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Abstract

EM-Cube is a VLSI architecture for low-cost, high
quality volume rendering at full video frame rates.
Derived from the Cube-4 architecture developed at
SUNY at Stony Brook, EM-Cube computes sam-
ple points and gradients on-the-
y to project 3-
dimensional volume data onto 2-dimensional images
with realistic lighting and shading. A modest render-
ing system based on EM-Cube consists of a PCI card
with four rendering chips, four 64Mbit SDRAMs to
hold the volume data, and four SRAMs to capture the
rendered image. The performance target for this con-
�guration is to render images froma 2563�16 bit data
set at 30 frames/sec. The EM-Cube architecture can
be scaled to larger volume data-sets and/or higher
frame rates by adding additional ASICs, SDRAMs,
and SRAMs.

This paper addresses three major challenges en-
countered developing EM-Cube into a practical prod-
uct: exploiting the bandwidth inherent in the
SDRAMs containing the volume data, keeping the
pin-count between adjacent ASICs at a tractable
level, and reducing the on-chip storage required to
hold the intermediate results of rendering.

1 Introduction

Real-time volume rendering is an enabling technol-
ogy for medical applications including diagnosis, sur-
gical training, and surgical simulation [6]. The large
computational and memory requirements of real-time
volume rendering place it beyond the capabilities of
single processor PCs and workstations without ded-
icated hardware. While high performance graphics
systems can perform volume rendering in real-time

�
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(e.g. the SGI In�niteReality Engine), such systems
are very expensive.

Our goal is to develop a family of products that
provide real-time volume rendering at a�ordable
prices | i.e., within reach of personal computer bud-
gets. This family is intended to address medical ap-
plications where volume rendering is an obvious re-
quirement, but also to provide a foundation for the
development of interactive volume graphics| that is,
the graphics of 3-D sampled images and their manip-
ulation at interactive speeds. We expect that as sys-
tems for real-time volume rendering become cheaper
and more commonplace, a broader class of applica-
tions | e.g. scienti�c visualization, industrial design
and analysis, virtual sculpture, and games | will be-
gin to use volume graphical methods. Eventually, we
envision that the mechanisms of volume graphics and
conventional polygon-based graphics will converge, so
that both kinds of rendering will be supported by the
same kind of hardware.

This paper describes the architecture of the �rst
member of this family, a volume rendering chip cur-
rently under development. The architecture is a scal-
able systolic array based on Cube-4, developed at
SUNY at Stony Brook [16]. The performance tar-
get is a chipset that �ts onto a single PCI card and
renders volume data sets of size 2563 � 16 bit vox-
els, at 30 frames/sec. The cost of such an accelerator
will be on the order of a low-cost PC. In subsequent
generations the cost will decrease as the underlying
implementation technology improves.

Cube-4, though scalable to larger volumes by
adding more ASICs and memory modules, is imprac-
tical for low-cost ASIC implementation. The key
challenges are delivering the required bandwidth with
as few chips as possible, reducing the inter-chip com-
munication to keep the pin count reasonable, and re-
ducing the on-chip storage required for intermediate
results. Our EM-Cube (Enhanced Memory Cube-



4) architecture meets the �rst two challenges by us-
ing a block skewed memory, which exploits inherent
SDRAM burst bandwidth, and meets the third chal-
lenge by subdividing the volume in a technique we
call sectioning.

The organization of this paper is as follows. Section
2 describes related work. Sections 3 and 4 describe
Cube-4 and introduce the three implementation chal-
lenges. Sections 5 and 6 introduce block skewed mem-
ory and show how it meets the �rst and second chal-
lenges respectively. Section 7 discusses the on-chip
storage problem and our solution via sectioning. Sec-
tion 8 presents the overall architecture. Finally, Sec-
tions 9 to 11 discuss features needed for a commercial
product, such as support for multiple voxel formats.

2 Related Work

Several approaches have been taken to achieve in-
teractive volume rendering rates. Software imple-
mentations use acceleration techniques which require
pre-computation, additional data storage, or trade-
o� image quality for speed. Shear-warp rendering,
the currently fastest software algorithm, achieves one
projection in a few seconds on a regular worksta-
tion [11]. Many researchers have implemented volume
rendering algorithms on large general-purpose multi-
processors [2, 5, 14, 15]. However, this approach re-
quires expensive, typically network-shared machines
to achieve acceptable frame rates, and the lack of
direct frame-bu�er access prohibits real-time output
rates. Another approach is to use existing polygon
graphics hardware for volume rendering [18, 8, 13].
Interactive rendering rates have been achieved on
the SGI Reality Engine using 3D texturing hardware
[3, 1]. However, current 3D texturing hardware is ex-
pensive and does not support estimation of gradients
that is required for high-quality shading and classi�-
cation. Furthermore, the best volume rendering per-
formance on large general-purpose supercomputers or
special-purpose texture mapping hardware is still be-
low 15 frames/sec for 2563 volumes.

