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Abstract

The goal of this work is to classify the focus of attention of a subject who is switching his or
her attention between a number of surrounding objects. The specific application is to classify
the focus of attention of a car driver as straight-ahead, towards the rear-view mirror, towards
the dashboard etc. An explicit quantitative approach to this problem requires bf (a) rm a priori
information about the interior geometry of the car and the calibration of the camera, and bf (b)
accurate computation of the subject’s location and gaze direction. This paper describes a more
qualitative approach. The subject is observed over an extended period of time, and a ”pose-
space histogram” is used to record the frequency with which particular head poses occur. For
observation of a car driver, peaks will appear in the histogram according to the frequently viewed
directions of straight-ahead, toward the dashboard, and the mirrors. Each peak is labelled, and the
focus of attention of the driver in all subsequent images is then classified by use of the histogram.

IEEE Conf on Automatic Face & Gesture Recognition, Nara, 1998

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright (©) Mitsubishi Electric Research Laboratories, Inc., 1997
201 Broadway, Cambridge, Massachusetts 02139






TRI7-06a, appears in Third Intl Conf on Automatic Face and Gesture Recognition, Nara, 1998

A Qualitative Approach to Classifying Gaze Direction

R. Pappu, pappu@media.mit.edu
MIT Media Lab, 20 Ames St E15-42,
Cambridge, MA 02139, USA

Abstract

The goal of this work is to classify the focus of atten-
tion of a subject who is switching his or her attention
between a number of surrounding objects. The specific
application is to classify the focus of attention of a car
driver as straight-ahead, towards the rear-view mirror,
towards the dashboard etc.

An explicit quantitative approach to this problem re-
quires (a) a priori information about the interior ge-
ometry of the car and the calibration of the camera,
and (b) accurate computation of the subject’s location
and gaze direction. This paper describes a more qual-
itative approach. The subject is observed over an ex-
tended period of time, and a “pose-space histogram”
is used to record the frequency with which particular
head poses occur. For observation of a car driver,
peaks will appear in the histogram according to the fre-
quently viewed directions of straight-ahead, toward the
dashboard, and the mirrors. Each peak is labelled, and
the focus of attention of the driver in all subsequent
images is then classified by use of the histogram.

1 Introduction

This paper addresses the classification of the fo-
cus of attention of a vehicle driver. This is an im-
portant component in the development of automatic
safety mechanisms [2, 6] e.g. to alert a driver who is
looking to one side while other sensors are indicating
a potential collision in front of the vehicle.

An explicit quantitative approach would involve (a)
modelling the interior geometry of the car and obtain-
ing the calibration of the camera, and storing this as a
priori information, and (b) making an accurate com-
putation of the driver’s location and gaze direction.
Generating a 3D ray for the driver’s gaze direction
in the car coordinate frame then determines what the
driver is looking at.

There are problems with this kind of approach.
Firstly, although the geometry of the car’s interior
will usually be known from the manufacturer’s design
data, the intrinsic parameters of the camera and ex-
trinsic parameters relative to the car coordinate frame
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need to be calibrated. That extrinsic calibration might
change over time due to vibration. Furthermore, the
location of the driver’s head and gaze direction must
be computed in the car coordinate frame at run-time.

To avoid these difficulties, we adopt a qualitative
approach. The driver is observed over an extended pe-
riod. For each acquired image, the driver’s head pose
is computed and used to update a “pose-space his-
togram”. Peaks in the histogram indicate those head
poses which occur most frequently, and can be ex-
pected to occur for the driver looking straight-ahead,
towards the dashboard, towards the rear-view and side
mirrors, and out of the side window. It is straight-
forward to label the frequently occurring head poses
from a qualitative description of the relative location
of windscreen, mirrors etc. The focus of attention of
the driver in all subsequent images can then be classi-
fied by measuring head pose and checking whether it
is close to a labelled peak in the pose-space. !

