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Abstract

We seek to analyze and manipulate two factors, which we generically call style and content, un-
derlying a set of observations. We fit training data with bilinear models which explicitly represent
the two-factor structure. These models can adapt easily during testing to new styles or content,
allowing us to solve three general tasks: extrapolation of a new style to unobserved content; clas-
sification of content observed in a new style; and translation of new content observed in a new
style. For classification, we embed bilinear models in a probabilistic framework, Separable Mix-
ture Models (SMMs), which generalizes earlier work on factorial mixture models (Hinton9́4,
Ghahramaní95). Significant performance improvement on a benchmark speech dataset shows
the benefits of our approach.
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Abstract

We seek to analyze and manipulate two factors, which we generi-
cally call style and content, underlying a set of observations. We
�t training data with bilinear models which explicitly represent the
two-factor structure. These models can adapt easily during testing
to new styles or content, allowing us to solve three general tasks:
extrapolation of a new style to unobserved content; classi�cation of
content observed in a new style; and translation of new content ob-
served in a new style. For classi�cation, we embed bilinear models in
a probabilistic framework, Separable Mixture Models (SMMs), which
generalizes earlier work on factorial mixture models [7, 3]. Signi�cant
performance improvement on a benchmark speech dataset shows the
bene�ts of our approach.

1 Introduction

In many pattern analysis or synthesis tasks, the observed data are generated from the
interaction of two underlying factors which we will generically call \style" and \con-
tent." For example, in a character recognition task, we might observe di�erent letters
in di�erent fonts (see Fig. 1); with handwriting, di�erent words in di�erent writing
styles; with speech, di�erent phonemes in di�erent accents; with visual images, the
faces of di�erent people under di�erent lighting conditions.

Such data raises a number of learning problems. Extracting a hidden two-factor
structure given only the raw observations has received signi�cant attention [7, 3], but
unsupervised factorial learning of this kind has yet to prove tractable for our focus:
real-world data with subtly interacting factors. We work in a more supervised setting,
where labels for style or content may be available during training or testing. Figure 1
shows three problems we want to solve. Given a labelled training set of observations
in multiple styles, we want to extrapolate a new style to unobserved content classes
(Fig. 1a), classify content observed in a new style (Fig. 1b), and translate new content
observed in a new style (Fig. 1c).

This paper treats these problems in a common framework, by �tting the training data
with a separable model that can easily adapt during testing to new styles or content
classes. We write an observation vector in style s and content class c as ysc. We seek
to �t these observations with some model

ysc = f(as;bc;W ); (1)
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Figure 1: Given observations of content (letters) in di�erent styles (fonts), we want to
extrapolate, classify, and translate observations from a new style or content class.

where a particular functional form of f is assumed. We must estimate parameter
vectors as and bc describing style s and content c, respectively, and W , parameters
for f that are independent of style and content but govern their interaction. In terms
of Fig. 1 (and in the spirit of [8]), the model represents what the elements of each
row have in common independent of column (as), what the elements of each column
have in common independent of row (bc), and what all elements have in common
independent of row and column (W ). With these three modular components, we can
solve problems like those illustrated in Fig. 1. For example, we can extrapolate a new
style to unobserved content classes (Fig. 1a) by combining content and interaction
parameters learned during training with style parameters estimated from available
data in the new style.

2 Bilinear models

We propose to separate style and content using bilinear models { two-factor models
that are linear in either factor when the other is held constant. These simple models
are still complex enough to model subtle interactions of style and content. The empiri-
cal success of linear models in many pattern recognition applications with single-factor
data (e.g. \eigenface" models of faces under varying identity but constant illumina-
tion and pose [15], or under varying illumination but constant identity and pose [5]
), makes bilinear models a natural choice when two such factors vary independently
across the data set. Also, many of the computationally desirable properties of linear
models extend to bilinear models. Model �tting (discussed in Section 3 below) is easy,
based on e�cient and well-known techniques such as the singular value decomposition
(SVD) and the expectation-maximization (EM) algorithm. Model complexity can be
controlled by varying model dimensionality to achieve a compromise between repro-
duction of the training data and generalization during testing. Finally, the approach
extends to multilinear models [10], for data generated by three or more interacting
factors.

