
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Parsing with Finite-State Transducers

Emmanuel Roche

TR96-30 December 1996

Abstract

Accurately parsing natural language sentences requires large scale and detailed lexical grammars.
We will see that for the problem of parsing natural language sentences, finite-state models are
not an efficient but somewhat inaccurate tool but rather one of the best formalism to represent
accurately complex linguistic phenomena. Finite-state transducers should appeal to the linguist
looking for precise and natural description of complex syntactic structures while the wide range
of formal operations on finite-state transducers provides the designer of parsing programs with
powerful tools to improve parsing efficiency. The parsing programs derived from this approach
are both simple, precise linguistically and very efficient.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Parsing with Finite-State

Transducers

Emmanuel Roche
Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge, MA 02139
e-mail: roche@merl.com

TR-96-30. Version 1.0 November 1996

Abstract

Accurately parsing natural language sentences requires large scale and detailed
lexical grammars. We will see that for the problem of parsing natural language

sentences, �nite-state models are not an e�cient but somewhat inaccurate tool
but rather one of the best formalism to represent accurately complex linguistic

phenomena. Finite-state transducers should appeal to the linguist looking for
precise and natural description of complex syntactic structures while the wide
range of formal operations on �nite-state transducers provides the designer of

parsing programs with powerful tools to improve parsing e�ciency. The parsing
programs derived from this approach are both simple, precise linguistically and

very e�cient.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1996

201 Broadway, Cambridge, Massachusetts 02139

Revisions history.

1

1 Introduction

Finite-State methods have recently improved computational e�ciency for a
wide variety of natural language processing tasks; ranging from morphological
analysis [15, 26, 2] to phonetic and speech processing [22, 17, 18].

However, �nite-state modeling is usually thought as a necessary evil in the
sense that more powerful formalisms such as context-free grammars are more
accurate but of intractable size for reasonable e�ciency. A clear illustration
of this view comes from the �eld of speech recognition in which grammars are
often given in a context-free form but the size of the data and the �nite-state
nature of most representations (phoneme or word lattice for instance) make it
di�cult and ine�cient to use general algorithms such as the Earley parsing.
Complex grammars are therefore approximated by �nite-state models [21]. In
these situations, approximations lead to more e�cient and simpler parsing
strategies at the cost of a lost of accuracy.

We will see here that for the problem of parsing natural language sentences,
�nite-state models are not an e�cient but somewhat inaccurate tool but rather
one of the best formalism at hand to represent accurately complex linguistic
phenomena. The use of �nite-state transducers for parsing should appeal both
to the linguist looking for precise and natural description of complex phenom-
ena and to the implementer of e�cient parsing programs.

From a computational point of view, �nite-state transducers can be used
to parse very large scale lexical grammars. Some of the formal characteristics
of transducer parsing include:

� very large scale grammars are represented in a compact form. Parts of
di�erent rules that are similar are represented only once,

� factorization, determinization and minimization of transducers can be
used to generate more e�cient parsers [24],

� the grammar compilation, input sentences and the parsing use homoge-
neous representations,

� parsing and building the grammar are the same operation, i.e. a rational
transduction,

� transforming a CFG into a transducer is yet another transduction,

These properties have been described and illustrated on a large coverage
grammar of French in [23].

From a linguistic point of view, we take here a complementary approach
to [10] in this volume which shows that FSA is a very natural framework
for the task of designing large coverage and lexicalized grammars. We focus

MERL-TR-96-30. Version 1.0 November 1996

2

on the process of parsing a sentence, therefore assuming that a very precise
grammar is already available. While our main point is not grammar design,
the discussion should shed light on several important problems and solutions
involved at the grammar building stage.

One of the main drawback in using context-free grammars for modeling
language is the inability or the di�culty of handling various types of deletion.
Consider the sentence

(1) He expected John to buy a new book.

In the transformational grammar of Z. S. Harris (see [12] for instance), this
sentence is analyzed as the verb expected (an operator) taking three arguments:
(1) the subject he, (2) the �rst complement John and (3) the sentence John
buys a new book; the application of the verb operator deletes the subject of
the last argument to transform the sentence into the in�nitive clause to buy
a new book. In order to handle this situation with context-free grammars,
each sentence has to be described both with its declarative form, say N buy
N, and with its in�nitive clause form, say to buy N. This might not seem to
be a di�cult problem at �rst but recall that grammars have to be lexicalized
(see [7, 1] for instance), that is, each rule should contain an explicit word, and
therefore this type of duplication, which is only one duplication among many
others, has to be repeated throughout the whole lexicon.

The next section will give a short background about parsing viewed as
a string transformation (the formal de�nitions of the objects manipulated in
this chapter are given in the general introduction of this volume). The follow-
ing section, describing one of the ways context-free languages can be parsed
with �nite-state transducers, give the general framework for transducer pars-
ing. Section 4 shows that the interaction between morphology and syntax can
be viewed as a simple sequence of �nite-state operations. Section 5, shows,
through a variety of linguistic examples, that transduction parsing is well
adapted to transformational grammars and that, in addition to lead to ef-
�cient parsing strategies, it also leads to more accurate sentence analysis. We
will see in Section 6 that both parsing and grammar design can be viewed as
a simple transduction operation; this similarity can be used to precompile the
analysis of language sequences that are �nite-state in nature. Section 7 details
a typical example of tree adjoining grammar to show that there is a natural
way of converting a tree adjoining grammar into a single �nite-state trans-
ducer. The transducer associated to a tree adjoining grammar also de�nes a
parser for this grammar. Since the tree adjoining grammar formalism, which
is strictly more powerful than context-free grammars, was designed speci�cally
to render more accurately syntactic phenomena, this is another illustration of
the fact that transducer parsing is a tool well adapted to the complexity of
natural language.

MERL-TR-96-30. Version 1.0 November 1996

3

2 Background

Parsing will be considered here as a string transformation process. Namely,
if �g represents the set of symbols, such as (N , N) or (S, used to mark the
syntactic analysis; if �w is the list of words in the language, then a parser is a
mapping

parser : ��
w �! 2(�

�

g��
�

w��
�

g)
�

such that, for instance, a sequence of words like:

(2) John left this morning.

is transformed into a set of of outputs representing the analysis of this
sentence:

(3) (S (N John N) (V left V) (N this morning N) S)

Here the set contains only one element but is would contain more than one
element if the sentence was syntactically ambiguous.

In practical systems parsing will be broken up into two phases: (1) a mor-
phological analysis and (2) the syntactic analysis. In order to simplify the
exposition, in the following section as well as in most of this chapter, we will
make the assumption that the syntactic analysis applies directly on the words
and that morphological information is available when necessary. This simpli-
�cation is justi�ed in Section 4.

3 A Top-Down Parser for Context-Free Gram-

mars

One way of parsing context-free grammars with �nite-state transducers con-
sists of modeling a top-down analysis. Consider the sentence

(4) John thinks that Peter kept the book

and suppose the we have the syntactic data of Table 1.
This data can be seen as a sample of a syntactic dictionary in which the keys

are the structures and the information is the type of the structure (sentence
structure, noun structure). Such a syntactic dictionary would look like the
sample of Figure 11.

1This grammatical representation is motivated by the fact that grammatical representa-
tions, whatever the formalism they are expressed in, should be lexicalized. The linguistic
motivation comes from Z.S. Harris [12] and Maurice Gross [6, 7].

MERL-TR-96-30. Version 1.0 November 1996

4

N thinks that S S
N kept N S
John N
Peter N
the book N

Table 1: syntactic dictionary for John thinks that Peter kept the book

...
N think,S
N think that S,S
...
N say N,S
N say that S,S
N say N to N,S
N say that S to N,S
N say to N that S,S
...
John,N
...
the book,N
...

Figure 1: Sample of the Syntactic Dictionary

The �rst step of building a parser consists of transforming each entry of this
syntactic dictionary into a �nite-state transducer. The �nite-state transducer
related to an entry will be the machine responsible for analyzing a sentence
with this structure. Here, this will lead to the transducers2 of Table 2 which
can be seen as a dictionary of transducers.