Head pose alone does not of course determine gaze
direction. But for our application, the head pose is of-
ten a good indicator of the driver’s focus of attention.
For instance, looking at the side or rear-view mirrors
requires the adoption of a particular head pose. We
discuss situations where head pose alone is insufficient
for the application, plus extension of the work to han-
dle eye direction in Section 6.

The algorithms used are appropriate for the Artifi-
cial Retina camera [3], a low-cost (a few tens of dol-
lars) image detector which has programmable on-chip
processing. We have a version with a 32x32 detector
array, and so employed algorithms which are able to
give useful results at coarse image resolutions.

The next section is an overview of our approach.
Section 3 describes the measurement of the driver’s
head pose, Section 4 describes the construction of a
pose-space histogram which encodes the head pose
over time, and Section 5 contains experimental results.

I'We use the term “qualitative” for this approach to indicate
that there is no computation of absolute angles of the head pose;
however, we will make accurate and repeatable measurements
related to the head pose.



2  Overview

The head is modelled with an ellipsoid [1, 5]. An
ellipsoid is a crude model but is sufficient in the con-
text of the overall system since our aim is not to make
accurate quantitative measurements, but to identify
frequently adopted head poses, and to classify these
poses based on a qualitative description of their rela-
tive orientations.

Figure 1 is a diagrammatic overview of the four
components to the processing - (a) initialise an ellip-
soid coincident with the driver’s head (Section 3.1),
(b) use the ellipsoid to generate an array of synthetic
views for a range of head motion (Section 3.2); this
is done offline as part of the initialisation process, (c)
search for the synthetic view which best matches a tar-
get image of the driver (Section 3.3), (d) accumulate
head pose information over time in order to classify
the driver’s focus of attention (Section 4).

3 Processing Head Pose
3.1 Initialisation

Initialisation involves setting up a 3D coordinate
frame containing a camera and ellipsoid, such that
they are consistent with a fronto-parallel “reference”
image of the subject. See Figure la. This process
requires some assumptions about approximate cam-
era intrinsic/extrinsic parameters and typical human
head sizes as described below, but note that there is
no requirement for exact camera calibration or other
information here.

A quadric surface can be described by a 4x4 sym-
metric matrix Q.

XX =0 (1)

where X = (X,Y, Z,1)T are homogeneous coordinates
for a 3D point. For an ellipsoid in canonical po-
sition, matrix Q is diagonal with diagonal elements
[a2,b72,¢72,—1], where the axis lengths of the el-
lipsoid along the x—, y— and z—axes are 2a, 2b, 2¢
respectively. Assume the z-axis is the horizontal axis
through the ears, the y—axis is aligned with the verti-
cal direction through the head, and a horizontal cross-
section through the head is a circle (the ellipsoid is
prolate) so that a = c.

The initialisation process is manual. We start with
reasonable estimates of camera intrinsic and extrin-
sic parameters, and ellipsoid parameters, for the par-
ticular setup which is used to generate the reference
image.? Based on these assumed parameters, the el-

2For the initial estimate of the camera intrinsics, the focal
length (in pixels) is obtained by taking coarse estimates of the
subject’s distance and head size, and using a similar triangles
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Figure 1: (a) a 3D ellipsoid is initialised to coincide
with a reference image of the subject’s head, (b) the
reference image provides the basis for generating a se-
ries of synthetic views consistent with rotations of the
head, (¢) a target image of the subject is matched
against the synthetic views, (d) information about
head pose is accumulated over time in a pose-space
histogram.



lipsoid is projected onto the image plane, and any dis-
crepancy between the projected location and the ac-
tual outline of the driver’s head is manually corrected
by adjusting the extrinsics and the ratio b/a.
3.2 Generating a Synthetic View

Once the ellipsoid model has been initialised, we
can generate a synthetic view of the face consistent
with a specified rotation and translation of the head.

