MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

3D ChainMail: a Fast Algorithm for
Deforming Volumetric Objects

Sarah F. F. Gibson

TR96-22 December 1996

Abstract

An algorithm is presented that enables fast deformation of volumetric objects. Using this algo-
rithn, rigid, deformable, elastic, and plastic materials can be modeled by adjusting deformation
limits for individual elements. An interactive system that combines the deformation algorithm

with collision detection and an energy minimizing elastic relaxation step is described. Using this

system, objects containing up to 125,000 elements have been deformed interactively on an SGI
Indy.

Interactive 3D Graphics Conference

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or

republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

3D ChainMail: a Fast Algorithm for Deforming Volumetric Objects
Sarah F. F. Gibson
MERL - A Mitsubishi Electric Research Lab
201 Broadway, Cambridge, MA, 02139
gibson@merl.com

Abstract

An algorithm is presented that enables fast deformation of volumetric objects. Using this algorithn, rigid, deformable, elastic, and
plastic materials can be modeled by adjusting deformation limits for individual elements. An interactive system that combines the
deformation algorithm with collision detection and an energy minimizing elastic relaxation step is described. Using this system,
objects containing up to 125,000 elements have been deformed interactively on an SGI Indy.

1. Introduction

Surgical simulation requires interactive modeling and
visualization of complex, 3D anatomical structures. For
example, surgery of the abdomen involves probing and
cutting through organs and tissues that have complex
shapes and material properties. Because modeling the
deformation and cutting of tissue requires a representation
of interior structure, volumetric object representations are
well suited for surgical simulation. A volumetric repre-
sentation can incorporate detailed information about inter-
nal anatomical or physiological structure. This detailed
information can be used to model tissue deformation more
accurately than a model which represents the object surface
and assumes a homogeneous interior. Because a volumet-
ric representation uses the data produced by 3D medical
scanners directly, errors that are introduced by fitting po-
lygonal surfaces to the discrete image data can be avoided.

In a volumetric object representation, the object is stored
as a discrete 3D array of sampled data elements. Each data
element can consist of several bytes of information includ-
ing visual properties, such as color or transparency, or
material properties, such as tissue type or elasticity. The
major disadvantage of volumetric representations is that
objects can consist of millions of volume elements. This
large data requirement poses challenges for memory stor-
age and access, for real-time rendering, and for physically
realistic modeling of object interactions. In this paper we
present a fast algorithm for modeling the deformation of
volumetric objects. The algorithm can model a range of
materials including rigid, deformable, elastic, and plastic
substances. In addition, the method can model anisotropic
materials, such as muscle, which have different material
properties along different axes.

2. Background

The basic technologies that have influenced this work are:
Volume Graphics; physics-based graphics; and soft-tissue
modeling with Finite Element (FEM) and other methods.

2.1 Volume Graphics

Volume Graphics' '* deals with the synthesis'', model-
ing®®, manipulation, and rendering of volumetric objects.
Prior work in Volume Graphics includes the development
of techniques to replace the traditional graphics pipeline of
polygon graphics with new methods for volumetric data.
For example: shading” **; antialiasing”; and rendering
algorithms'?; are replaced by their volumetric counterparts.
New algorithms and hardware implementations in volume
rendering have begun to address the need for interactive
rendering of regular volumes'> ' 2!, Recently, attention

in Volume Graphics has been given to object manipula-
tion, including haptic interaction with volumetric objects'
and physically realistic modeling of object interactions’.

2.2 Physics-based Graphics

There is a growing interest in physically realistic model-
ing of object interactions in the graphics community.
This includes both detecting object collisions and model-
ing the energy and momentum transfer between colliding
objects -problems that have been addressed for real-time
interactions of rigid objects in systems with surface poly-
gon object representations™ '° and to some extent with
volumetric objects’. Much work is needed in the area of
modeling interactions between highly deformable objects.

2.3 Soft-tissue Modeling

Finite Element Modeling (FEM) can be used to model
complex materials. Careful selection of element nodes
and accurate knowledge of the material properties at each
node enables accurate simulation of complex mechanical
behaviors. FEM has been applied to modeling the skin
and muscle layers of the face'” ** %7, skeletal muscle®, and
the eye'”. However, because of computational require-
ments, FEM cannot be used in interactive applications
unless the number of node points is small. Techniques
such as multigrid methods® and modal analysis®"'® have
been used to reduce the required computation for FEM
applied to deformable object modeling. However, the
computational complexity of FEM remains a bottleneck
for interactive soft tissue modeling.