In view of these limitations, it is not surprising
that a number of researchers have undertaken the
development of special-purpose hardware for volume
rendering. VOGUE, one of the most concrete pro-
posals, is a compact ray-casting unit which provides
interactive rendering speeds at moderate hardware
costs [10]. A single board consisting of eight-way in-
terleaved volume memory and four VLSI chips pro-
vides 2.5 frames/sec for 2563 volumes. Near real-
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Figure 1: Rendering pipeline

time rates of 20 frames/sec can be achieved by con-
necting several modules over a ring-connected cubic
network [9]. VIRIM, an object-order volume ren-
dering engine, is one of the few research proposals
that has been built and tested [7]. The machine con-
sists of four VME boards with special-purpose geome-
try processors for data resampling and programmable
ray-casting processors for the �nal image generation.
VIRIM achieves 2.5 frames/sec for 2563 datasets.

3 Cube-4 Architecture

Cube-4, developed at SUNY Stony Brook, is a scal-
able systolic array of rendering pipelines, each con-
nected to its own memory module [16]. Figure 1
shows the major functions in each rendering pipeline.
Cube-4 uses a modi�ed ray casting algorithm. In-
stead of processing along each ray in depth-�rst fash-
ion, Cube-4 processes rays in parallel in a breadth-
�rst fashion. In particular, all the sample points con-
tained in an entire plane of voxels are processed in
parallel, thereby avoiding the need to re-read neigh-
boring voxels from memory. Such a voxel plane,
called a slice, is always perpendicular to one of the
three axes of the volume data cube. Cube-4 chooses
the direction for the slice such that the slice normal
subtends the smallest angle with the actual viewing
direction.1

Since a slice has too many voxels to be processed at
once, Cube-4 scans each slice a beam (i.e. a row) at
a time. Beams are further divided into partial beams

1The algorithm chooses arbitrarily amongst view normals
having equally small subtended angles.
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Figure 2: Skewed voxel memory

of p voxels. Each voxel of a partial beam is processed
by a separate rendering pipeline capable of fetching a
new voxel from an associated memory module every
clock cycle. Thus a Cube-4 system with p pipelines
can process a beam in N=p cycles, a slice in N2=p
cycles, and a volume in N3=p cycles, where N is the
size of a cubic dataset in any dimension.

A key feature of the Cube-4 architecture is that
rendering pipelines communicate only locally with as-
sociated memories and neighboring pipelines up to
three away. Thus the Cube-4 architecture is highly
scalable.

3.1 Cube-4 Skewed Memory

A fundamental challenge in Cube-4 is arranging data
amongst memory modules so that the processing
chips can concurrently fetch all p voxels in a par-
tial beam regardless of the viewing direction. To
meet this challenge, Cube-4 uses 3D skewed mem-
ory. A voxel at position (x; y; z) in unskewed voxel
space is mapped to position (i; r; s) in skewed voxel
space where i = (x+ y + z)modN , r = y, and s = z.
Given C memory modules, where N is a multiple of
C, a voxel (i; r; s) in skewed voxel space is mapped
to module number imodC and to an address within
that memory module of bi=Cc+ r �N=C+ s �N2=C.

The layout of voxels in the volume memory is illus-
trated in Figure 2 which shows a set of voxels near
the origin in each of the three dimensions for C = 4.
Voxels are represented by small cubes, with the shad-
ing illustrating their assignment to memory modules.
The ordering of the assignments of colors to voxels is
identical for each of the three visible faces. Through-

out the volume, adjacent voxels within a beam are
stored in adjacent memorymodules, and thus regard-
less of the view direction, a partial beam of p = C
voxels can be fetched concurrently from the C sepa-
rate memory modules.

The 3D skewing introduces a lateral shifting in vox-
els between adjacent beams within a slice and also
between adjacent beams in a row plane perpendicu-
lar to a slice. As discussed in Section 6, this shifting
must be undone in order to process each voxel (e.g.
see Figure 6), and it leads to signi�cant communica-
tion between adjacent rendering pipelines.

