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This paper presents the Voronoi-clip, or V-Clip, collision detection algorithm

for polyhedral objects speci�ed by a boundary representation. V-Clip tracks the

closest pair of features between convex polyhedra, using an approach reminiscent

of the Lin-Canny closest features algorithm. V-Clip is an improvement over

the latter in several respects. Coding complexity is reduced, and robustness is

signi�cantly improved; the implementation has no numerical tolerances and does

not exhibit cycling problems. The algorithm also handles penetrating polyhedra,

making it useful for nonconvex polyhedral collision detection. This paper presents

the theoretical principles of V-Clip, and gives a pseudocode description of the

algorithm. It also documents various tests that compare V-Clip, Lin-Canny, and

the Enhanced GJK algorithm, a simplex-based algorithm that is widely used for

the same application. The results show V-Clip to be a strong contender in this

�eld, comparing favorably with the other algorithms in most of the tests, in terms
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1 Introduction

Collision detection is a central problem in many computer graphics applica-
tions. It is becoming more important with the rise of new applications in VR,
simulation, and physically based animation. For polyhedral models speci�ed
by a boundary representation, the algorithms fall into two main categories:
feature-based and simplex-based. Both varieties use coherence to obtain sub-
linear performance when objects move continuously through space.

1.1 Feature-based algorithms

The features of a polyhedron are the vertices, edges, and faces forming its bound-
ary. Feature-based algorithms perform geometric computations on these ele-
ments to determine if a pair of polyhedra are disjoint and possibly to compute
the distance between them. One example is Bara�'s algorithm, which maintains
a separating plane that embeds a face of one of the polyhedra, or one edge from
each polyhedra [2]. The polyhedra are disjoint if and only if such a separating
plane can be found. The separating plane is cached from one invocation to the
next.

The Lin-Canny closest features algorithm [11] is a more sophisticated feature-
based algorithm that computes the distance between disjoint polyhedra; it has
traditionally been considered among the fastest solutions for this problem. The
publicly available I-Collide collision detection package [5] uses Lin-Canny to
perform the low-level collision checks. The algorithm tracks and caches the
closest features between a pair of convex polyhedra. Once these features are
known, the closest points between them, and therefore between the polyhedra,
can be determined.

Lin-Canny has two drawbacks. The �rst is that it does not handle the case
of penetrating polyhedra. If presented with such an instance, the termination
criteria are never satis�ed, and the algorithm cycles forever. This behavior can
be prevented by forcing termination after a maximumiteration count is reached;
however this approach is slow, requires choice of an arbitrary threshold, and
does not return any measure of penetration depth. This limits Lin-Canny's
usefulness for determining exact collision times by root-�nding methods,1 and
for detecting collisions among nonconvex polyhedra using standard hierarchical
techniques. Lin-Canny's second drawback is its lack of robustness. The cycling
behavior also occurs in geometrically degenerate situations, so cycle detection
is not a guarantee of penetration. The algorithm may be tweaked by adjusting
various numerical tolerances|the implementation in I-Collide has six obvious
ones, plus a few buried in the code, which are interdependent in subtle ways.
Choosing suitable values for all applications is probably impossible. A related
problem is the coding complexity of the algorithm: much e�ort is devoted to
handling degenerate situations correctly. Despite these problems, Lin-Canny's

1In speci�c cases, it is possible to determine the collision time using Lin-Canny with a
one-sided root-�nding approach [13].
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speed, and availability through the I-Collide package have made it a popular
choice for collision detection applications.

1.2 Simplex-based algorithms

Rather than focusing on polyhedral features, simplex-based algorithms treat a
polyhedron as the convex hull of a point set, and perform operations on simplices
de�ned by subsets of these points. An algorithm designed by Gilbert, Johnson
and Keerthi (GJK) was one of the earliest examples of this type [7]. Given two
polyhedra, GJK searches for a simplex, de�ned by vertices of the Minkowski
di�erence polyhedron, that either encloses or is nearest to the origin. If the origin
is not enclosed, the distance between the origin and the nearest simplex of the
di�erence polyhedron is equal to the distance between the original polyhedra.
If the origin is enclosed, the polyhedra are penetrating, and a measure of the
penetration is available.

The GJK algorithm is the essential core of an algorithm by Rabbitz, which
advances the original by making better use of coherence [15]. Q-Collide is a col-
lision detection library spawned from I-Collide, which replaces Lin-Canny with
Rabbitz's algorithm for the low-level collision detection [4]. (All of Q-Collide's
code and data structures to manage large numbers of objects are taken directly
from I-Collide.) Cameron has recently developed the fastest descendent of GJK:
it includes mechanisms to exploit coherence, and also uses topological vertex in-
formation to more carefully choose new simplices when the current simplices
fail to satisfy the termination criteria. With these improvements, the algorithm
attains the same almost-constant time complexity as Lin-Canny [3]. In this
paper, Enhanced GJK refers to Cameron's algorithm and implementation.

1.3 V-Clip

This paper presents the Voronoi-clip, or V-Clip, algorithm, a closest features
algorithm that bears a family resemblance to its ancestor, Lin-Canny. The
motivation for designing V-Clip was to overcome the chief limitations of Lin-
Canny:

1. V-Clip handles the penetration case, typically reporting penetration wit-
ness features in the same almost-constant time required for the disjoint
case.

2. V-Clip is robust. Degenerate con�gurations are not problematic, and the
implementation of the algorithm does not contain a single numerical toler-
ance. Divisions are rare, and never involve a divisor of smaller magnitude
than the dividend. V-Clip does not exhibit cycling problems.

3. The code for V-Clip is signi�cantly simpler than that of Lin-Canny. The
V-Clip speci�cation involves none of the sort of conditions that make Lin-
Canny di�cult to implement, for example, testing if a face or edge is
parallel to another face or edge.
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Enhanced GJK also exhibits many of the advantages listed above. Cameron's
implementation contains two numerical tolerances, and divisors are occasionally
many orders of magnitude smaller than dividends, but Enhanced GJK is quite
robust in practice. It is probably the simplest of all of the algorithms to code.
It requires more oating-point operations than the other algorithms, however.