Other techniques that have been used to model soft tissue
include: free-form deformation® ??; active surfaces’ or ac-
tive cubes’; using a "zone of influence" to predefine the
effect that displacement of a given node point will have on
neighboring nodes™; and using implicit surfaces to model
soft substances’. These techniques are useful because of
their speed but they have limited accuracy for modeling

complex tissues and object structures.

3. Interactive Object Deformation System

A system for interactive manipulation of deformable ob-
jects has been implemented. The system consists of five
procedures: 1) an interactive control loop that monitors
selection and control of the object; 2) the 3D ChainMail
algorithm which stretches or contracts the object when a
selected element is moved; 3) an elastic relaxation algo-
rithm which adjusts relative element positions to mini-
mize the system energy; 4) collision detection to check for
collisions and prevent interpenetration of objects; and 5)
rendering of the deformed object for visual feedback.

3.1 Data Structures

In this implementation, the object data structure consists
of the object size, its type or classification, a pointer to
the object elements, and the deformation and elasticity
parameters (which are assumed to be constant throughout
the object in this implementation). Volume element data
structures consist of a element color (r,g,b), a position
vector (X,y,z), and pointers to the six nearest neighbors:
top, bottom, front, back, left, and right. An additional
data structure keeps track of previous positions of moved
elements. This structure is used for fast backtracking after
a collision is detected or after reaching an object configura-
tion that is not permitted.

3.2 Control Loop

The system consists of two phases: an initialization phase
to read in and initialize data structures; and an X-Event
control loop that continuously monitors and responds to
user inputs. Button clicks and releases are used to select
and deselect elements in the object. If an element is se-
lected, mouse movements control displacements of the
selected element. The largest possible step is taken to-
wards the desired position if the desired position results in
an object that is not permissible (due to collisions with
other objects or the boundaries of the virtual space). The
user interface monitors changes in the deformation pa-
rameters, changes in rendering engines, and termination of
the session.

3.3 Object Deformation: 3D ChainMail

The large number of elements in a volumetric object
poses a significant challenge for interactive applications
that model physically realistic object deformation. One
approach is to perform FEM calculations on a lower reso-
lution grid'"®. However, this does not take advantage of
the high resolution data produced by medical scanners.
Here, we introduce an algorithm that uses the original data
resolution but performs relatively simple deformation
calculations for each element. When the volume is ma-
nipulated, the object stretches or contracts to satisfy
maximum and minimum allowable distances between
neighboring elements. The movement of each element
depends only on the positions of its nearest neighbors,
allowing fast propagation of the deformation through the
volume. Because the motion constraints are similar to
those of a set of linked elements in a chain, this algorithm
has been dubbed 3D ChainMail.

0 00 96 &b db I

9 IO ID)

e T) J Y | Y | Y | S

maximally stretched maximally compressed

Figure 1. Deformation of a 1D chain when the selected
link is moved to the right by dx.

In the 3D ChainMail algorithm, volume elements are
linked to their six nearest neighbors. When one node of
the structure is pulled or pushed, neighboring links ab-
sorb the movement by taking up slack in the structure. If
a link between two nodes is stretched or compressed to its
limit, displacements are transferred to its neighboring
links. In this way, small displacements of a selected
point in a relatively slack system result in only local de-
formations of the system, while displacements in a sys-
tem that is already stretched or compressed to its limit
causes the whole system to move (see Figures 1 and 2).
Much like the links in a chain, neighbors only respond to
a given element's movement if constraints on the dis-
tances between elements are violated. Changing the con-
straints on link lengths allows us to model both rigid and

deformable objects.
T

zzuzz ava .. \VAY

v/-!«'"j 4¥a
‘j:,l:l"!!,iii"l.‘
4 TUUD)

)
N /]

relaxed maximally maximally
compressed stretched

T g

.'.'

Figure 2. Deformation of 2D chain mail when the se-
lected link is moved.