Each transducer represents a transduction from �� to �� where � = �w [
�g. For instance, the transducer associated to the structure N thinks that S
(the �rst transducer of Table 2), that we denote Tthinks that, will map (5) to
(6).

(5) [S John thinks that Peter kept the book S]
(6) (S [N John N] thinks that [S Peter kept the book S] S)

Formally, Tthinks that(5) = (6).

2On this graph, the symbol ? stands for any symbol in the alphabet considered and the
symbol <E> stands for the empty word �.

MERL-TR-96-30. Version 1.0 November 1996

5

S N thinks that S [S a thinks that b S] ! (S [N a N] <V thinks V> that [S b S] S)

[S/(S

?/?

0
<E>/[N

1

?/?

<E>/N]
2

thinks/thinks
3

that/that
4 <E>/[S

5

?/?

<E>/S]
6

S] / S)

7

S N kept N [S a kept b S] ! (S [N a N] <V kept V> [N b N] S)

[S:(S

?/?

0
<E>:[N

1

?/?

<E>/N]
2

kept/kept
3 <E>/[N

4

?/?

<E>/N]
5

S] / S)

6

N John [N John N]! (N John N)

[N / (N

?/?

0
John/John

1

N] / N)

2

N Peter [N Peter N]! (N Peter N)

?/?

[N / (N
0

Peter/Peter
1

N] / N)

2

N the book [N the book N]! (N the book N)

[N / (N

?/?

0
the/the

1

N] / N)

2
book/book

3

Table 2: Transducers associated to each structure

Given the dictionary we de�ne the grammar

Tdic =
[

Ti2dic

Ti

MERL-TR-96-30. Version 1.0 November 1996

6

as being the union of all the transducers de�ned in the dictionary. For
instance, if dic1 is the dictionary de�ned in Table 2, then Tdic1 is the transducer
represented of Figure 2.

[N / (N

[S/(S

?/?

0
<E>/[N1

?/?

<E>/N]
2

kept/kept

thinks/thinks
3

that/that
4 <E>/[S

5

?/?

<E>/S]
6

S]/S)

7

<E>/[N
8

?/?

<E>/N]9Peter / Peter

John / John

the/the

10

book/book11

N] / N)

12

Figure 2: Transducer Tdic1 representing the syntactic dictionary dic1

This transducer being given, parsing simply consists of applying the trans-
ducer on the input and checking whether the output is di�erent from the input;
if it is, then the transducer is applied again. The process is repeated until the
input is not modi�ed. Formally,

parser = T1
dic

On the example of the input (5), the parsing is illustrated below:
[S John thinks that Peter kept the book S]

(Tdic1)
(S [N John N] thinks that [S Peter kept the book S] S)
(S [N John thinks that Peter N] kept [N the book N] S)

(Tdic1)
(S (N John N) thinks that (S [N Peter N] kept [N the book N] S) S)

(Tdic1)
(S (N John N) thinks that (S (N Peter N) kept (N the book N) S) S)

The input sequence is given on top and the �rst application of Tdic1 results
in two outputs. We reapply the transducer on each one, the �rst one leads
to the next sequence while the second one has no output. Finally, the latest
sequence is:

(7) (S (N John N) thinks that (S (N Peter N) kept (N the book N) S) S)

which is also the analysis of the input.
The parsing is described here as the application of a transducer on a string

however, in practice, the input strings are represented by FSAs and the trans-
ducers therefore apply on these FSAs directly. For instance, the input sentence
is initially represented by the at automaton of Figure 3.

MERL-TR-96-30. Version 1.0 November 1996

7

[S John thinks that Peter kept the book S]

Figure 3: Automaton representing the input sentence

Once Tdic is available, the parsing algorithm is therefore extremely simple
to describe, it is given on Figure 4 in which the function Apply transducer,
takes a transducer and an automaton as input and outputs an automaton.
Each string of this output automaton is an output of a string represented by
the input automaton through the transducer.

TransducerParse

Input: Tdic, sentence
sent1 = sentence;
while ((sent2 = Apply transducer(Tdic; sent1))! = sent1)

sent1 = sent2;
Output: sent1

Figure 4: Parsing algorithm

A trace of the parsing of the example above is given on Figure 5. The
�gure shows that each transduction is applied on a �nite-state automaton, a
directed acyclic graph here, representing a �nite set of strings.

4 Morphology

The transducers representing the sentence structures in the previous section
apply directly on the inected words like thinks or kept. Hence, in order build
a full parser, one would have to duplicate each transducer for all the inected
forms of a given noun or verb. For instance, the transducer representing the
sentence structure N kept N should a priori be duplicated into the transducer
representing N keep N and N keeps N. Obviously, such an approach is highly
redundant and space consuming and for languages with higher inexion vari-
ability (French, Italian, Spanish for instance) this type of duplication is not
feasible. A more practical approach consists of decomposing the parsing pro-
cess into a morphological analysis and the syntactic analysis per se. The
morphological analysis will map each inected word into a unique canonical
form (the in�nitive form for a verb or the singular form for a noun) plus a
list of morphological features such as tense, person or number. The individual

MERL-TR-96-30. Version 1.0 November 1996

8

[S John thinks that Peter kept the book S]

(Tdic1)

(S John

N]

thinks that Peter kept the book N] S)[N

thinks that Peter kept[S the book

S]

N] [N

(Tdic1)

(S John
N)

S)
(N

thinks that Peter

kept

(S

the book S)

[N N]

[N N]

(Tdic1)

(S John
N)

S)
(N

thinks that Peter

kept

(S

the book S)

(N N)

(N N)

Figure 5: Parsing trace of the example

syntactic transducers will now be described as applying on the canonical forms
rather than on the inected words.

In �rst approximation, the morphological analysis is a dictionary lookup
which can also be formalized as a string transformation process. Indeed, con-
sider the sentence

(8) John left this morning.

Each of the four words of this sentence should be an entry in a morphologi-
cal dictionary3. The information related to each entry is a list of morphological
interpretations for this entry. For instance, the ambiguous string left could be
a noun, a verb or an adjective and the information associated to left should
therefore give all these interpretations. More formally, each interpretation can
be written as a sequence of symbols. For instance, the interpretation of left as
the past tense of the verb to leave will be the sequence:

(9) # v pt leave left

3The precise description of such dictionaries is described in [3]. See also [26] and [27] in
this volume for other kinds of precise treatment of morphological analysis.

MERL-TR-96-30. Version 1.0 November 1996

9

with the convention that the symbol # marks the starting point of the
interpretation, that v stands for verb, that pt stands for past tense and that
the word leave is the canonical form of the word (in�nitive form here) whereas
the last symbol is the word itself. With this representation, the entry of the
string left in the morphological dictionary will be the following4:

left # v pt leave left
v pp leave left
ns left
adv left
adj left

With these conventions, each interpretation is a string of

f#g � ��
m � �w

in which

� �w is the list of words and symbols such as eat, John, left, leave that can
appear in the text being analyzed,

� �m contains symbols representing morphological features (such as pt, ns
or adv) and the canonical forms of the words (such as leave).

Moreover, since the information associated to a word is a list of interpre-
tations, the information is an element of

2(f#g��
�

m��w)

and the dictionary lookup is therefore a mapping from words to morpho-
logical information, that is:

lookup : ��
w ! 2(f#g��

�

m��w)

The whole dictionary can therefore be viewed as a string transformation.
For instance, the sub-dictionary necessary to analyze Sentence (8) can be rep-
resented as follows:

4We use the additional following conventions: pp: past participle, ns: singular noun, adv:
adverb, adj: adjective.