4 Implementation Issues

To achieve a low-cost system, the number of render-
ing chips and associated memory chips must be as
small as possible. The rendering chips must have a
reasonable die size and must be compatible with cur-
rent packaging technology. The Cube-4 architecture
described in Section 3 does not meet these goals. It
requires too many memory modules (about 20), too
many pins per rendering chip (on the order of 512
signal pins), and too much on-chip storage, resulting
in an excessively large die (in excess of 100mm2 for
storage alone). Subsequent sections describe each of
these points in more detail and describe our modi�-
cations to Cube-4 to attain a feasible design for VLSI
implementation.

5 Voxel Bandwidth

To meet our performance targets, the voxel memory
must have a capacity of 32Mbytes and must deliver
a sustained bandwidth of 1Gbyte/sec independent of
view direction.

5.1 Cube-4 memory access patterns

The Cube-4 skewed memory organization has view-
dependent memory access strides which exceed com-
monDRAM page sizes for some view directions. This
precludes the use of fast page (i.e. column) mode
access in DRAMs in such view directions, reducing
achievable memory performance to random (i.e. row)
access levels. View dependence forces the entire mem-
ory system design to handle this worst case.

In particular, for a N3 dataset with C memory
modules, the memory access stride is 1, N=C, or
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Figure 3: Memory location assignments of YZ face

N2=C if the view normal direction is parallel to the Z,
X, or Y axes respectively. Figure 3 shows the assign-
ment of memory locations of voxels on the YZ face
for a view direction parallel to the X axis. A stride of
N=C is required to access successive voxels in succes-
sive partial beams parallel to the Y axis. Moreover,
there is an anomaly in this stride at the beginning
of each beam. Therefore, except for small N and/or
large C, only a few successive accesses will fall on the
same DRAM page, making little bene�t of fast page
mode access. Likewise, on the ZX face (not shown), a
stride of N2=C is required to access successive voxels
of successive partial beams, also with an anomaly at
the beginning of each beam. For small C and rea-
sonable values of N , this N2=C stride is larger than
typical DRAM pages, completely precluding the use
of fast page mode.

5.2 Memory Technology

64Mbit synchronous DRAMs (SDRAMs) will be the
mainstreamDRAM in the next 1-2 year period. Such
SDRAMs meet our 32Mbyte capacity requirement,
and 4Mx16 versions at 125MHz deliver 1Gbyte/sec
with just 4 chips. 64Mbit Rambus(TM) will ramp
up during the same period but its higher clock speed
requires a more complicated interface.

Unfortunately, Cube-4's large memory strides pre-
vent getting anywhere near the maximum1Gbyte/sec
bandwidth with 4 memory chips. For Mitsubishi
Electric's 64Mbit 125MHz SDRAM, the cycle time
for a row access is tRC = 80nsec. In practical op-
eration, at most two banks can be overlapped in
tRC , thus limiting the maximum performance to 2
accesses per 80nsec, or 50Mbytes/sec per SDRAM
(at 16bits/voxel). Thus 20 SDRAMs are needed to
obtain 1Gbyte/sec. The situation is similar for Ram-
bus since it is also block oriented. This number is

unreasonable for a low cost design.

To signi�cantly reduce the row access time, the
DRAM banks must be smaller, and as a side e�ect
usually less dense. Examples are 16Mbit Enhanced
SDRAM (30nsec row access time) and MoSys's
1Mbyte multibank MDRAM (20nsec row access).
However, these devices are too slow (a 20nsec row
access time implies 10 chips) or not dense enough.
The performance of various cache+DRAM combina-
tions, such as 16Mbit cached DRAM (CDRAM) and
Enhanced SDRAM, degrades to the row access time
for strides greater than a DRAM page.

5.3 Block Skewed Memory

To take advantage of the high bandwidth of SDRAM
in fast page mode, we organize the volume memory
into subcubes or blocks of b � b � b voxels in such a
way that all of the voxels of a block are stored linearly
in the same DRAM page. The memory is still skewed
to support rendering independent of view direction,
but it is now skewed at the block granularity rather
than voxel granularity as in Cube-4. Each rendering
chip processes a block and maintains a block-sized re-
ordering bu�er so that the voxels in a block can be
read out in the order appropriate for the view direc-
tion. Figure 4 illustrates the block skewed memory
for b = 4.

In this new organization, a row of blocks comprises
a block-beam and a two-dimensional array comprises
a block-slice. At the block granularity the processing
algorithm is the same as the Cube-4 algorithm, except
that partial block-beams replace partial beams. Each
block is processed internally on a voxel granularity
using the Cube-4 algorithm.