Although the discussion will focus on 2D objects, the
extension to 3D is straightforward. Both 2D and 3D ver-
sions of this system have been implemented and examples
from both implementations are reported in Section 4.

Two types of lists are maintained in this algorithm: a list
consisting of the previous positions and pointers to ele-
ments that have been moved; and four lists of candidates
for movement that are classified according to whether they
are a top, left, bottom, or right neighbor of their sponsor-
ing element. Each candidate element is processed in turn,
starting from the selected element and then proceeding in
order through the right, left, top, and bottom lists of can-
didate points. To process an element, the deformation con-
straints are checked against its sponsoring element. If the
deformation limits are exceeded, the element is moved a
minimum distance until the constraints are satisfied.
When an element is moved -- either under direct control of
the user or indirectly in response to a neighbor's move-
ment -- the element becomes a sponsor to its unmoved
neighbors and these neighbors are appended to their respec-
tive movement candidate lists.

The deformation limits are defined as follows: each ele-
ment must lie within a horizontal range of minDx and

maxDx from its left and right neighbors and within a ver-
tical range of minDy and maxDy from its top and bottom
neighbors. These limits control stretching and contraction
of the material. In addition, each element must lie within
+/- maxHorizDy, from its horizontal (left and right)
neighbors and within +/- maxVertDx, from its vertical
(top and bottom) neighbors. These limits control the
maximum amount of shear that is possible in the mate-
rial. The definition of these limits are illustrated in Fig-
ure 3.

left maxHoTisz
neighbor

P ®

IQ—mian —P
|A maxDx —l
maxDy
| tinDy l
| .bottnm o
«—> neighbor
maxVertDy

Figure 3. The regionsin which the element can move
relative to its left and bottom neighbors.

3.3.1 Algorithm Outline

The basic 3D ChainMail algorithm is as follows:

1) When the user-selected element is moved, the element
and its old positions are added to the list of moved ele-
ments, its X, y positions are updated, and its four nearest
neighbors (top, left, bottom, right) are added to the appro-
priate lists of candidates for movement.

2) The lists of candidate elements are processed in turn
until all of the candidate lists are exhausted or the system
is not permissible (in which case those elements that were
moved are returned to their previous positions and a
smaller step towards the desired position is attempted).
The candidate lists are processed in the following order:
right, left, top, bottom.

3) The right candidate list is processed in the following
manner: beginning with the first element in the list, the
stretch and shear constraints are checked between the list
element and its sponsoring element (always its left neigh-
bor). If the constraints are violated, the element is moved
a minimum distance until the constraints are satisfied.
The new position is calculated as follows:

If (x - Xeft) < minDx, X = x]efy + minDx;
else if (x - xjefy) > maxDx, x = X|efy + maxDx;

if (y - Yleft) < - maxHorixDy, y = yjef; - maxHorixDy;
else if (y - yleft) > maxHorixDy, y = yjefy + maxHorixDy;

If the element is moved, its top, right and bottom neigh-
bors are added to their respective candidate lists. (Since
the element was sponsored by its left neighbor there is no
need to add the left neighbor to the candidate list.) Each
right candidate is processed in turn until no right candi-
dates remain.

4) The left list is processed in a similar way except that
left elements are sponsored by their right neighbors and
movement of a left element causes its bottom, left, and
top neighbors to be added to the candidate lists.

5) The top and bottom lists are also processed in a similar
manner except that the top and bottom elements are spon-
sored by their bottom and top elements respectively and
movement of a top (or bottom) element causes only a top
(or bottom) element to be added to the correct candidate
list.

This algorithm must be modified slightly for non-convex
objects. In non-convex objects, if the right or left neigh-
bor of a moved top (or bottom) element does not have a
bottom (top) element, it should be added to the appropriate
candidate list. Note that this may require that candidate
lists be visited more than once to exhaust all the elements
of all candidate lists.

The algorithm is especially fast for three reasons: 1) each
element in the volume is considered at most once for each
deformation, 2) each element is compared to only one
neighbor (its sponsoring neighbor) to determine if and
how it must be moved and 3) the deformation is propa-
gated outwards from the selected point and the propagation
is terminated as soon as possible. Of these, 1) and 3)
result from the way elements are added to the candidate
lists. The second point, 2) results from the following
theorem.