MERL-TR-96-30. Version 1.0 November 1996

10

John ! # pn John

v pt leave left
v pp leave left

left ! # ns left
adv left
adj left

this ! # det this
det this

morning ! # ns morning

The function lookup takes individual words as input, it can be general-
ized into the function morpho that associates to each sequence of words, e.g.
sentence, its morphological interpretations. Formally,

morpho = lookup�

that is,

morpho(a � b) = lookup(a) � lookup(b)

and therefore morpho is a function mapping a sequence of words to a set
of sequences of words and morphological information:

morpho : ��
w ! 2(f#g��

�

m��w)
�

For instance, the following sequence, which is the correct interpretation of
(8),

(10) # pn John # v pt leave left # det this # nn morning # .

is an element of morpho(8). Obviously,morpho(8) doesn't contain only the
correct morphological interpretation, it contains all the possible interpreta-
tions. At this point it is important to notice that number of interpretations of
a sentence is typically very high. For instance (8) contains 5�2 interpretations,
and this number grows exponentially with the length of the sentence. Hence,
the result of the mapping of morpho will not be the explicit list of strings
representing each interpretation, this would be unmanageable, but rather a
�nite-state automaton representing this set of interpretations. For instance,
morpho(8) will be represented by the automaton of Figure 6.

The syntactic analysis will run on the result of the preliminary morpholog-
ical analysis. In other words, the whole parsing process, which is a mapping:

MERL-TR-96-30. Version 1.0 November 1996

11

pn John

adv

adj

ns

v

pp

pt leave left #

pro

det this # ns morning # .

Figure 6: Automaton representing a morphological analysis.

parser : ��
w
�! 2(�

�

g��
�

w��
�

g)
�

will be broken as indicated in the following diagram:

��
w 2(�

�

g��
�

w��
�

g)
�

morpho " morpho
�1

2(f#g���

m���

w)
� syntax
�! 2(�

�

g �f#g���

m���

w��
�

g)
�

In the example of sentence (8), we can illustrate this decomposition as
follows:

John left this morning.
(morpho)

...
pn John # v pt leave left # det this # nn morning # .
pn John # v adj left # det this # nn morning # .

...
(syntax)

(S (N # pn John N) (V # v pt leave left V) (N # det this # nn morning N) S) # .
(morpho�1)

(S (N John N) (V left V) (N this morning N) S)

The morphological analyzer applies directly on the input string to produce
a set of morphological interpretations for this sentence. The syntactic analysis
is then performed by syntax on each morphological interpretation, that is on
the automaton representing the set of interpretations. A �nal stage, denoted
morpho�1, removes the symbol representing the morphological features as well
as the canonical forms introduced by the �rst step.

In order for the syntactic analysis to apply on the result of the morpho-
logical analysis, each syntactic transducer should be adjusted to handle inputs
of the correct shape, that is, outputs generated by the morphological analy-
sis. For instance, the transducer Tkept (second transducer of Table 2) will be

MERL-TR-96-30. Version 1.0 November 1996

12

replaced by the transducer T 0
keep of Figure 7. In this transducer, the transi-

tion kept/kept is replaced by a sequence of transitions labeled #/# v/v ?/?
keep/keep ?/? that will take any string of the shape5

� v�? � keep�?

Such strings are the morphological interpretation of any form of the verb to
keep. Note that without a morphological analysis, the grammar should contain,
in addition to Tkept, two similar transducers Tkeep and Tkeeps. By contrast, only
T 0
keep will be used now.

[S/(S

?/?

<E>/[N

?/?

<E>/N] #/# v/v ?/? keep/keep ?/? <E>/[N

?/?

<E>/N]

S]/S)

Figure 7: Syntactic transducer to be combined with a morphological analysis.

As a by-product of such decomposition, it becomes straight-forward to
transform the syntactic analysis into a part-of-speech tagger (i.e. a program
that disambiguates each word). In fact, if morpho�1 is replaced by a map-
ping gram�1 that removes the syntactic markers instead of the morphological
symbols. The �nal result is a string representing the exact morphological in-
terpretation of each word. In other words, the process de�ned by the following
diagram:

��
w 2(f#g���

m���

w)
�

morpho " gram
�1

2(f#g���

m���

w)
� syntax
�! 2(�

�

g�f#g���

m���

w��
�

g)
�

will take sentence (8) and process as described on Figure 8.
Another natural consequence of this approach is that a local grammar

disambiguation can take place between the dictionary lookup and the syntactic
analysis. The introduction chapter showed how it is possible to state negative
constraints on morphological interpretations of sentences. By doing that, the
number of ambiguities decreases signi�cantly. Formally, a set of constraints

5Recall that ? stands for any string.

MERL-TR-96-30. Version 1.0 November 1996

13

John left this morning.
(morpho)

...
pn John # v pt leave left # det this # nn morning # .
pn John # v adj left # det this # nn morning # .

...
(syntax)

(S (N # pn John N) (V # v pt leave left V) (N # det this # nn morning N) S) # .
(gram�1)

pn John # v pt leave left # det this # nn morning # .

Figure 8: Part-of-speech tagging through syntactic analysis

he Pro hopes N

V

that

Pro

Conj

Det

this Det

Pro

works N

V

Figure 9: Automaton representing the morphological analysis of he hopes that
this works

C1, .. Cn, represented each by a �nite-state automaton, is applied on the
sentence by the following operation:

S0 = S � �� � (C1 [: : : [Cn) � �
�

Recall that for instance, if S is the sentence represented by the automaton
of Figure 9 and if the constraints are represented by the two automata of
Figure 10 then S0 is given by the automaton of Figure 11. Note that this
representation is less ambiguous than S.

Using local constraints can improve the speed of the whole process. Such
an analyzer can be summarized by the decomposition diagram of Figure 12:

that Det this Det that Det ? V

Figure 10: Automata representing two negative rules.

MERL-TR-96-30. Version 1.0 November 1996

14

he Pro hopes N

V

that

Pro

Conj

Det

this
Pro

Det

works
N

Vthis
Pro

works
N

Figure 11: Result of the application of the negative rule of Figure 10 to Fig-
ure 9.

��
w 2(�

�

g��
�

w��
�

g)
�

morpho " morpho
�1

2(f#g���

m���

w)
�

local

2(f#g���

m���

w)
� syntax
�! 2(�

�

g�f#g���

m���

w��
�

g)
�

Figure 12: Parsing Diagram (Local Grammar included)

5 A Parser for Transformation Grammars

In this section, we will illustrate the exibility of the �nite-state transducer
formalism through a few examples of increasing linguistic complexity.

5.1 Modal Verbs

Since input sentences, analyzed sentences, and partially analyzed sentences can
be written in the same formalism, namely as strings in ��, we can generalize the
transducer associated to each structure such that it handles partially analyzed
sentences. This extension will make the analysis of apparently very diverse
linguistic phenomena homogeneous.

The structure

(11) N <V read V> N

is handled by the transducer TN read N , de�ned by

MERL-TR-96-30. Version 1.0 November 1996

15

[S a read b S]
#

(S [N a N] <V read V> [N b N] S)

We now extend it such that it recognizes an already partially analyzed
sentence. For instance, TN read N is extended to realize the additional following
mappings:

(12) [S [N a N] read b S]! (S [N a N] <V read V> [N b N] S)
(13) [S [N a N] <V read V> [N b N] S]! (S [N a N] <V read V> [N b N] S)
(14) [S N read N S]! (S N <V read V> N S)

In (12), a had already been detected as a noun phrase. In a similar way,
in (13), the whole structure has already been recognized and in this case the
transduction acts as a recognizer. In (14), the transducer just checks whether
the proposed structure is correct with respect to the verb.

In addition to these generalizations, the transducer should be able to han-
dle sentences in which sequences, such as adverbials, have been inserted, and
therefor perform the following mappings:

(15) [S a read b <OP c OP> S]! (S [N a N] read [N b N] <OP c OP> S)
(16) [S a <OP d OP> read b S]! (S [N a N] <OP d OP> <V read V> [N b N] S)

in which the <OP and OP>markers6 de�ne a sequence that can be ignored
during parsing. In practice, the sequence of words c could be an adverbial like
yesterday and d could be a modal verb such as could.