Sections 2 discusses underlying principles and gives an overview of the V-Clip
algorithm, Section 3 describes the fundamental Voronoi clip operation, Section 4
discusses how penetration is handled, Section 5 gives a pseudocode speci�cation
of the algorithm, Section 6 details several experiments involving V-Clip and
alternative algorithms, and Section 7 makes some �nal remarks. Proofs of key
theorems are in Appendix A.

1.4 Nonconvex objects

The algorithms that e�ciently handle penetration can be easily adapted to
nonconvex polyhedra by building hierarchies of convex components. Collision
checking is performed between the convex hulls of various subsets of these com-
ponents, and when the hulls are pierced, they are unwrapped so that collision
checking may be performed between the individual pieces. This strategy works
well when a convex decomposition is available with a moderate number of pieces,
and a hierarchy not more than a few levels deep; it breaks down for utterly non-
convex objects. Other types of collision detection algorithms are then more
suitable, such as those based on octrees [1], binary space partitioning trees [14],
sphere hierarchies [9], or oriented bounding boxes (OBBs). These algorithms
also often provide robustness in the presence of modeling errors, such as im-
properly oriented or missing facets. For example, the Rapid collision detection
library, based on the OBB algorithm by Gottschalk, et. al., adeptly handles
\polygon soup." [8] While libraries like Rapid are the best choice in applica-
tions like complex walk through environments, the algorithms discussed in this
paper are faster and preferable when the models are well-behaved, of moderate
size, and not exceedingly nonconvex. This is the case in many applications that
focus on object motion and interaction, and less on complex geometry.

2 Preliminaries

The boundary of a convex polyhedron in <3 contains vertices, edges, and faces;
these features are convex sets, here denoted by uppercase letters. Lowercase
boldface letters denote points and vectors in <3. If P is a plane and y is point,
both in <3, DP (y) denotes the signed distance of y from P . If

P = fx 2 <3 : n̂ � x+ w = 0g;

where n̂ is the unit normal to P , then

DP (y) = n̂ � y + w:
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Polyhedral edges are treated as vectors from a tail point t to a head point h in
<3. A point e along an edge may be parameterized by a scalar �:

e(�) = (1� �)t+ �h; 0 � � � 1: (1)

2.1 Convex polyhedra topology

The neighbors of a vertex are the edges incident to that vertex. The neighbors
of a face are the edges bounding the face. An edge has exactly four neighbors:
the two vertices at its endpoints and the the two faces it bounds. Note that the
neighbor relation is symmetric. Polyhedral features are treated as closed sets.
Hence, a face includes the edges that bound it, and an edge includes its vertex
endpoints. Voronoi regions and planes are central to the V-Clip algorithm:2

De�nition 1 For feature X on a convex polyhedron, the Voronoi region

VR(X) is the set of points outside the polyhedron that are as close to X as
to any other feature on the polyhedron. The Voronoi plane VP(X;Y ) between
neighboring features X and Y is the plane containing VR(X) \ VR(Y ).
All Voronoi regions are bounded by Voronoi planes, and the regions collec-
tively cover the entire space outside the polyhedron. Voronoi planes between
neighboring features come in two varieties: vertex-edge and face-edge planes.
Vertex-edge planes contain the vertex and are normal to the edge, while face-
edge planes contain the edge and are parallel to the face normal (Figure 1).
The Voronoi region of a vertex V is bounded by a homogeneous set of planes:
each is a vertex-edge plane between V and one of its neighboring edges. The
Voronoi region of an edge E is bounded by four planes: two vertex-edge planes
and two face-edge planes. The Voronoi region of an s-sided face F is bounded
by s + 1 planes: a face-edge plane for each edge bounding F , plus the support
plane of F itself; VR(F ) is a semi-in�nite polygonal prism.

2.2 Algorithm overview

The V-Clip algorithm is based on a fundamental theorem, proved in Appendix A:

Theorem 1 Let X and Y be a pair of features from disjoint convex polyhedra,
and let x 2 X and y 2 Y be the closest points between X and Y . If x 2 VR(Y )
and y 2 VR(X), then x and y are a globally closest pair of points between the
polyhedra.

Theorem 1 does not require the closest points on X and Y to be unique, and
in degenerate situations they are not. If the conditions of the theorem are met,
however, no pair of points from the two polyhedra are any closer than x and
y. Like Lin-Canny, the V-Clip algorithm is essentially a search for two features
that satisfy the conditions of Theorem 1. At each iteration, V-Clip tests whether
the current pair of features satisfy the conditions, and if not, updates one of the

2Lin gives a slightly di�erent de�nition in which the Voronoi regions are open sets [11].
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VP(F,E)

VR(E)

VP(V,E)

VP(F,E)

VR(V)
VP(V,E)

Figure 1: Top left: A cubical polyhedron. Among its features are face F , edge
E, and vertex V . Top right: The Voronoi region VR(V ). One of the Voronoi
planes bounding this region is VP(V;E), corresponding to V 's neighboring edge
E. Bottom left: The Voronoi region VR(E). Two of the Voronoi planes bound-
ing this region are VP(V;E) and VP(F;E), corresponding respectively to E's
neighboring features V and F . Bottom right: The Voronoi region VR(F ). One
of the Voronoi planes bounding this region is VP(F;E), corresponding to F 's
neighboring edge E. The support plane of F itself also bounds VR(F ).

features, usually to a neighboring one. If the new feature is of higher dimension
than the old one, then the inter-feature distance strictly decreases. If the new
feature is of lower dimension than the old one, the distance remains unchanged.
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(When updating to a lower dimensional neighboring feature, there is no hope
of decreasing the distance since the old feature includes the new one. However,
such an update does improve the localization of the closest point, and may
trigger subsequent updates that strictly reduce the inter-feature distance.)

In contrast to the Lin-Canny algorithm, V-Clip never actually computes
the closest point on one feature to another, although if the former is a vertex,
this is known trivially. This is what gives the algorithm its robustness in the
face of degeneracy. Furthermore, the V-Clip iteration does not depend on the
polyhedra being disjoint, and it correctly converges to a suitable pair of witness
features when there is penetration.