There are several design points for b.

PageBlock: b can be as large as possible while still
allowing the b3 block to �t into a single DRAM page.
Thus the burst transfer size can be as large as a page
size, which easily permits sustaining full bandwidth
from the SDRAMs. One disadvantage of this scheme
is the block size depends on the voxel size. The 512
byte pages in 64Mbit SDRAMs support b = 8 for 8
bit voxels and b = 4 for 16 or 32 bit voxels. Another
disadvantage is that it requires a page-sized bu�er
on-chip.

MiniBlock: Alternatively, b can be as small as pos-
sible. This eliminates the sensitivity to voxel size.
Blocks with b = 2 are large enough to completely
overlap the row access overhead of the SDRAM mod-
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Figure 4: Blocked skewed memory (b = 4)

ule with data transfer. Assuming 16 bit voxels and
Mitsubishi Electric's 4Mx16 SDRAM at 125MHz, the
single burst access time for a 2x2x2 block is 112nsec,
i.e. 8 accesses in 14 clocks. Two of the four banks in
the SDRAM can be interleaved to achieve 8 accesses
in 8 clocks, i.e. full bandwidth.2 A disadvantage of
b = 2 is the large inter-chip communication.

Hierarchical Blocks: A compromise yielding the
advantages of both large and small block sizes can be
achieved by tiling blocks of size b with miniblocks.
The blocks themselves are skewed across memory
modules, but the miniblocks within them are not.
This hierarchical blocking permits e�cient implemen-
tation of larger blocks e.g. PageBlocks. Instead of
fetching the entire block at once, which requires a b3

voxel bu�er, miniblocks can be fetched on a row by
row basis on demand. This capability ensures mini-
mal overhead for the sectioning described in Section
7.1.

The maximum block size is b � N=C since blocks
must be skewed over C chips so that a block-beam can
be fetched without con
ict for any view direction.

A hierarchical blocking scheme is also described in
[12]. The data volume is divided into subcubes and
subcubes are divided into 2x2x2 \supervoxels". How-
ever, while the hierarchical division is the same as
above, the actual memory blocking is di�erent. In

2Provided that every row is accessed at least once within
every 64msec, no additional overhead is necessary for refresh.
Rendering the entire 2563 dataset of 16 bit voxels accesses
every row of four 64Mbit SDRAMs every 32msec. For a smaller
volume or smaller voxel size, rendering might not access every
row every 32msec. However, we do not need full 250Mbytes/sec
bandwidth in such cases and thus we can slip in auto-refresh
cycles without degrading the bandwidth.

[12] the eight voxels in a supervoxel are distributed
across eight memory modules, i.e. supervoxels are the
unit of interleaved memory access. In our block-
ing, all the voxels comprising a block are located
in the same memory and miniblocks are the unit of
pipelined burst access. In addition, all the blocks are
skewed.

6 Inter-chip Communication

Figure 5 shows the EM-Cube architecture in a generic
way independent of b. Voxel blocks are distributed
across the set of SDRAM volumememories at the top.
Each rendering chip connects to a SDRAM memory
module, a pixel memory chip (SRAM or DRAM) for
output, and neighboring rendering chips for transfer
of intermediate values.3 Such inter-chip communica-
tion is required for resampling (intermediate trilinear
interpolation results and possibly voxels), gradient es-
timation (intermediate results and trilin results), and
compositing (partial pixels).

Each voxel block is processed by a single render-
ing chip. Within a block, intermediate values are
communicated on-chip. The only inter-chip commu-
nication results from processing voxels near the faces
of each block. Since the area of a block face is b2,
the inter-chip communication grows as b2. On the
other hand, the number of voxels processed per block
grows as b3. Therefore, on a per voxel basis, the in-
terchip communication scales as 1=b. Thus a design
with b = 4 requires up to 4 times less inter-chip com-
munication bandwidth4 than Cube-4. Table 1 sum-
marizes the inter-chip communication requirements
for several architectural variations. The compositing
communication depends on the view direction.

The inter-chip communication for resampling has
an interesting geometric interpretation. The left side
of Figure 6 shows, in unskewed voxel space, the eight
voxel neighborhood for trilinear interpolation. Here
we assume b = 1 to simplify the picture, and thus
there is one memory module and one rendering chip
for each column i. It su�ces to communicate the bi-
linear interpolation of the four side face voxels (e.g.
2, 4, 6, and 8) to the left neighbor. Skewing the vol-
ume transforms the eight voxel neighborhood cube
into the slanted parallelepiped in the right of Figure
6. The transformation is the same as pulling vertices

3Because of the one-to-one correspondence of memorymod-
ules and rendering chips, we use C interchangeably for either.