Let us can now consider the following sentence:

(17) John should v read this book

in which v represents a morphological tag that we suppose results from a
morphological analysis. should is considered to be an operator that applies on
a sentence [12]. It takes a sentence of structure, for instance,

N V W

in which W stands for any sequence of complements, and it produces the
same sentence with should inserted:

N should V W

6OP stands for operator. In fact, [8] shows that adverbials are often, but not always,
analyzed as transformational operators on sentences. In other words, an adverbial is an
operator that takes one argument: a sentence.

MERL-TR-96-30. Version 1.0 November 1996

16

.
From the analysis point of view, if a sequence contains should between what

could be a subject and a verb, then the same sequence, minus should, should
be analyzed as a sentence. In terms of string transformation, the analysis of
John should read this book is done as follows:

[S John should read v this book S]
#

[S [N John N] <OP should OP> v read this book S]
#

(S [N John N] <OP should OP> <V v read V> [N this book N] S)
#

(S (N John N) <OP should OP> <V v read V> (N this book N) S)

The second and third transformations are already handled by Tdic as de-
scribed before. The �rst transformation is a translation of the fact that if John
should read this book has to be analyzed as a sentence, then John read this book
should be analyzed as a sentence whose subject is John and whose main verb
is read. This is taken care of by TN should W , the transducer associated to the
structure N should V W in the syntactic dictionary. TN should W computes the
following mappings:

[S a should v c S]
#

[S [N a N] <OP should OP> v c S]

[S a should v <OP d OP> c S]
#

[S [N a N] <OP should <OP d OP> OP> v c S]
The �rst mapping was the one used in the example above, it keeps the

markers [S and S] meaning that the sequence still have to be analyzed as a
sentence. The second mapping handles the case in which another operator had
already been inserted.

TN should W should therefore be added to Tdic.
The analysis of sentences with the auxiliary verb to have can be handled in

a similar way. A further addition to Tdic, namely TN have W , will include the
following mapping7:

(18) [S a have v c S] ! [S [N a N] <OP have OP> v c S]

It is possible to analyze sentences in which several operators are used. For
instance, a sentence like:

7Whether a verb can take to have as an auxiliary can be added in this transducer.

MERL-TR-96-30. Version 1.0 November 1996

17

(19) [S John should have read this book S]

will be analyzed as follows:

[S John should have v this book S]
#

[S [N John N] should <OP have OP> v read this book S]
#

[S [N John N] <OP should <OP have OP> OP> v read this book S]
#

(S [N John N] <OP should <OP have OP> OP> <V v read V> [N this book N] S)
#

(S (N John N) <OP should <OP have OP> OP> <V v read V> (N this book N) S)

in which, as above, sequences enclosed in <OP and OP> markers, once
inserted, are simply ignored at latter stage of the analysis. The result of the
parsing, namely the string

(S (N John N) <OP should <OP have OP> OP> <V v read V> (N this book N) S)

should be interpreted as follows: John read this book is the main sentence
with John as subject, read as verb and this book as direct object. On this
sentence, the operator have is �rst applied which leads to the more complex
sentence John has read this book. Finally, the operator should is applied on
the previous sentence which leads to the actual sentence John should have read
this book.

The same strategy can be used to handle discontinuous operators such as
not : : : so much. Consider the following sentence:

(20) John should not read this book so much.

The �rst step of the analysis recognizes both not and so much as being one
discontinuous operator. The analysis goes as follows:

[S John should not v this book that much S]
#

[S [N John N] should <OP not OP> v read this book <OP not that much OP> S]
#

[S [N John N] <OP should <OP not OP> OP> v read this book <OP not that much OP> S]
#

(S [N John N] <OP should <OP not OP> OP> <V v read V> [N this book N] <OP not that much OP> S)
#

S (N John N) <OP should <OP not OP> OP> <V v read V> (N this book N) <OP not that much OP> S)

MERL-TR-96-30. Version 1.0 November 1996

18

The symbol not is inserted such that the �nal analysis of the sentence
clearly identi�es not : : : so much as one single operator. To achieve the previous
analysis, a transducer Tnot so much needs to be added to the whole grammar.
Tnot so much is de�ned functionally by:

[S a should not v b so much S]
#

[S [N a N] should <OP not OP> v b <OP not so much OP> S]

5.2 Operators on a sentential complements

Another typical situation can be found in sentences like

(21) John expected Mary to come.

in which the operator expected takes three arguments: a noun, namely John,
a second noun, namelyMary, and a sentence, namelyMary came. The subject
of the second argument is used as �rst complement and it is deleted from the
argument sentence Mary came. We want to have a �nite-state transducer
representing expected, or more precisely the structure8

N expected N to �N V W

such that nothing has to be changed in the transducer associated to N
come. In other words, the analysis of Mary came should remain as it would be
if it where a simple isolated sentence. We achieve this goal with a transducer
representing N expected N to �N V W that, not only puts boundary markers
around N, but also explicitly adds an N symbol that stands for the deleted
noun phrase. For the sentence (21), the transformation is the following:

[S John expected Mary to come S]
#

(S [N John N] <V expected V> [N Mary N] [S N <OP to OP> come S] S)

and the analysis continues as follows:

(S [N John N] <V expected V> [N Mary N] [S N <OP to OP> come S] S)
#

(S (N John N) <V expected V> (N Mary N) (S N <OP to OP> <V come V> S) S)

8The structure N expected N to �N V W could also be written N expected N to Vinf W.
The �st notation emphasizes the fact that the subject of the second verb is deleted. The
second structure, on the other hand, emphasizes the fact that the surface form of the second
argument is an in�nitive clause.

MERL-TR-96-30. Version 1.0 November 1996

19

This last step is possible because TN come as been generalized as described
at the beginning of this section. Namely, the symbol N can be used in place of
an actual noun phrase and the sequence enclosed by <OP and OP> is ignored.

For the same sentence, with an additional adverbial:

(22) John expected Mary to come yesterday.

the analysis goes as follows:

[S John expected Mary to come yesterday S]
#

(S [N John N] <V expected V> [N Mary N] [S N <OP to OP> come yesterday S] S)
#

(S (N John N) <V expected V> (N Mary N) (S N <OP to OP> come <OP yesterday OP> S) S)
#

(S (N John N) <V expected V> (N Mary N) (S N <OP to OP> <V come V> <OP yesterday OP> S) S)

Note that, simultaneously to this analysis, the parser performs the analysis
in which the adverbial yesterday is attached to the verb expected rather than
to the verb came. In fact, the sentence is ambiguous and the correct result of
a syntactic analysis should provide these two analyses.

5.3 Support Verb Construction

[9] demonstrates that three categories of sentences have to be considered to
build complete grammars. The �rst category consists of free sentences like John
eats potatoes, the second one consists of sentences like John makes concessions,
with complements with a smaller degree of variability. They are called support
verb constructions. Finally, the third category consists of frozen sentences, or
idiomatic expressions, such as John kicks the bucket, in which one or several
arguments, e.g. complements, are �xed. The rest of this section presents a few
typical problems encountered while handling sentences of one of the last two
categories.

The following sentences are example of support (or light) verb constructions.

(23) John makes concessions to his friend.
(24) John makes a right turn
(25) � John makes a right turn to his friend.
(26) John's concessions to his friend were unexpected.

If make is analyzed as a verb such as read then sentences (23) and (24)
should be analyzed with the structures

(27) N0 makes N1 to N2

MERL-TR-96-30. Version 1.0 November 1996

20

(28) N0 makes N1

This analysis takes the verb as the head of the sentence but fails to explain
why sentence (25) is forbidden.

Furthermore, (23) is clearly present in sentence (26). In fact, the noun
phrase construction N's N to N is not general and

(29) * John's turn to his friend.

is clearly forbidden too. These two observations, among others (see [5]),
lead to analyze sentences such as (23) with the noun (called predicative noun)
as the real head and the verb, called support verb (or light verb), as support
for the tense. (23) will therefore be described by the structure

(30) N0 (Vsup make Vsup) (Npred concessions Npred) to N1

The diversity of the following examples, with the support verb take, further
illustrates that the predicative noun, and not the verb, governs the number
and the nature of the arguments.