The state diagram of Figure 2 illustrates the algorithm. Each state corre-
sponds to a possible combination of feature types, for example, the V -F state
means one feature is a vertex, and the other is a face. The arrows denote pos-
sible update steps from one state to another. Solid arrows mark updates that
decrease the inter-feature distance; dashed arrows mark updates for which the
inter-feature distance stays the same. The four primary states of the algorithm
are V -V , V -E, E-E, and V -F ; it may terminate in any one of these states. The
�fth state, E-F , is special in that the algorithm cannot terminate in this state
unless the polyhedra are penetrating. Figure 2 implies that the algorithm must
terminate, for since there are no cycles in the graph comprising only dashed
arrows, any in�nite path through the graph would contain an in�nite number
of solid arrows, each denoting a strict reduction in the inter-feature distance.
Since there are only �nitely many feature pairs, this is impossible.

Coherence is exploited by caching the pair of closest features from one invo-
cation of the algorithm to the next. The method of initializing the feature pair
is not critical, since the algorithm converges to a pair of closest features from
any starting pair.

3 Voronoi clipping

This section and the next develop some building blocks that are used in the
description of the complete algorithm in Section 5. During execution of the
algorithm, the following problem occurs repeatedly:

Problem 1 Given a pair of features, X and Y , one from each polyhedron,
determine if the closest point on Y to X lies within VR(X). If not, update X
in a way that decreases the inter-feature distance, or lowers the dimension of X
while keeping the inter-feature distance constant.

Basically, this problem is that of checking one of the symmetric conditions of
Theorem 1, and updating the feature pair when it is not met. If Y is a vertex,
the solution is trivial: Y contains but a single point which is easily checked for
sidedness against the planes bounding VR(X). When Y does not lie in VR(X),
the planes that are violated indicate how X should be updated.

The remainder of this section discusses the solution of Problem 1 in the more
di�cult case when feature Y is an edge E. This situation occurs in the V -E,
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V−V

V−E

E−E

E−F

V−F

Figure 2: States and transitions of the V-Clip algorithm.

E-E, and E-F states of Figure 2, where X is a vertex, edge, or face, respectively.
The general procedure is called Voronoi clipping.

3.1 Clipping edges

Let S be a subset of the set of oriented planes bounding VR(X). Each plane in S
imposes a linear inequality constraint that points in VR(X) satisfy. Collectively,
the planes in S de�ne a convex region K � VR(X). If E is an edge from t to
h, then E \K is either empty, or a line segment along E:

(1 � �)t+ �h; � � � � �:

Algorithm 1 computes the values � and �, and also the neighboring features N
and N of X that correspond to the planes that clip E: E enters K as it crosses
VP (X;N), and exits as it crosses VP(X;N ). Figure 3 shows an example. If
t 2 K, N = ;; If h 2 K, N = ;. If E \K = ;, then the algorithm returns
FALSE, otherwise it returns TRUE. The divisions that occur in steps 11 and 18
are the only divisions that occur in the entire V-Clip algorithm. In these cases,
the divisor's magnitude must be nonzero and never less than the dividend's
magnitude, thus no overow can occur.

IfX is a vertex, a single invocation of clipEdge is used to clip an edge against
all of the Voronoi planes (K = VR(X)). If X is an edge, clipping against the

MERL-TR-97-05 June 1997



8

Algorithm 1 clipEdge. Clip the edge from t to h against the Voronoi planes
in S. Return FALSE if the edge is completely clipped, otherwise TRUE.

1: � 0; � 1
2: N  N  ;
3: for all Voronoi planes P in S do

4: N  neighbor feature of X corresponding to P .
5: dt  DP (t)
6: dh  DP (h)
7: if dt < 0 and dh < 0 then
8: N  N  N
9: return FALSE
10: else if dt < 0 then
11: � dt=(dt � dh)
12: if � > � then

13: � �
14: N  N
15: if � > � then

16: return FALSE
17: else if dh < 0 then
18: � dt=(dt � dh)
19: if � < � then

20: � �
21: N  N
22: if � > � then

23: return FALSE
24: return TRUE
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e(    )λ
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X

Figure 3: Clipping an edge against planes bounding the Voronoi region of a
pentagonal face X. The edge enters the region K as it crosses VP(X;N ) at the
parameterized point e(�); it exits K as it crosses VP(X;N ) at point e(�).

vertex-edge and face-edge planes bounding VR(X) is done separately. Finally,
if X is a face, S is the set of all planes between X and its neighboring edges;
clipping against the support plane of X is handled separately. Details are in
Sections 4 and 5. After an edge E is clipped, the next step is to determine if
the closest point on E to X lies within K � VR(X), and if not, how to update
X.

3.2 Intersection case

First suppose edge E intersects K, so that edgeClip returns TRUE.

De�nition 2 Let E be an edge, and e(�) a parameterized point along it, as in
(1). For a polyhedral feature X, the edge distance functionDE;X (�) : < ! <
is de�ned as

DE;X (�) = min
x2X

kx� e(�)k:

DE;X (�) is the distance between e(�) and X. Some important properties of
this function are given by the following theorem, proved in Appendix A.

Theorem 2 The edge distance function DE;X(�) is continuous and convex. If
e(�0) 62 X, then DE;X is di�erentiable at �0.

The question at hand is whether the minimum value of DE;X , over [0; 1]
occurs in the range [�; �]. Because of Theorem 2, this question is answered
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simply by checking the signs of its derivative at � and �. The minimum occurs
in the interval [0; �) if and only if D0

E;X(�) > 0; it occurs in the interval (�; 1] if

and only if D0

E;X(�) < 0. In light of this, Algorithm 2 performs any necessary
update. IfX is updated to a neighboring feature, then the inter-feature distance

Algorithm 2 Post-clipping derivative checks.

1: if N 6= ; and D0

E;X(�) > 0 then
2: Update X to N
3: else if N 6= ; and D0

E;X (�) < 0 then

4: Update X to N

stays the same if the neighboring feature is of lower dimension than X, and
strictly decreases if the neighboring feature is of higher dimension than X. If
X is not updated, than the closest point on E to X lies within K.

