementation of di�erent policies and mechanisms for
supporting a particular service.

Figure 2 shows the MidART architecture from the
perspective of one of the nodes in distributed envi-
ronment. From this point of view, the modules and
services that make up MidART reside in one of follow-
ing three layers: 1) management, 2) application and 3)
middleware. The following subsections describe each
layer and its components.

2.1 Management Layer

The management layer oversees the non-real-time
interactions between application programs executing
in di�erent nodes of the distributed environment. The
only module residing in this layer is called the Global



Manager (GM). This module has two components: the
Global Server (GS) and the Global Connection Admis-
sion Control (GCAC). A description of each of the
components of the Global Manager is provided below:

� The Global Server provides MidART's applica-
tions with a set of administrative services that
facilitates the registration, location, creation, de-
struction and attachment of Reective Memory
Areas (ReMA). Locating these services in a reli-
able server allows upgrades and modi�cations to
application programs to be done in a plug and
play fashion. The Global Server is the process
responsible for maintaining the global de�nition
table. The table is a network wide database that
allows Local Server to know the characteristics of
all the reective memory areas currently active 1.
The characteristics of a ReMA include a unique
name/identi�er, the size of the memory area, its
QoS parameters, its writer location, and a list of
the reader threads attached to it. This informa-
tion is needed by the Global Admission Control
and the Local Servers in order to set up additional
areas, remove existing ones and attach new read-
ers.

The database also contains all of the registered
services. Before an application can create a re-
ective memory area, the service provided by a
reective memory area must be registered. Upon
creation of the memory area, the Global Server
will assign a unique identi�er to that particular
memory area.

� The Global Connection Admission Control is
called by the Global Server when a reader ap-
plication wants to attach to a ReMA. This mod-
ule works in unison with the Local Connection
Admission Control (LCAC) modules of both the
writer's and reader's nodes to determine whether
the system can support the association between
the reader and the ReMA. The GCAC is responsi-
ble for performing a schedulability analysis of the
data reection QoS requirements on the network
before admitting an association. A description of
the LCAC module and its functionality can be
found in section 2.3.

Although the Global Manager is conceptually one
entity, in actual implementation, we have two
choices. One is to construct the GM as a cen-
tralized unit residing on one server node at a

1Active means that the ReMA 1) has been created and 2)
has not been removed. An active ReMA may have no read-
ers/writers at certain times.

time, possibly having a replicated GM on a second
server node for reliability. A second choice is to
implement a distributed GM where each node in
a network participate in the GCAC process and
keeps a copy of the global de�nition table. For
this second implmentation choice, a distributed
ReMA registration, creation, destruction and at-
tachment protocol is necessary. We have imple-
mented the �rst choice in the current version of
MidART and are considering to move to a dis-
tributed GM implementation in the next step.

2.2 Application Layer

The only component of MidART located at applica-
tion layer is the API (Application Programming Inter-
face) library. An application process uses the library
calls to invoke MidART's services.

The MidART library is the backbone of our design,
since an e�cient, exible, intuitive and straightfor-
ward API is capable of supporting di�erent applica-
tions. In addition such an interface, not only facili-
tates the construction of distributed application pro-
grams, but in this case, it also relieves application pro-
grammers from cumbersome and error-prone details
of handling operating system and network interfaces.
The list of the MidART API calls can be found in the
Appendix. Section 4 contains a simpli�ed example on
how to use them to build an industrial application.

2.3 Middleware Layer

The rest of MidART modules are located at this
layer. All of these modules resides within the Lo-
cal Server Process (LSP), which together support the
Real-Time Channel-based Reective Memory and the
Selective Channels services. A description of each of
the modules in the Local Server Process is given be-
low:

� The Local Sever (LS) module is responsible for
handling request and communicatingwith the ap-
plication programs, with the Global Manager and
Local Servers located in other nodes of the net-
work. The Local Server is also responsible for
maintaining the local memory area table. This ta-
ble holds the description and access information
to the local reective memory objects.

An e�cient mechanism for accessing the local
memory area table is needed, since all modules
within the Local Server Process, as well as the
MidART library calls require some of the infor-
mation that resides in the table. Section 3.1 de-
scribes the structure and implementation details
of this module.