3.3.2 Theorem

In the 3D ChainMail algorithm, each element can be
compared to a single neighbor when the object has con-
stant deformation limits throughout its volume.

3.3.3 Proof

The starting position of each element in the candidate lists
already satisfies the constraints of neighbors that have not
moved. Hence, the new position of a movement candidate
depends only on neighbors that have been moved. (If a
candidate is moved, then its ummoved neighbors are later
considered for movement.)

For elements in the left (or right) candidate lists, only the
sponsoring right (left) neighbor is moved prior to move-
ment consideration. Hence, for left and right candidates
only one neighbor must be considered.

For top (or bottom) neighbors, it is possible that both the
sponsoring bottom (or top) neighbor and its left (or right)
neighbor were moved prior to consideration. However, it
is shown here that when an element from the top candidate
list satisfies deformation constraints relative to its spon-
soring bottom neighbor, then it automatically satisfies the

constraints of its left neighbor as long as the left neighbor
was previously placed to satisfy its own bottom neighbor.

If the top and right neighbors of A satisfy the deformation
constraints with respect to A (see Figure 4), then

AR(x,y) € ([x9+minDx, x9+maxDx],
[yo-maxHorizDy, yo+maxHorizDy])
= ([Xmin,p ¥max,,]» [Ymin,p Ymax,,1)
and
AT(x,y) € ([x9-maxVertDx, xO+maxVertDx],
[yo+minDy, yg+maxDy])

= ([*min,» ¥max > [Ymin » Ymax,1)-

Aright/top

Aright

Figure 4. Grid configuration to show the relationship
between points A, AR, AT, and AR/T, used in 3.3.3-

The top neighbor of AR, AR/T, must satisfies the defor-
mation constraints with respect to AR. Hence,

AR/T(%Y) € ([Xmin ,,-maxVertDx, xpmqy +maxVertDx],
[Ymin ,+minDy, ymayx,,+maxDy])
= ([xp+minDx-maxVertDx, xg+maxDx+maxVertDx],
[yo-maxHorizDy+minDy, yg+maxHorizDy+maxDy])
= ([Xmin,,+minDx, Xpqx, +maxDx],
[Ymin ,;-maxHorizDy, Arop(y)max+maxHorizDy]).

which also satisfies the deformation constraints with re-
spect to the left neighbor, AT, of AR/T. Hence, when
considering AR/T, an element of a top candidate list, only
one neighbor must be considered to satisfy both sets of
constraints. A similar argument can be made for bottom
candidate lists.

3.4 Elastic Relaxation

Even when a deformation is allowable, the resultant object
shape may not be a minimum energy configuration. The
system energy depends on the spacing between elements
and the elastic properties of the object. A fully elastic
object can be deformed, but it has a single configuration
for which the object's energy is minimal. In contrast, a
plastic object can reach a minimal energy state in a new

shape. This system applies an energy relaxation algo-
rithm between applications of the 3D ChainMail algo-
rithm and whenever processing time is available. Con-
straints similar to those used for deformation are used to
determine if an element satisfies elastic constraints relative
to its neighbors. If not, the element's position is adjusted
to reduce the energy of the object.

3.5 Collision Detection

Each time an element is moved, the system checks for a
collision between the moved element and other objects in
the system. If a collision occurs, the system is not per-
missible and the moved elements are returned to their
original positions. The step size towards the desired posi-
tion is reduced until an allowable system is found or a
minimum step size is reached. In the examples presented
here, objects only collide with the bounding walls of the
viewing window and hence, in this implementation, a
simple check of the element's x and y values is used to
detect collisions. This system has also been implemented
with similar results for more complex environments using
a collision detection algorithm for volumetric objects’.

3.6 Visualization

In the current system, a number of techniques based on
OpenGL have been used to render the 2D and 3D objects
for real-time visual feedback. In 2D, object elements were
displayed as either points, connecting grid lines, or 4-sided
shaded polygons defined by neighboring elements (see
Figure 6). In 3D, either all of the object elements or just
the surface elements were displayed as points.