The formulas for evaluating the signs of D0

E;X follow from basic geometry.
Let u be a vector directed alongE, from tail to head. If X is a vertex at position
v, then

sign[D0

E;X(�)] = sign[u � (e(�) � v)]: (2)

If X is a face in the plane P with outward normal n̂, then

sign[D0

E;X(�)] =

�
+sign(u �n); DP [e(�)] > 0
�sign(u �n); DP [e(�)] < 0

(3)

A formula for the case where X is an edge is unnecessary. In this case, the
derivative can be evaluated with respect to the relevant neighboring feature (N
or N ), which must be a vertex or face. The derivative with respect to this
neighboring feature is equal to the derivative with respect to X at the point
where E crosses the Voronoi plane.

Equation (2) is invalid when e(�) = v, and Equation (3) is invalid when
DP [e(�)] = 0; both of these are degenerate situations in which the distance
function is not di�erentiable at e(�). In these cases, however, the algorithm can
simply report penetration since the edge E intersects the other feature.

3.3 Non-intersection case

Next consider the case where edgeClip returns FALSE, indicating that E lies
completely outside VR(X). There are two ways this might be detected. The
�rst, termed simple exclusion is detected when both endpoints of E are found
to lie on the \outside" of a single Voronoi plane. The second, termed compound
exclusion, is detected when � exceeds �; this means that no point on E simulta-
neously satis�es the constraints imposed by two Voronoi planes. The two cases
are distinguished by whether or not N = N . In either case, X must be updated.

Some care is required because of a subtle di�erence between vertex-edge and
face-edge Voronoi planes. A vertex-edge Voronoi plane de�nes two half-spaces:
points in one half-space are strictly closer to the edge while points in the other
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are equidistant from the edge and the vertex. A face-edge Voronoi plane does
not partition space in this way. Points on either side of the Voronoi plane may
be strictly closer to the face than to the edge (Figure 4). A consequence of

222222222222222222222
222222222222222222222
222222222222222222222
222222222222222222222
222222222222222222222
222222222222222222222

E

F
VP(E,F)

p

Figure 4: An edge-face junction. This is a 2-D projection into the plane of F .
Even though point p lies on the edge side of the Voronoi plane, it is strictly
closer to the face.

these facts is that the derivative checks and update steps of Algorithm 2 are
valid wherever an edge crosses a vertex-edge Voronoi plane, even if the crossing
is not on the boundary between the corresponding Voronoi regions. In contrast,
if an edge crosses a face-edge Voronoi plane, the derivative checks and update
steps are valid only if the crossing occurs on the boundary between the Voronoi
regions.

3.3.1 Vertex Voronoi region exclusion

If E lies completely outside a vertex V 's Voronoi region, the update is straight-
forward. For simple exclusion, the entire edge E lies on the edge side of a
vertex-edge Voronoi plane. Every point on E is strictly closer to the neighbor-
ing edge than to V , and so V is updated to this edge. For compound exclusion,
since both plane crossings are with vertex-edge Voronoi planes, Algorithm 2 is
used. To see that an update must occur in this case, consider the convex dis-
tance function DE;V (�) de�ned over [0; 1]. If compound exclusion occurs, then
0 < � < � < 1. If DE;V attains its minimum in [0; �] then the condition of line
1 is true. If DE;V attains its minimum in [�; 1] then the condition of line 3 is
true. Finally, if DE;V attains its minimum in (�; �), both conditions are true.3

Hence, V will always be updated to a neighboring edge, and the distance to E
will strictly decrease.

3.3.2 Edge Voronoi region exclusion

The Voronoi region of an edge X is bounded by two vertex-edge planes and two
face-edge planes. The key to clipping an edge E against VR(X) is to handle the
interactions with the vertex-edge planes �rst. If E crosses either vertex-edge
plane bounding VR(X), X is possibly updated to the corresponding vertex,
based on the result of derivative check (2). If E is simply excluded by either of
the vertex-edge planes, X is immediately updated to the vertex. Only if none

3For the exclusion case, only the condition on line 1 need be tested, for if it is false, the
condition on line 3 must be true.
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of these tests triggers an update of X does testing with respect to the face-
edge planes occur. If E is simply clipped by a face-edge plane, X is updated
to the face. If compound clipping occurs with a vertex-edge and a vertex-face
plane, E is updated to the vertex if prescribed by derivative check (2), and to
the face otherwise. Compound clipping cannot occur with the two vertex-edge
planes, since they are parallel. It can occur with the two face-edge planes. This
happens exactly when edge E passes \underneath" edge X, piercing the planes
of X's neighboring faces. In this case, derivative check (3) is valid. This check
is applied for one of the faces, and X is updated to that face or the other,
based on the result. This series of tests always produces some update of X to a
neighboring feature. IfX is updated to a vertex, the distance to E is unchanged,
and if X is updated to a face, the distance to E strictly decreases.

3.3.3 Face Voronoi region exclusion

When an edge E is excluded from the Voronoi region of face F , much less in-
formation about how X should be updated is immediately available from the
clipEdge algorithm. Consider Figure 5, in which E is simply excluded from
VR(F ) by the Voronoi plane corresponding to edge S7, and compoundly ex-
cluded by the Voronoi planes corresponding to edges S6 and S8 (these planes
are all shown as dashed lines in the �gure). Either of these conditions might be
the one detected by clipEdge, however the closest point on F to E might not
lie on any of S6, S7, or S8. In fact, the closest point on F to E might lie on
any edge from S3 to S11, depending on the signed distances of t and h from the
plane of F .

22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222

F

E

S1

S2

S3

S4
S5

S6
S7S8S9S10

S11
S12

S13 S14

t h

Figure 5: A bad case for determining how to update F . This is a 2-D projection
into the plane of F ; the edge endpoints t and h are generally not in this plane.

A safe way of determining how to update F is to scan along the perimeter
of F , beginning at one of the features returned by clipEdge, clipping E against
the vertex-edge planes that it cuts (shown as dotted lines in the �gure), and
applying the derivative check (2). The results of these clip tests and derivative
checks indicate when the closest feature on F to E has been reached; it may
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either be an edge or a vertex along F 's boundary. When F is updated to this
lower-dimensional feature, the inter-feature distance remains constant.