(31) John takes a decision.
(32) John takes a look at this.
(33) John takes advantage of his position.
(34) John takes credible steps toward solving this problem.
(35) The party is not likely to take a backseat.

To be able to parse such sentences each of the following transducers9, cor-
responding respectively to (23), (31), (32) and (33) should be added to the
global syntactic dictionary

[S a make concessions to b S] !
(S [N a N] < Vsup make Vsup > < Npred concessions Npred > to [N b N] S)

[S a take a decision S] !
(S [N a N] <Vsup take Vsup> <Npred a decision Npred> S)

[S a take a look at b S] !
(S [N a N] <Vsup take Vsup> < Npred a look Npred> at [N b N] S)

[S a take advantage of b S] !
(S [N a N] < Vsup take Vsup > < Npred advantage Npred > of [N b N] S)

Figure 13 gives the trace of the analysis of sentence (23).

9Here, the transductions are de�ned functionally but in practice they are de�ned by their
graph representation.

MERL-TR-96-30. Version 1.0 November 1996

21

[S John makes concessions to his friend S]
#

(S [N John N] <Vsup makes Vsup> Npred< concessions Npred> to [N his friend N] S)
#

(S (N John N) <Vsup makes Vsup> Npred< concessions Npred> to (N his friend N) S)

Figure 13: Trace of a Support Verb Construction Analysis

5.4 Support Verb and Sentential Clause

In sentence (34), the construction John takes credible steps toward is followed
by a sentence clause whose verb's subject is also the subject of the main clause,
that is, John. The analysis works as follows: the input sequence for the parsing
transducer is

(36) [S John takes credible steps toward Ving solving the problem S]

in which Ving is a marker generated by the morphological analysis10.
We build the grammar such that the �rst application of the transduction

to (36) leads to the following sequence:

(37) (S [N John N] <Vsup takes Vsup> <Npred credible steps Npred> to-
ward OPN0!NS [S N V(ing) solving the problem S] S)

This performs simultaneously the following eight actions:

� the subject is enclosed into [N and N] brackets,

� the sequence take credible steps toward is recognized,

� take is marked as a support verb with <Vsup and Vsup>,

� credible steps is marked as a predicative noun with <Npred and Npred>,

� solving is recognized as a verb in ing form,

� solving this problem is marked as a sentence to be recognized while a
subject marker N is added.

� The morphological marker Ving is transformed into the marker V(ing) to
signify that although the verb was originally in the ing form, it has to be
considered as a simple conjugated verb during the rest of the analysis.

10Recall that, in practice, the transduction doesn't apply on the text directly but to the
sequence of words and symbols representing the result of the morphological analysis.

MERL-TR-96-30. Version 1.0 November 1996

22

� A marker OPN0!NS is inserted to link the subject of the sentence with
the subject of the ing clause, that is the subject of solving.

This should be interpreted in the context of transformation grammars in
which the sentence is analyzed as the operator John takes credible steps toward
applying to the sentence John solves the problem. The subject of the second
sentence is deleted within this operation.

The second step of the analysis consists of analyzing John as a nominal
and N V(ing) solving the problem as a sentence. The sentence structure N solve
N should therefore be compiled into a transduction that takes into account
both the possibility for the sentence to appear by itself, e.g. John solves the
problem, or, as in our example, to appear as an ing clause. In order to handle
both situations, the grammar should perform the following two mappings:

[S a solve b S] ! (S [N a N] <V solve V> [N b N] S)
[S N V(ing) solving b S] ! (S N V(ing) <V solving V> [N b N] S)

The application of the grammar to the sequence of (37), i.e. the second
step of the analysis of (36), leads to the following sequence:

(38) (S (N John N) <Vsup takes Vsup> <Npred credible steps Npred>
toward OPN0!NS (S N V(ing) <V solving V> [N the problem N] S)
S)

and �nally to the analysis

(39) (S (N John N) <Vsup takes Vsup> <Npred credible steps Npred>
toward OPN0!NS (S N V(ing) <V solving V> (N the problem N) S)
S)

5.5 Support Verb Recovery in Noun Clauses

Let us now consider a di�erent sentence:

(40) [S John's concessions to his friend were unexpected S]

The di�culty is to analyze correctly the nominal John's concessions to his
friend. Recall that the grammar should not contain a rule that says that the
structure N 0sNtoN can always form a nominal, this would generate many
incorrect analyses. In fact, this type of nominal is made possible here by the
underlying support verb construction

(41) John makes concessions to his friend

MERL-TR-96-30. Version 1.0 November 1996

23

and the analysis should therefore reduce the problem of analyzing the nom-
inal into the analyzing this sentence. The �rst application of the transducer
representing the grammar will transform the original sentence (40) into the
following one:

(42) (S [N John's concessions to his friend N] <V were V > [ADJ unex-
pected ADJ] S)

Linguistically, a sentence, such as (41), of the shape11

(43) N Vsup Npred W

can often be transformed into a nominal with the following shape:

(44) N 's Npred W

in which the support verb disappears. To cover this phenomenon, the
following mapping, corresponding to the nominal structure (44) should be
added to the grammar

[N a 's concessions to b N] ! (N [S a Vsup ? concessions to b S] N)

The transduction representing the structure

(45) N make concessions to N

should also perform the two mappings

[S a make concessions to b S] !
[N a N] < Vsup make Vsup > < Npred concessions Npred > to [N b N] S)

[S a Vsup make concessions to b S] !
(S [N a N] Vsup < Vsup make Vsup > < Npred concessions Npred > to [N b N] S)

The �rst one handles sentences such as (41) and the second one validates
the support verb construction hypothesis.

With these mappings, the analysis of (40) is performed as indicated on Fig-
ure 14. Here again, the underlying support verb sentence is explicitly recovered
during parsing and can be extracted from the resulting analysis.

11W represents any number of arguments; the type and number of arguments depend on
the predicative noun Npred.

MERL-TR-96-30. Version 1.0 November 1996

24

[S John's concessions to his friend were unexpected S]
#

(S [N John's concessions to his friend N] <V were V > [ADJ unexpected ADJ]S)
#

(S (N [S John Vsup ? concessions to his friend S] N) <V were V >
(ADJ unexpected ADJ) S)

#
(S (N (S [N John N] Vsup <Vsup make Vsup> <Npred concessions Npred>

to [N his friend N] S) N) <V were V > (ADJ unexpected ADJ) S)
#

(S (N (S (NN John N) Vsup <Vsup make Vsup> <Npred concessions Npred>
to (N his friend N) S) N) <V were V > (ADJ unexpected ADJ) S)

Figure 14: Analysis of the sentence John's concessions to his friend were un-
expected

5.6 Hidden Support Verb Constructions

Let us now consider the following more complex sentences:

(46) John asked Peter for an immediate decision
(47) John asked Peter for his belongings
(48) John asked Peter for a ride

which share the common surface sentence structure:

(49) N0 ask N1 for N2

However, describing such sentences only with the surface structure is not
su�cient. In fact, such description would not explain why the following sen-
tence

(50) * They asked Peter for their immediate decision

is not accepted, contrary to

(51) They asked Peter for his immediate decision
(52) They asked Peter for his belongings
(53) They asked Peter for their belongings

The linguistic explanation is that sentences (46) and (51) are analyzed as
transformations of

(54) They asked Peter to make (a/his) decision immediately

MERL-TR-96-30. Version 1.0 November 1996

25

whereas (52) and (53) are analyzed as transformations of

(55) They asked Peter to give them (his/their) belongings

[20] shows that, in French, complex verbs such as to ask, should be described
in conjunction with a list of support verbs. The support verbs such as take and
give are then deleted by the constraints they impose remain. The situation is
almost identical in English. Here for instance, the in�nitive of (54) contains
the sentence

(56) Peter makes a decision immediately

or equivalently12,

(57) Peter makes an immediate decision

The verb makes disappears within the transformation. However it is still
necessary to know which construction is really used. In fact, the support verb
construction allows sentences

(58) Peter makes his decision

in which the word his has to refer to the subject of the construction. This
explains why (50) is incorrect.