� The Real-Time Channel based Reective
Memory module is responsible for the cre-
ation and management of the local Reective
Memory Area(ReMA) objects. As described
previously, a ReMA is an association between a
writer's memory and a reader's memory on two
di�erent nodes in a network. The data stored
in the writer's side is transferred/reected to the
reader's area through a virtual channel. Thus,
this module is responsible for the creation of the
virtual channel and the pair of objects involved
in the transferring of data through the channel.

The objects responsible for the reection of data
are the Data Push Agent (DPA) and Receiver ob-
jects. A DPA object resides on the writer's node
and shares the writer's memory area. The DPA
object represents the reader's QoS and data re-
ection requirements. Similarly, the Receiver ob-
ject handles incoming datagrams and it is respon-
sible for updating and maintaining the contents
of the ReMA and its bu�ers at the reader's node.

The RT-CRM module is capable of supporting
several con�gurations or combination of con�gu-
rations for the association between a DPA and a
Receiver. Figure 3 shows three possible con�gu-
rations which are described below:

{ DPA-to-Receiver: In this con�guration,
see �gure 3 (a), each ReMA at the writer's
node has a DPA thread which transmit the
data over the virtual channel. Similiary, the
corresponding reective memory area at the
reader's node has a Receiver thread working
in its behalf.

{ Single DPA - Multiple Receivers:

Here, a group of ReMA at the writer's node
are associated with a single DPA thread. As
shown in �gure 3 (b), the DPA is respon-
sible for sending data to multiple receivers
threads working on behalf of each ReMA at
the reader's node.

{ Multiple DPA - Single Receiver: Fig-
ure 3 (c) illustrates this con�guration, where
a single receiver at the reader's node is re-
sponsible for handling incoming data from
di�erent DPA threads.

Each con�guration has its unique implications on
(1) the number of context switching and (2) the
amount of demultiplexing overhead of messages
the middleware will impose. The current im-
plementation only supports the DPA-to-Receiver
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ation

con�guration, but we are currently investigating
the bene�ts of using other con�gurations.

� The Selective Channels (SC) module sets
up the necessary connections and mechanisms
needed to support the channel-switching algo-
rithm. In particular, a multicast control channel
must exist to run the Selective Channel prototcol
as described in [5].

� The Scheduler module is responsible for the
scheduling of the active DPA and receiver objects.
Currently, we are in the process of evaluating the
bene�ts of using rate-based and/or �xed priority
rate monotonic algorithms.

� The Fault Tolerance module provides two op-
tional services. First, it runs a Heart Beat hand
shaking protocol to determine which nodes in
the network are active. The other service is a
thin layer of messaging protocol/transport proto-
col on top RT-CRM that improves the reliability
of UDP, but is not as expensive as TCP. It main-
tains sequence numbers in each datagram, bu�ers
messages at the sender, and noti�es the applica-
tion of missing messages.

� The Local Connection Admission Control
module performs local schedulability analysis and
collaborates with the Global Connection Admis-
sion Control module to determine whether to ad-
mit an association to a ReMA. The LCAC per-
forms two types of analysis. On a writer's node,
the LCAC checks the schedulability of the DPA
thread on its CPU based on the QoS of the reader.
Similarly, on a reader's node, the LCAC deter-
mines whether the data reection QoS requested
by the reader can be scheduled on its CPU. Of
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course, a node can be simultaneously a writer and
a reader.

The LCAC module also interacts with the Sched-
uler when an association between a writer's
ReMA and a reader's area is added or removed.
The type of interaction depends on the policy be-
ing used by the Scheduler. For example in a pri-
ority scheme, a new association may demand an
adjustment on the priorities of the DPA or re-
ceiver threads.

3 Implementation Details
Under current implementation of MidART, an ap-

plication can use all of the API function calls and ser-
vices provided by the Real-Time Channel based Re-
ective Memory and Selective Channels abstractions.
To make use of these services an application process
only needs to compile its program with the MidART
library and its corresponding header �le. In addition,
the Local Server Process needs to be run on each node
in the network and the Global Server Process only runs
in one node. We are currently working on the imple-
mentation and evaluation of the algorithms for admis-
sion control, both local and global, and scheduling of
threads.