4Exactly 4 less except for compositing which is 37=64 less.
See Table 1.
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Trilin Grad est Compos
Unskewed 1 2 1
Cube-4 3 3 1

EM-Cube 3

b

3

b

1

b
to 3b2�3b+1

b3

Table 1: Summary of inter-chip communication band-
width (in \values"/clock)

4 and 5 of the unskewed voxel cube laterally to the
right and left, respectively. Such pulling spreads the
eight voxel cube over four columns. To perform the
trilinear interpolation, we �rst undo the skewing by
shifting voxels 5 and 6 to the right by 1 and likewise
shifting voxels 3 and 4 to the left by 1. This lateral
communication can be pipelined, with all front bot-
tom voxels moving one to the right and all top rear
voxels moving one to the left on each clock. The four
side face voxels are then bilinearly interpolated and
the result sent laterally to the left neighbor to com-
pute the �nal trilinear interpolation result. The total
communication is thus 3 values per clock. For b > 1
each vertex becomes a b3 block of voxels and b2 face
voxels move to the left and another b2 move to the
right each time step.

For compositing, the inter-chip communication is
equal to the number of rays exiting a block. The best
case shown in Table 1 occurs for a viewing direction
parallel to an axis and the worst case occurs for a ray
direction 45 degrees from two axes. The worst case
communication scales as 1=b in all three dimensions.
Thus b must be fairly big, e.g. 8, before there is a
signi�cant reduction in total compositing communi-
cation from the b = 1 case.

Comparing the entries in Table 1 for Cube-4
(skewed volume) and the unskewed volume reveals
that skewing signi�cantly increases the inter-chip
communication. However, the unskewed volume is
not practical because either the view direction must
be restricted or there must be a copy of the entire
dataset for each axis direction.

The blocked architecture permits a tradeo� be-
tween signal frequency and the pin count for inter-
chip communication. The inter-chip bandwidth de-
creases by b allowing fewer pins and/or lower fre-
quency. For example, if the resampling stage uses
16bit voxels, the inter-chip communication can be any
combination of (16=w)bits wide every (b=w) � 8nsec
where w = 1; 2; 4; 8, and 16 and w < b.

For b = 8 we estimate a rendering chip will have
267 signal pins. This is feasible for today's packag-

ing technology. Only 20 of these pins need to run at
125MHz, the remainder at 62MHz or less. All the
inter-chip signals use quarter-width paths, i.e. the
pins are multiplexed over four 62MHz clocks. The
unskewed volume variation has 72 fewer pins. Thus
skewing costs 72 pins for b = 8 (the cost increases for
smaller b).

7 On-chip Storage

As depicted in Figure 5, each rendering chip needs
bu�er storage for bu�ering blocks, voxels for interpo-
lation, values on the slice ahead and slice behind for
gradient estimation, and partially composited pixels.
Each chip also needs lookup tables for opacity values,
color values, and shading (not shown in Figure 5).

The blocked architectures require a reordering
bu�er of b3 voxels. For uninterrupted supply of vox-
els, the block bu�er must be double bu�ered with
2b3 voxel storage per rendering chip. However, for
hierarchical blocking the storage drops to 3b2 voxels
(b > 2).

Trilinear interpolation requires voxels in two adja-
cent slices. Thus voxels must be bu�ered from one
slice to the next. This storage is independent of the
architecture (e.g. Cube-4 or EM-Cube) and depends
solely on the number of rendering chips, C. The slice
storage required per rendering chip is N2=C voxels.
However, interpolation also requires voxels in the pre-
vious row, thus the total interpolation storage per
rendering chip is (N2 +N )=C voxels.

To compute a central di�erence for gradient es-
timation requires samples from a slice ahead and a
slice behind. This requires two slice bu�ers and thus
the gradient estimate storage per rendering chip is
2N2=C samples.