4 Handling penetration

Because of the criteria V-Clip uses to update features, handling penetrating
polyhedra can be done e�ciently and with little extra e�ort. The clipEdge
algorithm is used to clip an edge E against the face-edge planes of a face F 's
Voronoi region. Assuming E is not entirely clipped, the points on the edge
de�ned by � and � are tested for sidedness relative to the plane of F . If they
lie on opposite sides, then E must pierce F and the algorithm terminates with
these two features as witnesses to penetration.

VR(F1)VR(F2)

V

E12

F2

F1

EaEb

Ec

VP(F1 , E12)

interior of
F1’s polyhedron

Figure 6: A case of penetration (only relevant parts of F 0
1s polyhedron are

shown).

As an example, consider Figure 6, and assume that the current pair of fea-
tures are V and F1. The algorithm determines that it can decrease the inter-
feature distance by updating V to its neighboring edge Eb (it may have alter-
natively chosen Ea). It makes no di�erence that V is inside F1's polyhedron,
nor does the algorithm have any concept of this|yet. It simply tries to �nd
a neighboring feature of V that is closer to F1. After V is updated to Eb, the
algorithm clips Eb against the face-edge planes of VR(F1), and discovers that
Eb intersects VP(F1; E12). A derivative check at this intersection point triggers
an update of F1 to E12. After a series of update steps, the algorithm reaches the
feature pair Ec-F2. After clipping Ec against the face-edge planes of VR(F2),
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it discovers that the endpoints of Ec lie on opposite sides of F2 and signals
penetration.

4.1 Escaping local minima

During the feature update process, it is possible to get lodged in a local minimum
in the vertex-face state. This happens when the vertex satis�es the face-edge
plane constraints of VR(F ), lies \below" the plane of F , and has neighboring
edges that are all directed away from F . In this situation, any update to a
neighboring feature would either increase the inter-feature distance, or increase
the dimension of a feature while keeping the inter-feature distance constant.
Neither of these are valid updates. When the algorithm reaches such a state, the
polyhedra may or may not be penetrating (Figure 7). If they are penetrating, the
algorithm should terminate and report this. If not, a new pair of features must
be found that escape the local minimum. Algorithm 3 handles this situation.
It tests V against each face plane of F 's polyhedron. If V lies on the negative
side of all of them, it is inside the polyhedron and a penetration ag is returned.
Otherwise, F is updated to the face that V has maximum signed distance from.
If Algorithm 3 updates F to F0, V is at least as close to F0 as to any other face
on F 's polyhedron, and is strictly closer to F0 than to F . Hence, there is no
possibility of descent back into the same local minimum between V and F .

F

VR(F)

V

222222
222222
222222

F

VR(F)

V

2222222
2222222
2222222

Figure 7: Local minimum states with and without penetration.

V-Clip detects penetration in one of two states: in the edge-face state, when
the edge pierces the face; and in the vertex-face state, when a vertex lies inside
of the other polyhedron. The test based on an edge-face witness pair is very fast
since it only examines the local geometry near a penetration point; the test is
independent of the complexity of the polyhedra. The test based on a vertex-face
pair is much slower, since the vertex must be tested for sidedness against all n
planes of the face's polyhedron: an O(n) calculation. Fortunately, the edge-face
witnesses to penetration are much more common in practice. When polyhedra
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Algorithm 3 handleLocalMin. Detect penetration or dislodge from a local min-
imum.
1: dmax �1
2: for all faces F 0 on F 's polyhedron do
3: P 0  plane(F 0)
4: d = DP 0 (V )
5: if d > dmax then
6: dmax d
7: F0  F 0

8: if dmax � 0 then
9: return PENETRATION
10: F  F0
11: return CONTINUE

penetrate a small amount relative to their sizes, the witness pair will be edge-
face. Only if a polyhedron moves almost completely through another one might
vertex-face penetration witnesses occur. Figure 8 shows a sequence in which a
pair of polyhedra pass through each other, and vertex-face penetration witnesses
momentarily occur. Usually, polyhedra pass though each other without ever
generating vertex-face penetration witnesses.

F1

E1

(a)

E2

(b)

V

(c)

F2

(d)

F1 F1

E2

Figure 8: Polyhedra passing through each other. This is a 2-D projection with
faces appearing as line segments. In (a) and (b), the penetration witnesses are
edge-face pairs. At (c), one polyhedron has moved almost completely through
the other, and a vertex-face pair becomes the penetration witness. The dashed
line represents one of the Voronoi planes of VR(F1). Once V crosses this plane,
as in (d), the algorithm escapes the V -F1 local minimum, and again locates an
edge-face penetration witness pair.
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5 Algorithm

In the implementation, each state of Figure 2 is handled by a function that can
return one of three values: DONE means the conditions of Theorem 1 are satis-
�ed, and so the current feature pair is the closest feature pair; PENETRATION
means that penetration witnesses have been found; and CONTINUE means that
the conditions of Theorem 1 are not met, one of the features has been updated,
and the algorithm should continue. This section details the �ve state functions.

5.1 Vertex-vertex state

Algorithm 4 VVstate(Vertex V1, Vertex V2)

1: search for Voronoi plane VP(V1; E) that V2 violates
2: if violated plane exists then
3: V1  E
4: return CONTINUE
5: repeat steps 1{4, swapping roles of V1 & V2
6: return DONE

Algorithm 4 is the vertex-vertex state handler. A vertex feature contains only a
single point, which is easily tested for membership in the other feature's Voronoi
region. If V2 lies outside VP(V1; E), then V2 is strictly closer to E than to V1,
and V1 is updated to E. Similarly, if V1 lies outside VP (V2; E), then V2 is
updated to E. If no such updates are possible, V1 and V2 lie inside each others
Voronoi regions, and the function returns DONE.