The following subsection describes the implemen-
tation details of the Local Server Process, the Global
Server, some key objects and the communication
mechanism used among the di�erent components of
the MidART library.

3.1 Local Server

The Local Server is implemented as a multi-
threaded process. Figure 4 illustrates a high level ar-
chitecture of the Local Server.

The main thread of control creates a shared mem-
ory area that serves as a container for the local memory
area table. The reason for selecting a shared memory

area, as opposed to an object, is twofold. First, the
container needs to be locked into memory, in order to
avoid page faults while the write and read library calls
execute or when DPA/receiver threads access a reec-
tive memory area. The second factor relates to the
required visibility of the local memory table area. For
an e�cient implementation, the information contained
in the table needs to be visible to all Local Server's
threads and application processes in a node. Since NT
provides the simple mechanism for locating, attaching
to and locking a shared memory area, we selected it
as the container of the table. It is important to note
that the implementation provides the necessary mech-
anisms to guarantee the consistency and integrity of
the local memory table via locking protocols.

Other responsibilities of the main thread include
the creation of the: 1) Scheduler Object and Local
Admission Control Server, 2) thread of control for Se-
lective Channel Server, and 3) threads responsible for
handling the communication with the Global Server,
the local application programs (via the API calls) and
LS located in other nodes. A brief description of each
of these threads follows:

The Selective Channel Server is implemented as se-
quential UDP server. It supports the channel switch-
ing protocol describe in [5]. This protocol enables an
application to start or stop the DPA thread associated
with a particular ReMA.

The thread handling the communication with the
Global Server implements a TCP client. Once the
connection is established, it remains open as long as
the LS is active.

The thread communicating with other Local
Servers runs as a sequential server. This server dy-
namically creates threads that reside within the ad-
dress space of the local server as applications set up
reective memory areas. These threads are responsi-
ble for running the DPA and receiver objects.

3.1.1 Reective Memory Area

The reective memory areas are implemented as ob-
jects. The bu�ers that make up the ReMA are created
as shared memory areas. This allows a writer's appli-
cation process direct access to the same area used by
the DPA object. Similarly, a reader application shares
the bu�ers with the receiver object.

In order to locate these objects rapidly during a
read or a write library call, all application processes
in a particular node have access to the local memory
area table. For each ReMA object, the table contains
the necessary information to access the ReMA bu�ers



directly. In addition, all of the bu�ers belonging to a
ReMA are locked in memory.

3.2 Global Server

The Global Server is also a multi-threaded pro-
cess. The server is implemented as a concurrent TCP
server. All of its client's requests require either the
creation/update of an entry in the global de�nition
table, information about a particular entry or the de-
struction of an entry.

3.3 Communication Mechanism

In order to understand the interactions between the
key components of MidART, we can trace the invoca-
tion of an API call using Figure 4 as an aid. The
�gure illustrates the communication mechanism used
between an application process and the local server
process.

When an application makes an API call to create
a Reective Memory Area, the MidART library sends
the request to the main thread of the local server.
The communication between the library and the local
server is achieved by passing a message. Our imple-
mentation uses the Windows NT mailslot API to pass
messages between the Local Server and the MidART
library. Once the local server validates the request and
obtains a memory identi�er from the global server, a
reective memory area is created with its associated
DPA thread. An entry in the local memory area table,
indexed by the identi�er, is created.

The local server returns a message, via a mailslot,
containing the identi�er and the result of the operation
to the calling thread. Since an application process can
be multi-threaded, each thread is required to startup
the MidART library before using any of the API. This
is necessary because the middleware needs to create
the return mailbox for each thread.

Not all of the MidARTAPI calls communicate with
the Local Server using the mailslot API. For the write
and read API calls the communication between the
MidART API and the objects belonging to the Lo-
cal Server is done using shared memory. For these
calls, our implementation allows the library, with a
valid identi�er, direct access to the shared memory
area where the local table is located. The table con-
tains a pointer to the current write or read bu�er of
the ReMA. Thus, an e�cient mechanism for writing
and reading is supported.