For mathematical convenience, we develop the de-
scription by an equivalent scenario in which the head
is assumed fixed, and the camera is moving relative to
it. Generating a synthetic view involves the following
conceptual steps - (a) the texture from the reference
image is backprojected onto the ellipsoid, (b) a new lo-
cation and orientation of the camera is specified, and
the texture is reprojected to the image plane of the
new camera to generate the required synthetic view.
In practice, the image texture is mapped directly from
the reference image to the synthetic image.

(a) Backprojection of texture:

Assume that for the reference image, the ellipsoid is
in the canonical position and the camera has rotation R
and translation T=(t,,t,,t.) in the world coordinate
frame. The perspective projection equation is

x =PX (2)

where x = (2,3,1) " are homogeneous coordinates for
an image point. For homogeneous quantities ‘=" indi-
cates equality up to a non-zero scale factor.
In a Euclidean coordinate frame, P can be decom-
posed as
P = C[R| — RT) (3)

where C is the camera matrix [4].
An image pixel x backprojects to a ray in the world
coordinate frame described by

(1)a(t)

D = (d,,d,,d.) =R 'C'x (5)

where

Substituting into equation (1) gives a quadratic in
A,

aX> +bA+c=0 (6)

construction. For the initial estimate of the camera extrinsics,
the optical axis is assumed to intersect the origin of the ellipsoid,
while the distance of the camera to the subject was typically
about 1m. For the initial estimate of the ellipsoid parameters,
the typical width of a human head is assumed to be a = 25cm,
and the ratio b/a = 1.7.

where

a=d:Qu1+ d;Qm +d2Q3 3
b=2(dpt, Q1,1 + dytyQ22 +d.1.Q33)

c=t3Q11 + Q2 +12Q33 + Qu

and Q. is the (m,n)th element of Q.

The roots of equation (6) give the intersection
points of the ray with the ellipsoid (zero, one or two
intersection points). For our problem, the ellipsoid is
always in front of the camera. When the number of
roots is two, their values are positive and the smaller
value of A corresponds to the intersection of the ray
with the front (visible) side of the ellipsoid.

(b) Reprojection of texture:

Assume we want to generate a synthetic image con-
sistent with a transformation Ry, Ty of the driver’s
head. The pixel location x, in the reference image
which corresponds to a pixel xg in the synthetic im-
age is determined by -

1. Transform the location of the original (ref-
erence image) camera by a rotation and translation
Ra~!, —Th in the world coordinate frame. Construct
the matrix P’ for the transformed camera using equa-
tion (3).

2. Backproject a ray from pixel xg in the trans-
formed camera, and find its intersection point Xg with
the front side of the ellipsoid using equation (6). If
there is no intersection point, discontinue. If the in-
tersection point is not on the front (visible) side of the
ellipsoid relative to the reference image, discontinue.

3. Project X onto the reference image - the pro-
jected image point is xy.

4. The pixel intensity at xg in the synthetic image
is then given by the intensity at x, in the reference im-
age. Note that x, specifies a sub-pixel location in the
reference image. To obtain a good resampling, we fit a
quadric to the 3x3 patch around the required location
in the reference image, and interpolate to obtain the
intensity at the sub-pixel coordinates.

The synthetic view generation described above is
repeated for a range of rotations around the z— and
y— axes (the horizontal axis through the ears, and the
vertical axis through the head respectively) to gener-
ate an array of synthetic views. This is done offline at
initialisation time. Typically we use £35° and +56°
around the horizontal axis and vertical axes respec-
tively. We have currently omitted to include cycloro-
tations of the head because these are relatively uncom-
mon motions - there is in any case some resilience in



the processing to cyclorotation. Sample images from
the full set are shown in Figure 2.

Figure 2: An array of synthetic views is generated
from the reference image, corresponding to head rota-
tions around the axis through the ears and around the

vertical axis. This figure shows a sample of the images
- the full series is typically an 11x17 array.