Shading produces partial pixels. As these partial
pixels are generated slice by slice, they are compos-
ited into a \running" pixel bu�er. All the partial pix-
els along the same ray (i.e. sharing the same screen
pixel location) are composited into the same location
in the running pixel bu�er. Final pixels correspond-
ing to a ray emerging on an exit face are immediately
written to pixel memory o�-chip. Consequently, only
the N2 running pixels of the slice cross-section of the
volume need to be stored. Thus the compositing stor-
age per rendering chip is N2=C running pixels. We
allow 3 to 6 bytes per pixel to cover a number of pos-
sible pixel formats, e.g. containing an alpha value (for
front-to-back compositing).
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6 bytes/pixel 3 bytes/pixel
Block bu�er 3.1 3.1
Interpolation 1053/C 1053/C
Grad est 2097/C 2097/C
Compos 3146/C 1573/C
Lookup 36.9 36.9
Total 6296/C + 40 4723/C + 40

# chips 6 bytes/pixel 3 bytes/pixel
4 1614 1221
8 827 630
16 433 335
32 237 187

Table 2: On-chip bu�er storage for b = 8 (Kbits/chip
where C is the number of chips)

For lookup tables, we assume a two-tiered table
opacity lookup with two 512byte tables and one 512
entry table per color component (3x512 bytes to-
tal). Shading is not yet �nalized. One possibility
is the lookup table method of [17] which uses a re-

ectance map (one 512 byte table per axis direction,
for 3x512bytes total) and an arctangent table (one
512 byte table).5 The total for all lookup tables is
9x512bytes.

Table 2 lists the total on-chip storage required for
N = 256; b = 8 with hierarchical blocks, and 16 bit
voxels. With present embedded SRAM densities, the
bu�er storage per chip must be less than roughly
200Kbits to ensure a cost-e�ective core area of about
100mm2, reserving half the core for logic. Thus 32
chips are required. This is far too many chips for a
cost e�ective solution.

7.1 Sectioning { A Solution for the
On-Chip Bu�er Size Problem

To reduce the on-chip bu�er area to a feasible
amount, we use the same approach as in [4]: we di-
vide the volume into L horizontal sections as shown in
Figure 7. We process each section in turn using the
EM-Cube algorithm and then combine the results.
This sectioning reduces the slice face area and hence
the size of slice bu�ers: L sections reduce the size of
on-chip slice bu�ers by 1=L. For C = 4 chips, L = 8
is a feasible design.

Sectioning does not come for free. We are per-

5This produces grey level shading; full color shading re-
quires one re
ectance map per color component.

Two voxel

Section face

Section

plane
overlap

Figure 7: Sectioning of volume memory

forming a space-time tradeo�: we re-read voxels from
volume memory and move some intermediate results
back and forth from external pixel memory.

7.1.1 Voxel bandwidth

Interpolation requires the voxels in the previous row
while gradient interpolation requires the voxels in the
two previous rows. Consequently, after the �rst sec-
tion all subsequent sections require re-reading the
bottom two rows of the previous voxel plane as de-
picted in Figure 7. If there are L sections, this means
re-reading 2(L � 1)N2 voxels per frame, and thus
the total bandwidth overhead is 2(L � 1)N2=N3 =
2(L � 1)=N . This is less than 5% of the total band-
width if L � 8. For blocks with b > 2, tiling
with miniblocks eliminates any excess overhead in re-
reading the two voxel plane.

However, one consequence is that the SDRAM
clock and rendering chip pipelines must run slightly
faster to deliver the additional bandwidth. For L = 8,
the SDRAM clock and rendering chip pipelines must
run 5% faster, i.e. at 132MHz, or at 5% slower frame
rate, i.e. 28frames/sec.

7.1.2 Pixel memory re-read

While processing a section, we only need on-chip stor-
age for the compositing bu�er proportional to the size
N2=L of the slice face area. All running pixels for rays
emerging on a section face can be written to o�-chip
pixel memory as \interim" pixels.

However, interim pixels written to o�-chip pixel
memory for rays exiting a section face must be com-
bined/composited with values for rays continuing into
the adjoining section. We deal with this problem
by reading interim pixels from o�-chip pixel memory
into the on-chip compositing bu�er before processing
the next section. There are up to N2 interim pixels
to read per section (the number is as few as 0 for
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Figure 8: Rendering chip pipelines

rays parallel to a voxel row). The worst case can be
handled by reading one beam of interim pixels from
o�-chip pixel memory per slice. In fact, the latency
for reading these interim pixels can be hidden by the
time to reload the additional two voxels per slice from
voxel memory.