3.4 Operating system mechanism used

We are currently working on the implementation
of the Scheduler module. Our implementation uses
the operating system supported thread priority and
timer facilities to achieve desired preemptive real-time
scheduling.

Our current design uses some abstraction and ser-
vices particular to NT. However, we have been care-
ful to make sure that compatible abstractions are also
available in a POSIX compliant operating system. For
example, the mailslot API can be easily implemented
using message queues. Another example is the Event
IPC mechanism, the behavior of a Windows NT event
can be implemented using the pthread condition wait
function found in the Pthreads library. By doing so,
we have traded some compatibility in favor of better
performance.

4 An Example of Using MidART API
In this section, we demonstrate, via a simple ex-

ample, how to use the MidART API calls to build a
exible and e�cient monitoring and control applica-
tion. A brief description of each of the MidART API
calls is given in Appendix A.

The example is intended to replicate the normal op-
erating conditions that occur at the monitoring com-
puter of an operator in an industrial plant. The op-
erator receives data from devices and Programmable
Logic Controllers (PLC's) distributed throughout the
plant. The operator can send control messages to the
various devices and controllers. Also, the operator
station is capable of displaying streaming video from
cameras.

In order to keep the example brief, we concentrate
on how to implement a service that allows an operator
to selectively received data from a particular PLC.
This example has the following participants:

� PLC 1 Data: This PLC acquires new sensor
data (i.e. temperature readings inside an electri-
cal transformer or chamber) at regular intervals
(plc1 rate).

� PLC 2 Data: This PLC also acquires new sensor
data from a di�erent equipment and location at
regular intervals (plc2 rate).

� Operator: The operator �rst is only interested
in monitoring data from PLC 1 at regular pe-
riods. After sometime an external event (Z) is
detected and from this moment on, the operator
stops monitoring the data from PLC 1 and starts
monitoring data from PLC 2.

The Pseudo-code for the above application pro-
grams using the MidART API is shown in Figure 5.

5 Performance

The objective of our initial performance tests is to
characterize and validate our current implementation



Process PLC 1 () Process OPERATOR ()
CRM RegisterService(svc1) CRM Attach(svc1)
CRM CREATE(svc1) CRM Attach(svc2)
Forever CRM Start(svc1)
CRM WRITE(svc1; DATA1) Until EVENT (Z)
WaitFor(plc1 rate) CRM Read(svc1; BUF)

END Process PLC 1 CRM Stop(svc1)
CRM Start(svc2)

Process PLC 2 () CRM Read(svc2; BUF)
CRM RegisterService(svc2) END Process OPERATOR

CRM Create(svc2)
Forever

CRM Write(svc2;DATA2)
WaitFor(plc2 rate)

END Process PLC 2

Figure 5: Pseudo-code of Monitor Plant Example

MidART. In particular, we are interested in the follow-
ing three aspects about our implementation: 1) mea-
sure the application-to-application latency introduced
between the writer and the reader of a ReMA, 2) de-
termine the overhead that RT-CRM incurs compared
with raw UDP/IP, and 3) measure the overhead costs
of MidART API calls involved in the registration/de-
registration of services and the creation/destroy of re-
ective memory areas.

The performance experiments discussed below were
conducted using two single CPU PentiumPro 160MHz
PCs with 32MB of RAM running Windows NT 4.0.
We used an Eagle FastEthernet switch from Micro-
dyne to connect the two machines.

5.1 Latency

To determine the latency introduced by RT-CRM,
we measured the application-to-application round-trip
time (RTT) of a write event. RTT measurements are
needed, since the clocks in the two machines are not
synchronized. For all of the experiments described in
this section, each data point is the result of 1000 runs
on an unloaded system and network.

In our �rst experiment, we create a writer thread
at one node and a reader thread at the other node.
The reective memory area is attached under a syn-
chronous data push operation mode and blocking read
mode. The period for the writer is 50 milliseconds. Af-
ter the reader attaches to the writer's memory area,
a time stamp is recorded at the writer's host every
time this thread invokes the write API call. The mo-
ment the data is received by the reader application
thread, an acknowledgment is sent back to the writer's
host. Upon the arrival of the acknowledgment a sec-
ond time stamp is recorded. The di�erence of the two
time stamps provides the value of the RTT.