3.3 Matching Against Synthetic Views
Processing a target image of the driver now involves
comparing that image with each of the synthetic views
to find the best match.
Consider a target image I which is being matched
against a synthetic image S. The goodness of match
M between the two is found by computing

M =" 1 - cos(Iuli, §) — Sali, 5)) (7)

where I4(7, j), Sq(4, 7) are the directions of the gradient
of the image intensity at pixel (7,7) in the target and
synthetic images respectively, and the summation is
over all significant (i.e. on the ellipsoid) pixels in the
synthetic view. The best-matching synthetic view is
the one which minimises this score.

While translational motion of the driver’s head
could also be handled by searching over translations of
the ellipsoid in the 3D world coordinate frame, we take
a different approach. The target image is matched
against a synthetic view for a range of offsets around
the default position. Typically the range of offsets is
+ 4 pixels in steps of 2 pixels. This is almost equiva-
lent to searching through the space of translations in

3D space, but offers a more explicit understanding of
the coverage of the search space.

3.4 Using Multiple Reference Images

The basic scheme above is extended to make use
of three reference images of the subject in the follow-
ing way. The fronto-parallel reference image is used
to generate an array of synthetic views. The subject
looks to the left, a left-facing reference image is taken,
and the best-match synthetic view is computed. All
the synthetic views in the array which correspond to
more extreme left-turn rotations than the best-match
are now regenerated, using the left-facing reference im-
age. This is repeated on the right side. This provides
better quality synthetic views for the more extreme
rotations of the head.

The next section describes how the information ob-
tained from matching in Section 3.3 is used to classify
what the driver is looking at.

4 The Pose-Space Histogram

The algorithm in the previous section will not de-
liver accurate measurements of head orientation, be-
cause we are using an approximate head model and
working at low image resolutions, but it does produce
reliable measurements about relative pose and that is
what we seek to capitalise on.

Corresponding to the 2D array of synthetic views
(Figure 2), a 2D histogram of the same dimensions
is set up. All elements in the array are initialised to
zero. For each new target image of the driver, once the
best-matching synthetic view is found, the correspond-
ing element in the histogram is incremented. Over an
extended period, peaks will appear in the histogram
for those head poses which are being most frequently
adopted.

Ideally, we would expect to find a peak correspond-
ing to the driver looking out of the left-side window,
then a peak to the right of this for viewing the left-
side mirror, two vertically-aligned peaks correspond-
ing to viewing straight-ahead and looking at the dash-
board, and another peak to the right of this corre-
sponding to viewing the rear-view mirror. The ob-
served peaks can be labelled automatically in accor-
dance with this. Thereafter, for any acquired image of
the driver, we find its best-matching synthetic view,
use that to index the corresponding location in the his-
togram, and then classify the target image according
to the labelling of the nearest peak in the histogram.
Thus, classification of the driver’s focus of attention is
achieved without any quantitative information about
the 3D layout of the car.



5 Results

The system runs on an SGI workstation. For the
majority of the experiments, image acquisition was by
a Sony Hi-8 video camera with the images subsam-
pled to 32x32 pixels. Some of the experiments were
carried out directly on images captured by the Artifi-
cial Retina. The processing speed is about 6Hz.

Since the main idea of this system is to avoid ex-
plicit measurement of the rotation angles of the head,
we will not provide quantitative measurements about
head pose, but will illustrate various aspects of the
performance of the system.

As previously discussed, Figures 1 and 2 depict a
typical reference image and a selection of synthetically
generated views (shown at higher than 32x32 resolu-
tion for illustration). Synthetic views of the face were
generated in the range £35° and +56° around the
horizontal and vertical axes respectively, quantized at
7° intervals, for a total of 187 synthetic views. This
initialisation process takes some tens of seconds.

Figure 3 shows tracking for a number of different
subjects. For each image, the best-matching synthetic
view has been found, and a 3D head model is illus-
trated with pose given by the pose angles which were
used to generate that synthetic view. This use of the
absolute angles is for illustration only, and is not part
of the processing.