In order to take these properties into account the parsing of (46) works as
indicated in the following trace:

[S John asks Peter for an immediate decision S]
#

(S [N John N] <V asks V> [N Peter N] for [S N <Vsup (make/give) Vsup>
an immediate decision S] S)

#
S (N John N) <V asks V> (N Peter N) for (S N <Vsup make Vsup>

<Npred an immediate decision Npred> S) S)

Here again, it is possible, within the parsing program, to introduce hy-
potheses about several support verb constructions. Some of these hypotheses
are invalidated at a later stage of the analysis and the correct support verb is
recovered.

12This transformation, �rst described by Z.S. Harris [11], is very common an is even on
the criterion to identify a support verb construction (see also [5, 19]).

MERL-TR-96-30. Version 1.0 November 1996

26

5.7 Frozen Expressions

A recurrent problem when recognizing support verb constructions or frozen ex-
pressions is that these sentences also have the surface form of a free expression.
For instance, the sentence

(59) [S John take (a/his) seat S]

is going to be parsed in two di�erent ways. First, it will be parsed as a free
sentence (by resemblance to [S John take a seat S]) and the resulting analysis
will be

(60) (S (N John N) <V take V> (N a seat N)

It will also be parsed as a support verb construction and, in that case, the
analysis will be

(61) (S (N John N) <Vsup take Vsup> <Npred a seat Npred>

Whereas both analysis are possible in principle, the frozen interpretation
is usually the correct one. For the analysis to contain the frozen interpretation
only, the parser not only has to produce the correct analysis, but it has to delete
the incorrect one. In other words the transducer representing the structure N
take a seat should perform the following two mappings:

[S a take a seat S] !
(S [N a N] <Vsup take Vsup> <Npred a seat Npred> S)

(S (N a N) (V take V) (N a seat N) S) ! ;

The �rst mapping handles the analysis per see whereas the second one
deletes the improper analysis resulting from the free structure.

The parsing trace of the sentence is then the following:

[S John takes a seat S]
#

(S [N John N] <V takes V > [N a seat N] S)
(S [N John N] <Vsup takes Vsup> <Npred a seat Npred> S)

#
(S (N John N) <V takes V > (N a seat N) S)

(S (N John N) <Vsup takes Vsup> <Npred a seat Npred> S)
#

(S (N John N) <Vsup takes Vsup> <Npred a seat Npred> S)

MERL-TR-96-30. Version 1.0 November 1996

27

In the gradation from free to frozen for the verb take, we should also con-
sider sentences such as The elected candidate takes his seat in the House. This
sentence should be interpreted neither as a free construction with an object
complement his seat and an adverbial in the House, nor as the support verb
construction to take (a/his) seat with the adverbial in the House but rather
as the frozen expression N take POSS seat in the House in which only the
subject may vary. For the parser to achieve this analysis, it should perform
three mappings:

[S a take his seat in the House S]
#

(S [N a N] <F take his seat in the House F> S)

(S (N a N) (V take V) (N a seat N) (ADV in the House ADV) S)
#
;

(S (N a N) <Vsup take Vsup> <Npred a seat Npred> (ADV in the House ADV) S)
#
;

The �rst mapping performs the analysis per see, the second one deletes the
free sentence analysis while the third one deletes the support verb construction
analysis.

6 Finite-State Acceleration

In section 5, a sentence with a modal verb such as

(62) John should read this book

was analyzed with two di�erent steps for should and read. It is also possible
to think about should read as one single compound verb. This is not linguis-
tically motivated but it might improve parsing e�ciency. Such a composite
verb could take two arguments: a noun phrase as subject and a noun phrase
as direct object. From this point of view, the �rst of the analysis would be a
mapping from

(63) [S John should read this book S]

to

(64) [S [N John N] <V should read V> [N this book N] S]

MERL-TR-96-30. Version 1.0 November 1996

28

The advantage of such an approach obviously is that it shortens the number
of analysis phases by one, at the cost of more space requirement for Tdic.

What this also realizes is that longer sequences, such as should read here,
are recognized through a simple �nite-state mechanism. This also follows the
intuition that some sequences within natural language, such as auxiliary verb
sequences, are very well modeled by a simple �nite-state automaton. For in-
stance, the set of auxiliary verb sequences could be modeled by the �nite-state
automaton of Figure 15. In this automaton, sequences of auxiliary verbs and
verbs are represented with a slightly new convention. Sequences are elements
of (�w � �pps)� in which �w is the set of words in the language and �pps is a
�nite set of part-of-speech tags. The tags used here are derived from those
used in the Brown Corpus [4]. vb stands for in�nitive form of the verb, vbd
stands for the past tense, vbg stands for the progressive form, vbn stands for
the passive form and vbz stands for the third person singular of the verb. The
symbol ??? matches any other symbol. For instance the sequence

??? � vbz

stands for a verb conjugated at the third person singular.
From a computational e�ciency point of view, it seems important to recog-

nize these sequences through a pure �nite-state mechanismrather than through
more complex parsing procedures. In this section we will see that, by com-
bining some of �nite-state transducers derived from the syntactic dictionary,
it is possible to obtain a pure �nite-state recognition process for these speci�c
sequences while continuing the whole analysis of the sentence. In some sense,
this addresses the following remark: many sequences within natural language
sentences seems to be �nite-state, however, a pure �nite-state modeling cannot
model the whole syntax and more powerful, yet less e�cient, formalism, such
as context-free grammars, are required.

We now suppose that we have each �nite-state transducer associated to
each structure of the syntactic dictionary. In particular, we have TN read N

that performs the following matching, among others:

[S [S a N] <OP c OP> v read b S]
#

(S [N a N] <OP c OP> <V a read V> [N b N] S]

and TN should V W that performs the following matching:

[S a should v read b S]
#

[S [N a N] <OP should OP> v b S]

MERL-TR-96-30. Version 1.0 November 1996

29

been

had

doesn’t
does

do

will
shall

be

???

must

were
was

are

is
am

has
have

can
may
might
should
could

would

???

???

be

<E>

???

have

had

<E>

???

been
??????

being

<E>

???

<E>

vbn

vbg

vbn

vb

???

???

vbz
vbg
vbd
vbn
vb

???

???

???

having

<E>

???

???

been ??? ???
being ???

vbg

vbn

vbn

vbg

vb

???

<E>

vbn

???

???

???

do

???

been

Figure 15: Finite-state automaton representing auxiliary verb sequences

and we saw in section 5 how these two mappings are combined together to
analyze (63). Let us now compose TN should V W and TN read N into one trans-
ducer that we denote TM should read N . This transducer performs the following
mapping:

[S a should v read b S]
#

(S [N a N] <OP should OP> <V v read V> [N b N] S)

This maps the input sentence (63) to the following sequence:

(65) (S [N John N] <OP should OP> <V v read V> [N this book N] S)

on which the analysis is continued as in section 5.
Formally, if Tdic1 = TN should V W [T213 then we can build a new �nite-state

transducer Tdic2 = T2 [(TN should V W � T2) for which the analysis of (63) goes
as follows:

13T2 represents the union of the �nite-state transducers associated to each structure,
expect the transducer associated to should

MERL-TR-96-30. Version 1.0 November 1996

30

[S a should v read b S]
(Tdic2)

(S [N John N] <OP should OP> <V v read V> [N this book N] S)
(Tdic2)

(S (N John N) <OP should OP> <V v read V> (N this book N) S)

By using Tdic2 instead of Tdic, we achieve our goal of recognizing the se-
quence should read through a pure �nite-state process while obtaining the ex-
act same analysis: should is still analyzed as an modal operator on the whole
sentence and read is also still analyzed as the main verb. Formally, Tdic2 has
the property that:

T1
Dic2

= T1
dic

which guaranties that the language recognized and the analysis are identical
for Tdic and Tdic2 . The cost of such speed improvement however, is that Tdic2
will take more space than Tdic.