Figures 6 and 7 show the average and maximum
RTT respectively for di�erent message sizes and pri-
ority classes assigned to threads involved (DPA, re-
ceiver, writer and reader). The priority classes are:
Real-Time, High and Normal. For each performance
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msg size (byte) UDP(avg) RT-CRM (avg)
1 0.459240 0.626410
512 0.526845 0.709782
1024 0.582634 0.776303
2048 0.763597 0.988170
4096 0.978962 1.266156
8192 1.460686 1.828897

Table 1: Round Trip Latency. (Time in msec)

curve, all the threads involved in the measurements
are assigned to the same priority class. One important
result of this experiment is that under all the class pri-
orities the average RTT is acceptable for a wide range
of applications. The worst case (i.e., maximum) only
occured very rarely. We are currently investigating
the cause of such worst case occurrences. Moreover,
that the worst-case RTT using Real-Time priorities
remains linearly proportional with the message size,
which is not the case for the other two priority classes.

The overhead that RT-CRM incurs compared with
raw UDP/IP for this experiment is shown in Table 2.
The major source of overhead cost comes from the ad-
ditional memory-to-memory copies done in RT-CRM.

We have done additional experiments measuring
the RTT under a more loaded system. Instead of only
one application writer, in this second experiment we
used �ve writers and �ve readers. The periods of the
writers were 1:0, 0:5, 0:2, 0:1 and 0:05 seconds. Fig-
ures 8 and 9 show the average and maximumRTT for
this setup.

5.2 Overhead costs of API calls

Overhead costs of the API calls are important in
order to obtain a characterization of the MidART im-
plementation. At the same time, they provide us with
feedback, which can be used to �ne tune the imple-
mentation or to review some of the design decisions
made. The cost of each of the calls evaluated is shown
in Table 3. Each data point is the result of 100 runs
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Figure 8: Avg RTT (5 writers).
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Figure 9: Max RTT (5 writers).

API Call Average Maximum
Register 2.695833 9.400913
Unregister 2.960822 3.088380
Create 7.144702 7.854627
Destroy 3.134065 3.27359

Table 2: Overhead cost of API Calls in milliseconds.

in an unloaded system and network.

Register and Unregister calls must contact the
global name server to obtain the IP address where
the area is going to be located from a name string. A
Create call does the following:

1) Contacts global server to obtain id.

2) Creates memory area (allocates bu�ers and locks
them into memory)

3) Creates mutex for read/write access.

4) Creates an event to synchronize with DPA thread.

6 Related Work

Recently [4] has reported the design and implemen-
tation of a real-time CORBA event service. Although
the high level semantics of their real-time event ser-
vice is actually very similar to the Real-TimeChannel-
Based Reective Memory in MidART, their design has
potential bottleneck problems due to the usage of a
centralized "Event Channel" where all multiplexing
and �ltering of communication take place. In addi-
tion, all their performance (both for utilization and
latency) was done on a single machine, i.e., no net-
work involved at all. The utilization was done on a
uni-processor Pentium and the latency was done on
a dual-processor shared memory Sun UltraSPARC 2
with two 167 Mhz CPUs. Moreover, their performance
was done by putting all consumers, suppliers and the
Event Channel in the same process without the real
ORB overhead tested at all. Thus it is di�cult to see

how well their event service can really support dis-
tributed real-time applications over the network. In
contrast, all of our MidART performance tests have
been done in a truely distributed environment with
o�-the-shelf commercial network components. As it is
well known that most of the end-to-end latency and
delay in a real networked system comes from network
interface card, network interface drivers, memory-to-
memory copying and process context switching. If
performance tests were only done in a single node and
all major tested software were contained in the same
process, then one is simply testing the mere speed of
the processor and OS system calls.

Other work and technology that are also related to
MidART include distributed shared memory (DSM)
[1], reective memory[10], and memory channels [2].
The Real-Time Channel-based Reective Memory in
MidART is much more exible compared with either
the hardware supported reective memory and mem-
ory channels, or the software supported distributed
shared memory. Due to space limitations, we will not
fully review these technologies and interested readers
are refered to [7] for an in-depth comparison.