Figure 4 shows a typical target image together with
the error surface generated by matching the target
against each image in the array of synthetic views.
The error surface is often well-behaved, as shown here.
The horizontal elongation of the minimum probably
occurs because the dominant features in the match-
ing process are the upper hairline, the eyes, and the
mouth - all horizontally aligned features so that hori-
zontal offsets have smaller effect on the matching score
in equation (7) than vertical offsets.

Figure 5 shows the result of an experiment in which
the subject repeatedly views three different locations
over an extended period, with a short pause (about
1s) at each location. In Figure 5a, the three locations
correspond to the rear-view mirror, the side-mirror,
and straight-ahead for a car driver. The pose-space
histogram shows distinctive peaks for each location. In
Figure 5b, the three locations correspond to the rear-
view mirror, straight-ahead, and the dashboard. The
pose-space histogram has a separate peak for the rear-
view mirror direction, but the other two directions are
not differentiable. This is as expected since the array
of the synthetic views has a resolution of 7 degrees
between images, which is similar to the head motion
for these two directions. This is discussed further in
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Figure 3: Segments of image sequences (not consecu-
tive images) for different subjects, showing resilience
to strong illumination gradients (top), specularities
on spectacles (centre), and changing facial expression
(bottom).

Section 6.

Figure 6 shows the pose-space histogram for a short
video sequence of a driver in a car. There is a peak
for the straight-ahead viewing direction, and lobes to
the left and right correspond to the driver looking at
the side and rear-view mirrors.

6 Analysis and Future Work

A large part of the work so far has dealt with the
head tracking. In our first version of the system, the
synthetic views were initialised from a single fronto-
parallel reference image of the subject; we modified
this to utilise three reference images of the subject
(fronto-parallel, left-view, right-view) when it became
clear that a lot of valuable information is present in
the hairline at the sides of the face. Our matching
metric (equation (7)) uses gradients of the image in-
tensity to obtain resilience to illumination changes and
illumination gradients.

The current system does not discriminate between
a driver’s focus of attention being straight-ahead or to-
wards the dashboard, because of the relatively small
head motion involved (in fact, of course, there may



target image residual's across pose-space
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Figure 4: A typical target image together with the
error surface generated by matching the image against
each image in the array of synthetic views. The darker
areas indicate lower residuals (better matching). The
error surface is well-behaved, with a clear minimum
at the expected location.
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Figure 5: (a) The images show the three head poses
adopted repeatedly over an extended sequence, to-
gether with the pose-space histogram which shows
three distinct peaks for those head poses. (b) A simi-
lar experiment but two of the head poses (forward and
forward-down) are not sufficiently far apart to register
as distinct peaks in the pose-space histogram.
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Figure 6: At top, three sample images from a driv-
ing sequence. At bottom, the pose-space histogram
for this sequence, showing a peak for the driver look-
ing straight-forward, and side lobes corresponding to
viewing the side and rear-view mirrors.

be no head motion, just eye motion, between the
two). Increasing the resolution of the array of syn-
thetic views does not help, since the problem is due
to the approximate nature of the ellipsoid model plus
the low-resolution of the images being used. To deal
with this in future work, we are considering replacing
the ellipsoid model with a generic head model. We
are also considering the computation of eye direction
(which would require higher resolution imagery). For
the latter, we would like to develop a scheme which
does not make Euclidean measurements, to maintain
the approach of the basic system.

7 Conclusion

This paper describes work in progress on a system
for classifying the focus of attention of a car driver.

We introduced a representation - the pose-space
histogram - for classifying the driver’s focus of atten-
tion without computing Euclidean information. By
avoiding explicit Fuclidean measurements, we avoid
the need to know a priori information about the
car’s interior geometry, the camera calibration, or the
driver’s exact location and gaze direction, and thereby
hope to achieve a more robust system.

Within this framework, the choice of algorithms is
motivated by the use of the Artificial Retina. In par-
ticular, synthetic view generation is done offline to en-
able fast run-time processing, and the use of a tem-
plate matching approach rather than facial feature de-
tection is appropriate to the 32x32 image resolution.
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