We have explored two bilinear models for Eq. 1. In the symmetric model (so called
because it treats the two factors symmetrically), we assume f is a bilinear mapping
given by

ysck = as
T

Wkb
c =

X
ij

asi b
c
jWijk: (2)

The Wijk parameters represent a set of basis functions independent of style and



content, which characterize the interaction between these two factors. Observations
in style s and content c are generated by mixing these basis functions with coe�cients
given by the tensor product of as and bc vectors. The model exactly reproduces the
observations when the dimensionalities of as and bc equal the number of styles Ns

and content classes Nc observed. It �nds coarser but more compact representations
as these dimensionalities are decreased.

Sometimes it may not be practical to represent both style and content with low-
dimensional vectors. For example, a linear combination of a few basis styles learned
during training may not describe new styles well. We can obtain more 
exible, asym-
metric bilinear models by letting the basis functions Wijk themselves depend on
style or content. For example, if the basis functions are allowed to depend on style,
the bilinear model from Eq. 2 becomes ysck =

P
ij a

s
i b

c
jW

s
ijk. This simpli�es to

ysck =
P

j
As
jkb

c
j, by summing out the i index and identifying As

jk �
P

i
asiW

s
ijk. In

vector notation, we have
ysc = Asbc; (3)

where As is a matrix of basis functions speci�c to style s (independent of content), and
bc is a vector of coe�cients speci�c to content c (independent of style). Alternatively,
the basis functions may depend on content, which gives

ysc = Bcas: (4)

Asymmetric models do not parameterize the rendering function f independently of
style and content, and so cannot translate across both factors simultaneously (Fig.
1c). Further, a matrix representation of style or content may be too 
exible and over�t
the training data. But if over�tting is not a problem or can be controlled by some
additional constraint, asymmetric models may solve extrapolation and classi�cation
tasks using less training data than symmetric models.

Figure 2 illustrates an example of an asymmetric model used to separate style and
content. We have collected a small database of face images, with 11 di�erent people
(content classes) in 15 di�erent head poses (styles). The images are 22 � 32 pixels,
which we treat as 704-dimensional vectors. A subset of the data is shown in Fig. 2a.
Fig. 2b schematically depicts an asymmetric bilinear model of the data, with each
pose represented by a set of basis vectors Apose (shown as images) and each person
represented by a set of coe�cients bperson. To render an image of a particular person
in a particular pose, the pose-speci�c basis vectors are mixed according to the person-
speci�c coe�cients. Note that the basis vectors for each pose look like eigenfaces [15]
in the appropriate style of each pose. However, the bilinear structure of the model
ensures that corresponding basis vectors play corresponding roles across poses (e.g.
the �rst vector holds (roughly) the mean face for that pose, the second may modulate
overall head size, the third may modulate head thickness, etc.), which is crucial for
adapting to new styles or content classes.

3 Model �tting

All the tasks shown in Fig. 1 break down into a training phase and a testing phase;
both involve some model �tting. In the training phase (corresponding to the �rst
5 rows and columns of Figs. 1a-c), we learn all the parameters of a bilinear model
from a complete matrix of observations of Nc content classes in Ns styles. In the
testing phase (corresponding to the �nal rows of Figs. 1a,b and the �nal row and last
3 columns of Fig. 1c), we adapt the same model to data in a new style or content
class (or both), estimating new parameters for the new style or content, clamping
the other parameters. Then new and old parameters are combined to accomplish
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Figure 2: An illustraton of the asymmetric model, with faces varying in identity and head
pose.

the desired classi�cation, extrapolation, or translation task. This section focuses on
the asymmetric model and its use in extrapolation and classi�cation. Training and
adaptation procedures for the symmetric model are similar and based on algorithms
in [10, 11]. In [2], we describe these procedures and their application to extrapolation
and translation tasks.