7 A Transducer Parser for Tree-Adjoining Gram-

mars

In this section we will see on a formal example that the �nite-state transducer
framework can be used to parse tree-adjoining grammars. Tree-adjoining gram-
mars (TAGs) [14, 13] is a formalism in which elementary trees are combined
through an operation of adjunction. This formalism allows many linguistic
properties to be encoded in a natural way [16]. We will not develop here
linguistic examples but rather illustrate the transducer approach on a formal
language typical of tree adjoining grammars.

Let us consider the following tree adjoining grammar:

G1 = (fa; b; c; d; eg; fSg; f�1g; f�2g; S)

in which fa; b; c; d; eg is the alphabet of terminal symbols, fSg is the alpha-
bet of non terminal symbols, f�1g is the set of initial trees (�1 is represented
on Figure 16, left), f�2g is the set of auxiliary trees (�2 is represented on
Figure 16, right) and S is the root. This grammar generates the language

L1 = fa
nbnecndnjn � 1g

[25]. This language is not context-free, that is, there exists no context-free
grammar G such that L(G) = L1. L1 is generated through a mechanism we
now describe informally.

MERL-TR-96-30. Version 1.0 November 1996

31

The main composition operation of TAGs is called adjoining or adjunction;
it builds a new tree from an auxiliary tree, �2 here, and any other tree. For
instance, because �1 contains a node labeled S and the root node of �2 is also
labeled S, it is possible to make the adjunction of �2 on �1. The resulting
tree, �1 of Figure 17, obtained by adjoining �2 to �1 at the root node root�1
of �1 is built as follows:

� the sub-tree of �1 dominated by root�1, called t, is excised, leaving a
copy of root�1,

� the auxiliary tree �2 is attached at the copy of root�1 and its root node
is identi�ed with the copy of root�1,

� the sub-tree t is attached to the foot node of �2 and the root node of t,
i.e. root�1, is identi�ed with the foot node of �2

In addition, when the special symbol NA is used to label a node, no ad-
junction is allowed on this node. For instance, for �1, the adjunction can take
place only at the medium node S and therefore �2 is the only tree that can
be derived from �1 through a single adjunction. The language de�ned by a
set of trees is built by taking the sequences generated by the leaves of each
tree. For instance �1, �1 and �2 respectively generate the strings e, abecd and
aabbeccdd.

e

a

b c

d

Figure 16: left: �1, right: �2

We can consider, as we did for context-free grammars in Section 3, that the
grammar, is a syntactic dictionary. Each entry in this dictionary is a tree of
the grammar and each of these trees will be converted into a transducer. So,
as for context-free grammars, the core of transducer parsing for tree adjoining
grammars consists of building a dictionary of �nite-state transducers. The
transducer representing the union of each individual transducer will then be
used to parse input sentences.

Formally, we can de�ne two general mappings14 TAG-FSTini and TAG-FSTaux.
TAG-FSTini will take any initial tree as input and will build a �nite-state trans-
ducer associated to this tree; if is an initial tree, TAG-FSTini() will denote

14Not detailed here.

MERL-TR-96-30. Version 1.0 November 1996

32

a

b c

d

e

a

b c

d

a d

b c

e

Figure 17: left: �1, right: �2

the transducer associated to . Similarly, TAG-FSTaux will convert any aux-
iliary tree into a �nite-state transducer; if ! is an auxiliary tree, we denote by
TAG-FSTaux(!) the �nite-state transducer associated to !. A tree adjoining
grammar being given, the transducer representing the whole grammar will be
built by taking each initial tree and each auxiliary tree and by converting each
one into a �nite-state transducer. The �nal transducer is then the union of
all individual transducers derived that way. In other words, the transducer TG
associated to a grammar G is de�ned by:

TG =
[

treei2ini(G)
TAG-FSTini(treei) [

[

treei2aux(G)
TAG-FSTaux (treei)

in which ini(G) and aux(G) respectively denote the set of initial and aux-
iliary tree of G. At this point the parser of a tree adjoining grammar G can
be de�ned by

parser = T1
G

meaning, as for context-free grammars, that the syntactic analysis of a se-
quencew of the language L(G) generated byG is the �xed-point of (T n

G(w))n�0.
Therefore, in practice, the parsing process consists of applying the transducer
TG to the input sequence, then to the result of the �rst application and continue
until the automaton representing the set of sequences stays unmodi�ed.

To illustrate this, consider again the grammar G1. In this grammar, only
two transducers have to be built: (1) the transducer T�1 = TAG-FSTini(�1)
representing the initial tree �1 and (2) the transducer T�2 = TAG-FSTaux(�2)
representing the auxiliary tree �2.

Figure 18 illustrates the parsing of the input string aabbeccdd. As for
context-free grammars, the input of the transducer parsing will be the string

MERL-TR-96-30. Version 1.0 November 1996

33

to be parsed enclosed into the markers [S and S]. Here, this will be the
sequence [S aabbeccdd S] and it will be represented by a �nite-state automaton
(represented at the top of Figure 18) for more e�ciency.

The transducer T�1 representing the tree �1 is de�ned functionally as fol-
lows:

(1) w1 [[S w2 fS e Sg w3 S]] w4 if w2 6= � and w3 6= �
T�1: w1 [S w2 e w3 S] w4 �! (2) w1 (S e S) w4 if w2 = w3 = �.

(3) ; otherwise

in which w1, w2, w3 and w4 are elements of �� in which � = fa; b; c; d; eg
is a �nite alphabet. This transducer takes sequences in which the markers [S
and S] are used, it has three di�erent types of output depending on the shape
of the input string: (1) if the string enclosed between the markers [S and S] is
of the shape w2ew3 in which both w2 and w3 are not the empty string then the
markers [S and S] are transformed into [[S and S]] while two markers fS and
Sg are inserted around e. This transformation indicates that the string should
be regarded as the tree �1 on which some adjunction has been made. The
markers [[S, S]], fS and Sg indicate the position of the possible adjunction
within the input string. (2) If the string is such that the sequence enclosed
within [S and S] is the simple character e then the [S and S] are respectively
transformed into (S and S) to indicate that the input sequence was recognized
as the sequence of leaves of �1, i.e. the symbol e. (3) If the input string is not
of the previous two shapes then the input sequence cannot be parsed with the
tree �1.

The transducer T�2 representing the tree �2 is de�ned functionally as fol-
lows:

(1) w1 (S a [[S w2 fS b (S w3 S) c Sg w4 S]] d S) w5

if w1; w5; w3 2 (� [f(S; S)g)� and
w2; w4 2 �+

w1 [[S a w2 b fS w3 Sg w4 d S]] w5 �! (2) w1 (S a (S b (S w3 S) c S) d S) w5

if w1; w5; w3 2 (� [f(S; S)g)� and w2 = w4 = �

(3) ; otherwise

in which w1 to w5 are strings of ��. The input string of such a transduction
contains the markers [[S, S]], fS and Sg, meaning that the sequence has been
parsed with an adjunction. A sequence of the shape

w1 [[S a w2 b fS w3 Sg w4 d S]] w5

indicates that w1, w3 and w5 have been recognized and that the part ap-

MERL-TR-96-30. Version 1.0 November 1996

34

pearing between [[S and fS, on one hand, and between Sg and S]], on the
other hand, should be analyzed as the adjunction of one or several auxiliary
trees. The transduction can generate three di�erent types of output depending
on the shape of the input. (1) If w2 and w4 are not the empty string then the
tree �2 has been adjoined and at least one other adjunction has also taken
place, therefore, the transducer converts the symbols [[S, S]], fS and Sg to
indicate that an adjunction of �2 has been recognized. At the same time,
new symbols [[S, S]], fS and Sg are introduced to indicate the possibility for
another adjunction. (2) If the sequence of symbols to be analyzed with an
adjunction has exactly the shape a � b � c � d then the markers [[S, S]], fS and
Sg are replaced by the markers (S and S) to indicate that an adjunction of
�2 has been recognized and that the analysis is completed. (3) the transducer
outputs the empty set in all other circumstances.