8 Rendering Chip Structure

Figure 5 shows the overall architecture. Each render-
ing chip has bu�ers and datapaths built-in for a nom-
inal design such that 4 rendering chips, 4 SDRAMs,
and 4 pixel memories achieve 28-30 frames/sec with
2563 � 16 bit voxels. To reduce inter-chip communi-
cation cost, and hence the pin count, to manageable
levels, we plan to use a block size of b = 8 hierarchi-
cally tiled with miniblocks. Each rendering chip pro-
cesses 16bit voxels at 125MHz6 and has slice bu�ers
of size 256� 256� 16bit/32 (4Kbytes). Currently we
plan to have four pipelines on-chip, as shown in Fig-
ure 8, each 16 bits wide clocked at 32nsec. Larger
voxels are treated as a sequence of 16 bit values with
proportional reduction in frame rate.

9 Voxel Formats

Flexibility in voxel formats is important. Accord-
ingly, the EM-Cube architecture allows the user to
fashion the voxel format appropriately. Voxels are
either 8 bits or a sequence of one or more 16 bit
�elds. We distinguish the format of voxels in memory
(\memory voxels") and the format of voxels in EM-

6Or slightly more due to sectioning overhead.

intensity 8 bits

intensity index

intensity index

intensity

intensity

index

intensity index grad.

intensity index
grad. coe� opacity

rgb index grad. opacity RGB table index

R G

B opacity/intensity
direct RGB

Table 3: Example voxel formats

Cube pipelines (\pipeline voxels"). In the simplest
case, pipeline voxels are the same as memory voxels.
In general, a pipeline voxel can be a simple transfor-
mation, e.g. a table lookup, on some or all �elds of
memory voxels. A memory voxel has the following
conceptual components:

1. Intensity �eld: 8, 12, or 16 bits to indicate in-
tensity or to index a RGB table.

2. Index �eld: 4, 8, (maybe 12), or 16 bits for color
lookup and material type indicator.

3. Gradient coe�cient: 8 bits (may increase later).

4. Opacity �eld: 8 bit value or index to opacity
table.

5. Arbitrary user �elds (size unrestricted as long as
user pads overall voxel size out to a multiple of
16 bits).

Not all �elds need be present; some �elds may not
exist and some may overlap with other �elds. Table
3 shows examples of some of the voxel formats.

10 Scaling

It is important that EM-Cube scale to accommodate
larger volumes and larger voxel sizes. Given C ren-
dering chips each having the nominal design described
in Section 8 and a volume dataset of N columns, M
rows, S slices and 16v bits/voxel (v = :5, 1, 2, 4), we
have the following constraints:
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Memory capacity: 2vNMS=C � 8m Mbytes where
there are m 64Mbit SDRAMs per rendering chip.

Frame rate: � C=(2vNMS)�250M f/sec, determined
by the rendering chip processing rate.7

Slice bu�er: 2vNM=LC � 4096 bytes

10.1 Voxel Scaling

The above constraints de�ne the options if the voxel
size v changes. For example, if v doubles and if
NMS = 2563 and NM = 64Kbytes, then we can
half the volume size by halving N or M (halving S
does not help because of the slice bu�er constraint);
or we can double the number of rendering chips C,
SDRAMs, and pixel memories; or we can double the
number of sections L, double the amount of voxel
memory per rendering chip, and half the frame rate.

10.2 Volume Scaling

To handle a data set of size NMS larger than the
nominal design of N � M � S = 256 � 256 � 256
supported in the four chip nominal design, we extend
sectioning to three dimensions to divide the volume
into smaller volumes. Thus we virtualize the voxel
and pixel memories by paging them to the host mem-
ory system. As in Section 7.1, volume sections must
overlap by two voxel planes requiring re-reading part
of a section.

This 3D sectioning also allows us to handle reason-
able volume sizes with just a single rendering chip,
albeit with proportional reduction in performance.

11 Other Issues

Several important issues such as supersampling, sub-
volumes, and perspective projections are unaddressed
in this paper. We are investigating these issues as
we re�ne our architecture. We anticipate that super-
sampling will be easy to work into the pipelines while
subvolumes will be moderately more di�cult.

12 Summary

We presented the outline of a feasible architecture for
a low-cost, real-time volume rendering system suit-

7Frame rate degradation due to sectioning is ignored (typ-
ically only 5%, depending on L).

able for PCI cards in PCs. Processing 2563 � 16 bit
voxels at 30frames/sec requires four sets of rendering
chips and associated voxel and pixel memories.

A major innovation of the architecture is block-
skewed memory. Blocking achieves maximum band-
width from a small number of SDRAMs. While
skewing eliminates memory access con
icts to provide
view independence without duplicating voxel data, it
increases inter-chip bandwidth. Blocking counteracts
this problem, reducing the inter-chip bandwidth and
thus the pin count. The block size b parameterizes
the architecture. The larger b, the lower the commu-
nication overhead paid for skewing, and the more the
data access pattern resembles that for an unskewed
voxel memory.