5.2 Vertex-edge state

Algorithm 5 VEstate(Vertex V , Edge E)

1: search for Voronoi plane VP(E;N ) that V violates
2: if violated plane exists then
3: E  N
4: return CONTINUE
5: clip E against VR(V ) [Algo. 1]
6: if N = N 6= ; then
7: V  N
8: else

9: check derivatives, possibly update V [Algo. 2]
10: if V was updated then

11: return CONTINUE
12: else

13: return DONE
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Algorithm 5 is the vertex-edge state handler. Steps 1{4 check that V lies within
VR(E), and update E if it does not. The search in step 1 should check the
vertex-edge planes before the face-edge planes. The remaining steps check that
the closest point on E to V lies in VR(V ), and update V if it does not. Steps
6{7 handle the simple exclusion case, and step 9 handles both the compound
exclusion case, as well as the case when E intersects VR(V ).

5.3 Vertex-face state

Algorithm 6 VFstate(Vertex V , Face F )

1: search for Voronoi plane VP(F;E) that V maximally violates
2: if violated plane exists then
3: F  E
4: return CONTINUE
5: P  plane(F )
6: search for edge E, incident to V and V 0, such that jDP (V )j > jDP (V 0)j
7: if E exists then
8: V  E
9: return CONTINUE
10: if DP (V ) > 0 then
11: return DONE
12: return result of handleLocalMin [Algo. 3]

Algorithm 6 is the vertex-face state handler. When testing V against the
Voronoi region of F , the algorithm does not stop at the �rst Voronoi plane
which is violated, but searches for the maximally violated plane. This avoids
the situation of Figure 4 and ensures that when F is updated in step 3, the
inter-feature distance does not increase. The search in step 6 is for an edge
incident to V that points toward F . It is equivalent to checking if the closest
point on F to V lies within VR(V ). If the algorithm reaches step 12, then it is
lodged in a local minimum, and the handleLocalMin algorithm dislodges it or
veri�es penetration.

5.4 Edge-edge state

Algorithm 7 is the edge-edge state handler. As discussed in Section 3.3.2, it
is important to handle the two vertex-edge Voronoi planes �rst. This is done
in steps 1{7. Steps 8{14 handle the two face-edge Voronoi planes; this is a
continuation of the clipping in steps 1{7, that is, the values of � and � are not
reset to 0 and 1 at the step 8 clipping. If the algorithm reaches step 15, then
E2 intersects VR(E1) and the closest point on E2 to E1 lies within this Voronoi
region. Symmetric checks with the edge roles swapped complete the tests.
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Algorithm 7 EEstate(Edge E1, Edge E2)

1: clip E2 against vertex-edge planes of VR(E1) [Algo. 1]
2: if E2 simply excluded by VP(E1; V ) then
3: E1  V
4: else

5: check derivatives, possibly update E1 [Algo. 2]
6: if E1 was updated then

7: return CONTINUE
8: clip E2 against face-edge planes of VR(E1) [Algo. 1]
9: if E2 simply excluded by VP(E1; F ) then
10: E1  F
11: else

12: check derivatives, possibly update E1 [Algo. 2]
13: if E1 was updated then

14: return CONTINUE
15: repeat steps 1{14, swapping roles of E1 & E2

16: return DONE

Algorithm 8 EFstate(Edge E, Face F )

1: clip E against VR(F ) [Algo. 1]
2: if E excluded from VR(F ) then
3: F  closest edge or vertex on F to E
4: return CONTINUE
5: d DE;F (�)
6: d DE;F (�)
7: if d � d � 0 then
8: return PENETRATION
9: if D0

E;F (�) � 0 then
10: if N 6= ; then
11: F  N
12: else

13: E  tail(E)
14: else

15: if N 6= ; then
16: F  N
17: else

18: E  head(E)
19: return CONTINUE
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5.5 Edge-face state

Algorithm 8 is the edge-face state handler. This handler either determines that
the polyhedra are penetrating, or updates one of the features to a lower dimen-
sional neighbor without changing the inter-feature distance; it never returns
DONE. If E is excluded from VR(F ), F is updated to the feature which is
closest to E, among F 's neighboring edges and the vertices between them (line
3). This process is discussed in Section 3.3.3.

If E intersects VR(F ), the distances from the points on E parameterized by
� and � to the plane of F are computed. If these distances are not both positive
or both negative, then the edge E pierces F and PENETRATION is returned.
Otherwise, either F is updated to one of its boundary edges or E is updated to
one of its endpoints in a way which does not change the inter-feature distance.

6 Experimental results

Comparing speeds of di�erent collision detection algorithms is di�cult, and the
literature is not without contradictory claims. The speeds of the algorithms de-
pend heavily on many factors that are not constant among the results reported:

� The particular problem instances: how the objects are shaped, how they
are moving, how they are clustered.

� Implementation issues: language, compiler, optimizer, oating-point num-
ber format, amount of inlined code and hand-coded assembly instructions,
etc.

Despite these di�culties, we attempted the design of a test suite to obtain some
gross measures of the relative performance and robustness of the Lin-Canny,
Enhanced GJK, and V-Clip algorithms. The V-Clip implementation4 is written
in C++. The Lin-Canny implementation5 is written in C, and is essentially the
version used in I-Collide6. The Enhanced GJK implementation7 is also written
in C.

6.1 Coherence tests

The �rst set of tests were designed to measure performance on a variety of
problems under varying levels of coherence. The task of designing tests was
simpli�ed since none of the tested algorithms are meant to be complete collision
detection packages that handle thousands of objects, such as I-Collide[5] and
V-Collide [10], but rather the lowest level collision detection routines in such
systems. Thus, it su�ces to test the algorithms on systems involving only two
objects.

4Available from: TO BE ANNOUNCED...
5Available from: www.cs.berkeley.edu/~mirtich/collDet.html
6Available from: www.cs.unc.edu/~geom/I COLLIDE.html
7Available from: www.comlab.ox.ac.uk/oucl/users/stephen.cameron/distances.html.
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In each test, Object 1 was held �xed at the origin while Object 2, identical
in shape, followed a continuous course through space around it.8 The three
coordinates of Object 2's center varied sinusoidally, as it also rotated around
an axis. Algorithm 9 details the test procedure. The parameter ! corresponds
roughly to the frequency of the revolution and rotation of Object 2. It controls
the level of coherence between calls to the collision detectors: when ! = 0
the objects remain �xed relative to each other throughout the test, and as !
increases the coherence decreases. For our tests, the value of ! was varied from
0 to 25 degrees per invocation.