The process is best illustrated by following the analysis of a simple example.
The transducer associated to G1 is de�ned by:

TG1
= T�1 [T�2

TG1
is represented on Figure 19. In addition to the convention used pre-

viously, a transition labeled by A=A stands for a set of transitions labeled
respectively by a=a, b=b, c=c, d=d and e=e. Recall also that if a state q has
an outgoing transition labeled ?=?, this transition stands for all the pairs s=s
such that there is no other outgoing transition from q whose input label is s.

Let us now come back to the analysis of the sequence aabbeccdd illustrated
on Figure 18. The �rst input of TG1

is the singleton

f[S aabbeccdd S]g

represented by the top �nite-state automaton of Figure 18. The markers
[S and S] indicate that the enclosed sequence has to be analyzed as a sen-
tence. The �rst application of TG1

to this input automaton leads to the second
automaton from the top, this automaton represents the singleton

f[[SaabbfSeSgccdd S]]g

The only part of TG1
which leads to a non empty output comes from T�1.

The resulting automaton is pruned before applying the transducer TG1
a second

time. The second application of TG1
leads to the third automaton from the

top, this automaton represents the singleton

f(Sa[[SabfSb(SeS)cSgcdS]]dS)g

MERL-TR-96-30. Version 1.0 November 1996

35

The part of TG1
which leads to a non empty string corresponds this time

to T�2. This automaton is pruned and the transducer is applied again which
leads to the bottom automaton which represents the singleton

f(Sa(Sa(Sb(Sb(SeS)cS)cS)dS)dS)g

Here again, the active part of TG1
corresponds to T�2. Finally, this last

automaton is pruned. Since, another application of TG1
does not modify the

input, this last automaton is a �xed-point of TG1
and therefore the result of

the analysis of [S aabbeccdd S]. Note that this last automaton represents the
tree �1 of Figure 17.

[S a a b b e c c d d S]

#

[[S

(S

a a

{S

b

{S

b

{S

{S e S} c c d d S]]

#

(S a [[S

(S

a b

(S

{S b (S e S) b S} c d

S]]

S]] d S)

b d

#

(S a (S a

[[S

(S b (S b (S e S) c S) c S) d S) d S)

b
{S

Figure 18: Example of Analysis.

This short example is only an illustration of the exibility of transducer
parsing and the proof of the correctness of the previous example is left to

MERL-TR-96-30. Version 1.0 November 1996

36

?/?

[[S/(S

[S/[[S

[S/(S

a/a <E>/[[S

<E>/(S

A/A

A/A

<E>/{S b/b {S/(S

?/?

S}/S) c/c <E>/S} A/A

A/A

<E>/S]] d/d S]]/S)

?/?

A/A

A/A

<E>/{S e/e <E>/S} A/A

A/A

S]/S]]

e/e

S]/S)

b/b [S/(S

?/?

S}/S) c/c
<E>/S)

Figure 19: TG1

the reader15. The practical e�ciency of transducer parsing for tree adjoining
grammar can only be evaluated by comparing this parsing method with others
(in particular with the algorithms described in [25]) on realistic data (both
input strings and grammars). Such experiments should be done on very large
lexical grammars.

15We also leave to the reader the interesting exercise of �nding the class of tree adjoining
grammars that can be analyzed that way.

MERL-TR-96-30. Version 1.0 November 1996

37

References

[1] Alain Guillet Boons, Jean-Paul and Christian Leclere. La structure des
phrases simples en fran�cais, Constructions Intransitives. Librairie Droz,
Geneve-Paris, 1976.

[2] David Clemenceau and Emmanuel Roche. Enhancing a large scale dictio-
nary with a two-level system. In EACL-93, proceedings of the conference,
1993.

[3] Blandine Courtois. Delas: Dictionnaire electronique du ladl pour les mots
simples du fran�cais. Technical report, Universit�e Paris 7, 1989.

[4] W. Nelson Francis and Henry Ku�cera. Frequency Analysis of English
Usage. Houghton Mi�in, Boston, 1982.

[5] Jacqueline Giry-Schneider. Les pre�edicats nominaux en fran�cais, les
phrases simples �a verb support. Droz, Gen�eve, Paris, 1978.

[6] Maurice Gross. Grammaire transformationnelle du Fran�cais,1. Syntaxe
du verbe. Cantil�ene, 1968.

[7] Maurice Gross. M�ethodes en syntaxe,r�egime des constructions
compl�etives. Hermann, 1975.

[8] Maurice Gross. Grammaire transformationnelle du Fran�cais,3. Syntaxe
de l'adverbe. Cantil�ene, 1986.

[9] Maurice Gross. Les limites de la phrase �g�ee. Langages, (90):7{22, June
1988.

[10] Maurice Gross. The construction of local grammars. In this volume. 1996.

[11] Zellig Harris. Notes du cours de syntaxe. Seuil, Paris, 1976.

[12] Zellig Harris. Theory of Language and Information. Oxford University
Press, 1991.

[13] Aravind K. Joshi. How muc context-sensitivity is necessary for charac-
terizing structural descriptions - tree adjoining grammars. In D. Dowty,
L. Karttunen, and A. Zwicky, editors, Natural Language Processing - The-
ortical, Computational and Psychological Perspectives. Cambridge Univer-
sity Press, 1985.

[14] Aravind K. Joshi, L. S. Levy, and M. Takahashi. Tree adjuct grammars.
Journal of Computer and System Sciences, 10(1), 1975.

MERL-TR-96-30. Version 1.0 November 1996

38

[15] Lauri Karttunen, Ronald M. Kaplan, and Annie Zaenen. Two-level mor-
phology with composition. In Proceedings of the 14th International Con-
ference on Computational Linguistics (COLING'92), 1992.

[16] Anthony Kroch and Aravind K. Joshi. Linguistic relevance of tree adjoin-
ing grammars. Technical Report MS-CIS-85-18, Department of Computer
and Information Science, University of Pennsylvania, April 1985.

[17] Eric Laporte. Phon�etique et transducteurs. Technical report, Universit�e
Paris 7, 1993.

[18] Eric Laporte. Rational transductions for phonetic conversion and
phonolgy. In this volume. 1996.

[19] Annie Meunier. Nominalisations d'adjectifs par verbs supports. PhD the-
sis, Universit�e Paris 7, 1981.

[20] Mehryar Mohri. Analyse et Repr�esentation par Automates de Structures
Syntaxiques Composees. PhD thesis, Universit�e Paris 7, January 1993.

[21] Fernando Pereira and Rebecca N. Wright. Finite state approximatnion of
phrase structure grammars. In this volume. 1996.

[22] Fernando C. N. Pereira, Michael Riley, and Richard W. Sproat. Weighted
rational transductions and their application to human language process-
ing. In ARPA Workshop on Human Language Technology. Morgan Kauf-
mann, 1994.

[23] Emmanuel Roche. Analyse Syntaxique Transformationelle du Fran�cais
par Transducteurs et Lexique-Grammaire. PhD thesis, Universit�e Paris 7,
January 1993.

[24] Emmanuel Roche. Smaller representations for �nite-state transducers.
In Lecture Notes in Computer Science, Combinatorial Pattern Matching,
Fifth Annual Symposium, Helsinki, Finland, Proceedings, 1995.

[25] Yves Schabes. Mathematical and Computatnional Aspects of Lexicalized
Grammars, Processing with Lexicalized Tree-Adjoining Grammars. PhD
thesis, University of Pennsylvania, 1991.

[26] Max Silberztein. Dictionnaires Electroniques et Analyse Lexicale du
Fran�cais| Le Syst�eme INTEX. Masson, 1993.

[27] Max Silberztein. The lexical analysis of natural languages. In this volume.
1996.

MERL-TR-96-30. Version 1.0 November 1996

	Title Page
	Title Page
	page 2

	Parsing with Finite-State Transducers
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40