3.1 Training

Let nsc be the number of observations in style s and content c, and let msc =
P
ysc

be the sum of these observations. Then estimates of As and bc that minimize the
sum-of-squared-errors for the asymmetric model in Eq. 3 can be found by iterating
the �xed point equations

Âs =

"X
c

mscbc
T

#"X
c

nscb
cbc

T

#
�1

; b̂c =

"X
s

nscA
s
T

As

#
�1 "X

s

As
T

msc

#
(5)

obtained by setting derivatives of the error equal to 0. To ensure stability, we update
the parameters according to As = (1 � �)As + �Âs and bc = (1 � �)bc + �b̂c,
typically using a stepsize 0:2 < � < 0:5. Replacing As with Bc and bc with as yields
the analogous procedure for training the model in Eq. 4.

If the same number of observations are available for all style-content pairs, there
exists a closed-form procedure to �t the asymmetric model using the SVD. Let the
K-dimensional vector �ysc denote the mean of the observed data generated by style s
and content c, and stack these vectors into a single (K �Ns)�Nc matrix

Y =

2
64

�y11 � � � �y1Nc

...
. . .

�yNs1 �yNsNc

3
75 : (6)

We compute the SVD of Y = USVT , and de�ne the (K � Ns) � J matrix A to be

the �rst J columns of U, and the J � Nc matrix B to be the �rst J rows of SVT .



Finally, we identify A and B as the desired parameter estimates in stacked form (see
also [9, 14]),

A =

2
64

A1

...
ANs

3
75 ; B =

�
b1 � � �bNc

�
: (7)

The model dimensionality J can be chosen in various standard ways: by a priori con-
siderations, by requiring a su�ciently good approximation to the data (as measured
by mean squared error or some more subjective metric), or by looking for a gap in
the singular value spectrum.

3.2 Testing

It is straightforward to adapt the asymmetric model to an incomplete new style s�, in
order to extrapolate that style to unseen content. We simply estimate As

�

from Eq.
5, using bc values learned during training and restricting the sums over c to those
content classes observed in the new style. Then data in content c and style s� can
be synthesized from As

�

bc. Extrapolating incomplete new content to unseen styles
is done similarly.

Adapting the asymmetric model for classi�cation in new styles is more involved,
because the content class of the new data (and possibly its style as well) is unlabeled.
To deal with this uncertainty, we embed the bilinear model within a gaussian mixture
model to yield a separable mixture model (SMM), which can then be �t e�ciently
to data in new styles using the EM algorithm. Speci�cally, we assume that the
probability of a new, unlabeled observation y being generated by style s and content
c is given by a spherical gaussian centered at the prediction of the asymmetric bilinear
model: p(yjs; c) / expf�ky � Asbck2=(2�2)g. The total probability of y is then
p(y) =

P
s;c

p(yjs; c)p(s; c); we use equal priors p(s; c). We assume that the content
vectors bc are known from training, but that new style matrices As must be found
to explain the test data. The EM algorithm alternates between computing soft style
and content-class assignments p(s; cjy) = p(yjs; c)p(s; c)=p(y) for each test vector y
given the current style matrix estimates (E-step), and estimating new style matrices
by setting As to maximize

P
y log p(y) (M-step). The M-step is solved in closed

form using the update rule for As from Eq. 5, with msc =
P
y p(s; cjy)y and

nsc =
P
y p(s; cjy). Test vectors in new styles can now be classi�ed by grouping each

vector y with the content class c that maximizes p(cjy) =
P

s
p(s; cjy).

4 Application: speaker-adaptive speech recognition

This example illustrates our approach to style-adaptive classi�cation on a real-world
data set that is a benchmark for many connectionist learning algorithms. The data
consist of 6 samples of each of 11 vowels uttered by 15 speakers of British English
(originally collected by David Deterding, from the CMU neural-bench ftp archive).
Each data vector consists of 10 parameters computed from a linear predictive analysis
of the digitized speech. Robinson [13] compared many learning algorithms trained
to categorize vowels from the �rst 8 speakers (4 male and 4 female) and tested on
samples from the remaining 7 speakers (4 male and 3 female).