Algorithm 9 Coherence testing. The angular velocity ! is an input parameter,
and A is chosen to avoid penetration.

1: position O1 at origin, with no rotation
2: for loop = 1 to 10 do
3: �x  random(0; 2�)
4: �y  random(0; 2�)
5: �z  random(0; 2�)
6: a random vector on unit sphere
7: for i = 1 to 1000 do
8: �  ! � i
9: x A cos(� + �x)
10: y  A cos(� + �y)
11: z  A cos(� + �z)
12: R rotation by angle � about axis a
13: position O2 at location (x; y; z), orientation R
14: collisionDetect(O1, O2)

These tests were performed with four di�erent types of objects. An ordinary
cube was chosen as the �rst test shape, since bounding boxes are common in
collision detection applications. A regular icosahedron (20 triangular faces) was
chosen as a medium complexity model. A polygonized disk was chosen as the
third test shape. The aspect ratio of disk radius to thickness was 10:1. A distin-
guishing feature of this test shape is that it contains high complexity faces: two
of the faces are 60-sided polygons. Finally, a tesselated sphere with 642 vertices,
1920 edges, and 1280 triangular faces was chosen as a high overall complexity
model. Each algorithm was run on an identical set of problem instances.

Our interest was in comparing the algorithms|not the implementations|
as fairly as possible. To this end, oating-point operation counts were used as
the benchmark. Floating-point operations are the dominant cost in all of the
algorithms, and are independent of language, compiler, and (in this case) opti-
mizer. Fair timing tests are more di�cult to devise, and were not included in
the study. Additions (including subtractions and comparisons) were the most
common oating-point operation, followed by multiplications. In all of the al-

8For all of the algorithms, there is no computational advantage or disadvantage to holding
one object �xed; only relative position matters.
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gorithms, the proportions of these two categories were roughly the same, and
together they accounted for at least 98% of the oating-point operations. Fig-
ures 9{12 plot the average number of oating-point operations per invocation
versus the coherence parameter ! for each of the algorithms and test objects.
For the Lin-Canny and V-Clip algorithms, the counts reported include the cost
of computing the closest points since these algorithms cannot compute the dis-
tance without them. Enhanced GJK can, however, and in the tests it was not
asked to provide the closest points. If these are desired, Enhanced GJK can
provide them at an additional cost of about 16 oating-point operations.
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0 5 10 15 20 25
relative movement per call (degrees)

Cube:  floating point operations per call

V-clip
Lin-Canny

Enhanced GJK

Figure 9: Total oating-point operations for cubes.

For the cube and icosahedron tests, V-Clip and Lin-Canny had comparable
operation counts, with Lin-Canny holding a slight edge at high levels of coher-
ence, and V-Clip holding the edge elsewhere. Since these algorithms are based
on the same approach, the similarity in their operation counts is not surprising.
Enhanced GJK generally required 50{100% more operations than the other two
algorithms for these two test shapes.

For the disk test shape, V-Clip used the fewest operations over all coherence
levels. Lin-Canny started out well but quickly attained the highest operation
counts of any of the algorithms as coherence decreased. The operation-count
curves for these two algorithms are fairly erratic. This is probably due to the fact
that the disk is much less spherically symmetric than the other objects; rotation
about an axis parallel to the plane of the disk is a quite di�erent motion than
rotation about an axis within the plane of the disk. Enhanced GJK seems less
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Figure 10: Total oating-point operations for icosahedra.

bothered by this fact, and its operation-count curve exhibits a more steady
increase as coherence decreases.

The curves for the sphere tests are similar to those for the disk. V-Clip
and Lin-Canny start out ahead, and Enhanced GJK overtakes Lin-Canny fairly
quickly. Enhanced GJK also overtakes V-Clip at low levels of coherence. A
likely explanation for this behavior lies in the iteration methods for the di�er-
ent algorithms. V-Clip and Lin-Canny are surface-based iterators: they move
along the surfaces of the polyhedra as they search for the closest features. The
Enhanced GJK iteration is based on simplices formed by sets of polyhedral ver-
tices. This enables Enhanced GJK to tunnel through objects. The advantage of
this method is most pronounced when the polyhedra have high complexity and
the coherence level is low. In these cases, V-Clip and Lin-Canny must travel
through many surface features while Enhanced GJK takes a more direct route,
converging in fewer iterations.

6.2 Accuracy and degeneracy tests

The above tests also a�orded the opportunity to gather data on algorithm accu-
racy. The distances reported by the three algorithms after each invocation were
checked for consistency. Each algorithm's result was compared to the minimum
result returned by any of the three algorithms; a warning was agged if the
di�erence exceeded a prede�ned tolerance of 10�6. V-Clip had the best perfor-
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Figure 11: Total oating-point operations for disks.

mance, generating no warnings over the one million invocations. Enhanced GJK
was nearly perfect, generating only 11 warnings, with a maximum distance de-
viation of 1:6� 10�4. These warnings all disappeared when the main numerical
tolerance in the implementation was lowered from 10�5 to 10�7. Lin-Canny
performed the worst, generating 208 warnings, with distance deviations as large
as 10�2. Several attempts at tweaking the Lin-Canny numerical tolerances re-
duced the warning count to 88.

A second test probed the algorithms' robustness in degenerate situations.
Algorithm 10 illustrates the basic test procedure. Each of this test's 100000 tri-
als involved searching for a boundary case while performing collision detection
between two cubes. O1 was kept at the origin, while O2's pose was interpo-
lated between two poses chosen randomly from a distribution that favored near
parallel edges and faces. In steps 13 and 18, the coherence devices returned
by the algorithms are saved; these are pairs of closest features in the case of
V-Clip and Lin-Canny, and pairs of simplices in the case of Enhanced GJK. A
binary search method (steps 14{22) was used to home in on poses were these
features or simplices changed. Such boundary cases are the most likely places
for anomalous behavior.