7 Concluding Remarks

We have described the implementation and pre-
liminary performance results of MidART. As the
application-to-application round trip delay tests show,
our current implementation can support the class of
real-time applications which MidART is designed for.
These performance data were obtained without any
�ne tuning and optimization of our current initial im-
plememtation. One of our next steps is to do a more
thorough performance analysis to �nd out where we
can optimize and streamlining our middleware opera-
tions.

It is known that although Windows NT pro-
vides real-time class priorities to threads and non-
degradable priority scheduling, the OS itself does in-
troduce priority inversion problems [8]. Thus another
item of our current work is obtaining experimental
data on how bad the priority inversion problem is
with respect to MidART threads and its application
threads. One possibility is that this priority inversion
problem can be masked via careful design, e.g., rate
control network I/O tra�c, and limiting the amount of
critical section and GUI activities. We are also study-
ing an alternative of using one of the real-time Win-
dows NT extensions [9].

As mentioned in Section 1.1, the uniqueness of Mi-
dART lies in the simplicity of services provided and
the exibility of data reection models. Our current



version has a total code size of only less than 215K
bytes where the Global Server is 67.5K bytes, the Lo-
cal Server 69.6K bytes, MidART library 77.4K bytes.
For example, the applications we used in our RTT per-
formance testing include an application writer process
and a reader process (with various threads). These
programs including the MidART library have sizes of
86.5K bytes for the writer and 73.2K bytes for the
reader.

The source code of MidART can be obtained free
of charge for research purpose with a source license
agreement signed between the interested party and
Mitsubishi Electric Information Technology America
(ITA). See our web site at www.merl.com for future
releases and license agreement.
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Appendix
// Creates an entry in the global de�nition table.
CRM RegisterService (void *lpServiceInfo, void *lpHostName)
// Deletes an entry in the global de�nition table.
CRM UnRegisterService (void *lpServiceInfo, void *lpHostName)
// Creates a new reective memory area in
// the global de�nition table.
CRM Create (int Size, int Period, int CreationFlags,int nBu�ers,
void *lpServiceInfo, void *lpLayoutInfo)
// Removes a reective memory area
// and terminates all DPA threads and network connections.
CRM Destroy (int mId)
// Allows local writers to map to an existing memory area.
CRM Map(int mId, int nBu�ers)
// Disassociate the calling thread and a reective memory area.
CRM UnMap (int mId)
// Creates a reective memory area of m H bu�ers.
// It attaches a reader's thread to the reective memory area
// and establish network connections with the writer's ReMA.
CRM Attach(int Period, int Deadline, int AttachFlags,
int Bu�ers, void *lpServiceInfo, void *lpElementsName)
// Detaches a reader thread from the reective memory area
// by removing the associated DPA-thread and its connection.
CRM Detach (int mId, boolean AllConnections)
// Activates the associated DPA thread on the writer's node.
CRM Start (int mId)
// Fills the reader's bu�ers with existing data from
// the writer's bu�ers.
CRM StartInitH (int mId, int HowMany);
// Halts the reection of the memory area by suspending
// the associated DPA thread.
CRM Stop (int mId)
// Reads a single memory bu�er into the area speci�ed by
// the call. The most recent available data is copied.
// This operation may block, depending on the AttachFlags
// used in CRM Attach.
CRM Read (int mId, void *lpBu�er, void *lpMemStatus,
void *lpElementsName)
// Reads h bu�ers counting back from the most recently updated
// into the area speci�ed by the call.
CRM ReadH (int mId, void *lpBu�er, int Hbu�ers)
// Reads all available data in the bu�ers into lpBu�er.
CRM ReadAll (int mId, void *lpBu�er, int HowMany)
// Writes data pointed by lpData into the reective memory area.
CRM Write (int mId, void *lpData)
// Resets all of the contents of the reective memory area.
CRM Reset (int mId)
// Allows an application to start using the services o�ered
// by the middleware library.
CRM Startup (int InitFlags)
// Terminates the use of the middleware library.
CRM Cleanup ();
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