Using the SVD-based procedure described above, we �t an asymmetric bilinear model
to the training data, labeled by style (speaker) and content (vowel). We then used the
learned vowel parameters bc in an SMM and tested classi�cation performance with
varying degrees of style information for the 7 new speakers' data: both style and



content labels missing for each test vector (SMM1), style labels present (indicating a
change of speaker) but content labels missing (SMM2), and both labels missing but
with the test data loglikelihood

P
y logp(y) augmented by a prior favoring temporal

continuity of style assignments (SMM3).

The few training styles makes this problem di�cult and a good showcase for our
approach. Robinson [13] obtained 51% correct vowel classi�cation on the test set
with a multi-layer perceptron and 56% with a 1-nearest neighbor (1-NN) classi�er,
the best performance of the many standard techniques he tried. Hastie and Tibshirani
[6] recently obtained 62% correct using their discriminant adaptive nearest neighbor
algorithm, the best result we know of for an approach that does not model speaker
style. We obtained 69% correct for SMM1, 77% for SMM2, and 76% for SMM3, using
a model dimensionality of J = 4, model variance of �2 = :5, and using the vowel class
assignments of 1-NN to initialize the E-step of EM. While good initial conditions
were important for the EM algorithm, a range of model dimensionality and variance
settings gave reasonable performance.

We also applied these methods to the head pose data of Fig. 2a. We trained on 10
subjects in the 15 poses, and used SMM2 to learn a style model for a new person while
simultaneously classifying the head poses. We obtained 81% correct pose categoriza-
tion (averaged over all 11 test subjects), compared with 53% correct performance for
1-NN matching.

These results demonstrate that modeling style and content can substantially improve
content classi�cation in new styles even when no style information is available during
testing (SMM1), and dramatically so when some style demarkation is available ex-
plicitly (SMM2) or implicitly (SMM3). Bilinear models o�er an easy way to improve
performance using style labels which are frequently available for many classi�cation
tasks.

5 Pointers to other work and conclusions

We discuss the extrapolation and translation problems in [2]. Here we summarize
results. Figure 3 shows extrapolation of a partially observed font (Monaco) to the
unseen letters (see also the gridfont work of [8, 4]). During training, we presented all
letters of the �ve fonts shown at the left. To accomodate many shape topologies, we
described letters by the warps of black particles from a reference shape into the letter
shape. During testing, we �t an asymmetric model style matrix to all the letters of
the Monaco font except those shown in the �gure. We used the best �tting linear
combination of training fonts as a prior for the style matrix, in order to control model
complexity. Using the �t style, we then synthesized the unseen letters of the Monaco
font. These compare well with the actual letters in that style.

Because the W weights of the symmetric model are independent of any particular
style and content class, they allow translation of observations from unknown styles
and content-classes to known ones. During training, we �t the symmetric model to
the observations. For a test observation under a new style and content class, we �nd
as and bc values using the known W numbers, iterating least squares �ts of the two
parameters. Typically, the resulting as and bc vectors are unique up to an uncertainty
in scale. We have used this approach to translate across shape or lighting conditions
for images of faces, and to translate across illumination color for color measurements
(assuming small specular re
ections).

Our work naturally combines two current themes in the connectionist learning liter-
ature: factorial learning [7, 3] and learning a family of many related tasks [1, 12] to



Figure 3: Style extrapolation in typography. The training data were all letters of the 5
fonts at left. The test data were all the Monaco letters except those shown at right. The
synthesized Monaco letters compare well with the missing ones.

facilitate task transfer. Separable bilinear models provide a powerful framework for
separating style and content by combining explicit representation of each factor with
the computational e�ciency of linear models.
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