A second key aspect of the architecture is section-
ing. This reduces the on-chip storage requirements
to achieve a feasible chip area for implementation.

Other features of the architecture are 
exible voxel
formats and scalability. As in Cube-4, one can al-
ways add more chips and memories for scalability.
Alternatively, given a �xed amount of hardware, one
can use sectioning in multiple dimensions to scale to
larger volumes. We are investigating adding addi-
tional features such as supersampling, subvolumes,
and perspective projection.

Architectural simulations of EM-Cube are under-
way. We plan to freeze the architecture in early sum-
mer and expect chips and a PCI reference board in
the second half of 1998.

References

[1] B. Cabral, N. Cam, and J. Foran. Acceler-
ated volume rendering and tomographic recon-
struction using texture mapping hardware. In
Workshop on Volume Visualization, pages 91{
98, 1994.

[2] B. Corrie and P. Mackerras. Parallel volume
rendering and data coherence. In Proc. Paral-
lel Rendering Symposium, pages 23{26, 1993.

[3] T. J. Cullip and U. Neumann. Accelerating vol-
ume reconstruction with 3D texture mapping
hardware. Technical Report TR93-027, Dept.
of Computer Science, Univ. of North Carolina,
Chapel Hill, 1993.

[4] M. de Boer, A. Gropl, J. Hesser, and R. Manner.
Latency- and hazard-free volume memory archi-
tecture for direct volume rendering. In Proc.

MERL-TR-97-09 10 August 1997



11th Eurographics Hardware Workshop, pages
109{118, 1996.

[5] K. Ma et al. A data distributed parallel al-
gorithm for ray-traced volume rendering. In
Proc. Parallel Rendering Symposium, pages 15{
22. ACM Press, 1993.

[6] S. Gibson et al. Simulating arthroscopic knee
surgery using volumetric object representations,
real-time volume rendering and haptic feedback.
In First Joint Conference on Computer Vi-
sion, Virtual Reality, and Robotics in Medicine
and Medical Robotics and Computer Assisted
Surgery, pages 369{378. Springer-Verlag, 1997.

[7] T. Guenther et al. VIRIM: A massively parallel
processor for real-time volume visualization in
medicine. In Proc. 9th Eurographics Hardware
Workshop, pages 103{108, 1994.

[8] H. Fuchs and J. Poulton. Pixel-planes: A VLSI-
oriented design for a graphics engine. VLSI De-
sign, 2(3):20{28, 1981.

[9] G. Knittel. A scalable architecture for volume
rendering. In Proc. 9th Eurographics Hardware
Workshop, pages 58{69, 1994.

[10] G. Knittel and W. Strasser. A compact volume
rendering accelerator. In Proc. Volume Visu-
alization Symposium, pages 67{74. ACM Press,
1994.

[11] P. Lacroute and M. Levoy. Fast volume render-
ing using a shear-warp factorization of the view-
ing transform. In Proc. SIGGRAPH, pages 451{
457, 1994.

[12] J. Lichtermann. Design of a fast voxel processor
for parallel volume visualization. In Proc. 10th
Eurographics Hardware Workshop, pages 83{92,
1995.

[13] S. Molnar, J. Eyles, and J. Poulton. Pixel
ow:
High-speed rendering using image composition.
Computer Graphics, 26(2):231{240, July 1992.

[14] C. Montani, R. Perego, and R. Scopigno. Paral-
lel volume visualization on a hypercube architec-
ture. Workshop on Volume Visualization, pages
9{16, October 1992.

[15] U. Neumann. Parallel volume-rendering algo-
rithm performance on mesh-connected multi-
computers. In Proc. Parallel Rendering Sympo-
sium Proceedings, pages 97{104, 1993.

[16] H. P�ster and A. Kaufman. Cube-4 { A scalable
architecture for real-time volume rendering. In
ACM/IEEE Sympos. on Volume Visualization,
pages 47{54, 1996.

[17] J. Scheltinga, J. Smit, and M. Bosma. Design
of an on-chip re
ectance map. In Proc. 10th
Eurographics Hardware Workshop, pages 51{55,
1995.

[18] P. Schr�oder and G. Stoll. Data parallel volume
rendering as line drawing. In Workshop on Vol-
ume Visualization, pages 25{31, 1992.

MERL-TR-97-09 11 August 1997