This test quickly exposed the degeneracy problems of Lin-Canny. With the
numerical tolerances set as they had been for minimizing the warning messages
in the previous experiments, cycling behavior was observed in 4489 of the trials.
Tweaking the tolerances lowered this number to 37, but signi�cantly reduced
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Algorithm 10 Degeneracy testing. O1 and O2 are cubes, two units per side

1: position O1 at origin, with no rotation
2: for loop = 1 to 100000 do
3: x random(-4,+4)
4: y  random(-4,+4)
5: z  4
6: a random vector on unit sphere
7: k  random(0, 20);
8: R rotation about a by e�k radians
9: pose P  position (x; y; z), orientation R
10: choose pose P in same manner as pose P (steps 3{9)
11: set pose of O2 to P
12: collsionDetect(O1, O2)
13: X  feature/simplex pair
14: while P 6= P do

15: P  average(P ; P )
16: set pose of O2 to P
17: collsionDetect(O1, O2)
18: X  feature/simplex pair
19: if X = X then

20: P  P
21: else

22: P  P
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Figure 12: Total oating-point operations for spheres.

the accuracy of the reported distances, and caused Lin-Canny to return very
erroneous distances in 22 trials. Enhanced GJK never exhibited any cycling
or erroneous distances with its main tolerance set to 10�7. However, with the
tolerance set to 10�8, Enhanced GJK reported a zero distance (penetration) in
175 of the trials, even though the actual distance between the cubes was never
below 4� 2p3. V-Clip, with no tolerances to tune, did not exhibit any cycling,
nor did it report a detectably incorrect distance.

7 Conclusion

V-Clip is a signi�cant improvement over Lin-Canny for three reasons: It can
e�ciently handle penetration, and therefore nonconvex objects, it is easier to
code, and it is more robust. The robustness stems from the fact that V-Clip
does not explicitly construct closest points between features while iterating.
Rather, it localizes the closest points to various regions of interest through simple
clipping operations and scalar derivative tests. In other words, V-Clip uses
topological primitives [6] while Lin-Cannymust compute new objects: the closest
points between features. Edge-face and face-face are the two most problematic
cases in Lin-Canny; they account for most of the coding complexity and cycling
problems. In V-Clip, the edge-face case is much simpli�ed, and the face-face
case is eliminated.
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The proof that V-Clip will always terminate, which was outlined in Sec-
tion 2.2, is not valid in the face of �nite-precision arithmetic. Nonetheless, the
simple form of the tests in the algorithm lend it an empirical robustness. V-Clip
has never cycled nor reported a detectably incorrect answer throughout exten-
sive testing; it alone passed all of the tests. Neither V-Clip nor Enhanced GJK
enjoy a signi�cant robustness advantage over the other, although the absence of
numerical parameters to tune is an advantage of the former.

Overall, V-Clip had the lowest oating-point operation counts of the three
algorithms, however, there were conditions under which each of the other two
algorithms performed best. Also, oating-point operation counts are not a direct
measure of performance9. While the tests were designed to be as fair and general
as possible, there is no substitute for actually trying the algorithms in the speci�c
application at hand. Fortunately, implementations of all of the algorithms are
now available for doing so.
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A Proofs

Theorem 1 Let X and Y be a pair of features from disjoint convex polyhedra,
and let x 2 X and y 2 Y be the closest points between X and Y . If x 2 VR(Y )
and y 2 VR(X), then x and y are a globally closest pair of points between the
polyhedra.

Denote X's polyhedron by X , Y 's polyhedron by Y, and de�ne � � <6 as
� = f(u;v)T : u 2 X and v 2 Yg;

and the distance function D : �! < as

D(u;v) = ku� vk:
Since X and Y are convex polyhedra, � is a convex set, and D can be shown
to be a di�erentiable, convex function (the arguments are similar to those used
the proof of Theorem 2, below). Let p = (x;y)T 2 �, choose q to be any other
point in �, and let �p = (�x;�y)T = q� p.

Suppose rD(p)(�x;0)T < 0. Then for some � > 0, x+ ��x 2 X , and the
distance from this point to y is less than the distance from x to y. But this is
impossible since y is as close to X as to any other feature on X , and x is the
closest point on X to y. Thus rD(p)(�x;0)T � 0. An analogous argument
shows rD(p)(0;�y)T � 0, and therefore,

rD(p)�p = rD(p)
�
�x
0

�
+rD(p)

�
0

�y

�
� 0:

Since for any q 2 �, rD(p)(q�p) � 0, and D is di�erentiable and convex over
the convex set �, p is a global minimum of D over � (see [12] x6.5). Thus, x
and y are a globally closest pair of points between X and Y. 2
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Theorem 2 The edge distance function DE;X(�) is continuous and convex. If
e(�0) 62 X, then DE;X is di�erentiable at �0.

Proof: Choose two real numbers u and v, and � 2 [0; 1]. To show convexity, it
su�ces to verify

DE;X [(1� �)u+ �v] � (1� �)DE;X (u) + �DE;X (v): (4)

Recall e(�) denotes a parameterized point along E. By de�nition, there exist
points c and d on X such that

DE;X (u) = ke(u)� ck
DE;X (v) = ke(v) � dk:

Since X is a convex set, (1� �)c + �d 2 X and

DE;X [(1� �)u + �v]

� k(1� �)e(u) + �e(v) � [(1� �)c + �d]k:

By the triangle inequality,

DE;X [(1� �)u + �v] � (1 � �)ke(u) � ck+ �ke(v) � dk;

and (4) follows.
Convexity of DE;X implies continuity, and the existence of right- and left-

hand derivatives everywhere, and furthermore, at any point �0 these derivatives
satisfy

D0

E;X(�0�) � D0

E;X (�0+) (5)

(see [16] x5.5). Let p be the closest point on X to e(�0), and de�ne

Dp(�) = ke(�) � pk:

By assumption, e(�0) 62 X, thus e(�0) 6= p and Dp is di�erentiable at �0. Since
DE;X � Dp everywhere,

D0

E;X (�0�) � D0

p(�0)

D0

E;X (�0+) � D0

p(�0):

These inequalities plus (5) imply D0

E;X (�0�) = D0

E;X (�0+), and so DE;X is
di�erentiable at �0. 2
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