High quality volume rendering is slow because each of the
millions of volume elements can contribute to the final
image. However, new algorithms and hardware imple-
mentations' '*2' have begun to address the need for inter-
active volume rendering of regular volumes. Volume
rendering of irregular volumes at interactive rates remains
a significant challenge and it is the focus of a related proj-
ect at our laboratory.

4. Results

This system was implemented in C and uses OpenGL,
Tcl/Tk and togl in the user interface. The current imple-
mentation runs on SGI platforms. The examples and re-
sults reported here were run on an SGI Indy (MIPS R5000
processor with XZ graphics) and SGI Challenge (using
one of § MIPS R10,000 processors). The size of the
largest data volume reported here (125,000 elements) was
chosen so that frame rates of at least three frames per sec-
ond could be achieved on the SGI Indy.

Figures 5 to 7 show deformation of various 2D objects.
We were able to achieve acceptable frame rates for an ob-
ject of size 180x180 elements. In addition, we were able
to deform non-convex objects and objects in which the
position of some elements were fixed. Figure 8 shows
the deformation of a 3D cube of size 50x50x50. When
only surface points were rendered, frame rates of at least
three per second were achieved on the SGI Indy.

5. Summary and Discussion

We have presented an algorithm that enables fast deforma-
tion of objects containing hundreds of thousands of volu-
metric elements. This algorithm can model a range of
substances including; rigid, deformable, elastic, and plastic
materials. Unlike other work where deformation is mod-
eled with complex calculations on a small number of ele-
ments, this algorithm performs simple calculations on a
very large number of elements to achieve complex behav-
ior.

6. Acknowledgements

Special thanks to J. Samosky who suggested the name 3D
ChainMail and to E. Gibson, H. Pfister, J. Marks, and B.
Mirtich for helpful suggestions.

7. Bibliography

1. R. Avila and L. Sobierajski, personal communication,
1996.

2. D.Baraff "Analytical methods for dynamic simulation of
non-penetrating rigid bodies", (proc. SIGGRAPH), Com-
puter Graphics, Vol. 24, pp. 19-28, 1989.

3. M. Bro-Nielsen, "Modeling elasticity in solids using ac-
tive cubes - application to simulated operations", in
Computer Vision. Virtual Reality and Robotics in Medi-
cine, (proc. CVRMed '95), ed. Nicholas Ayache, pp. 535-
541.

4. D. Chen, "Pump it up: computer animation of a
biomechanically based model of muscle using the finite
element method", PhD thesis, Media Arts and Sciences,
MIT, 1991.

5. S. Cover, N. Ezquerra, Ja. O'Brian, R. Rowe, T. Gadacz, E.
Palm, "Interactively deformable models for surgery simu-
lation", IEEE Computer Graphics and Applications, Vol.
13, 6, pp. 68-75, 1993.

6. M. Desbrun, M.-P. Gascuel, "Animating soft substances
with implicit surfaces", Computer Graphics (proc.
SIGGRAPH), pp. 287-290, 1995.

7. L. Essa, S. Sclaroff, A. Pentland, "Physically-based model-
ing for graphics and vision", in Directions in Geometric
Computing, ed. Ralph Martin, Information Geometers,
U.K., 1993.

8. W. Hsu, J. Hughes, H. Kaufman, "Direct Manipulation of
Free-form deformations", Computer Graphics (proc.
SIGGRAPH), Vol 26, 2, pp. 177-184, 1992.

9. S. Gibson, "Beyond volume rendering: visualization, hap-
tic exploration, and physical modeling of element-based
objects", in Visualization in Scientific Computing (proc.
Eurographics workshop on ViSC), eds. R. Scateni, J. van
Wijk, and P. Zanarini, Springer-Verlag, pp. 10-24, 1995.

10. I. Hunter, T. Doukoglou, S. Lafontaine, and P. Charette,
"A teleoperated microsurgical robot and associated virtual
environment for eye surgery", Presence, Vol. 2, pp. 265-
280, 1993.

11. A. Kaufman, "Efficient algorithms for 3D scan-
conversion of parametric curves, surfaces, and volumes",
Computer Graphics, Vol 21, 4, pp. 171-179, 1987.

12. A. Kaufman, Volume Visualization, IEEE Computer Soci-
ety Press, Los Alamitos CA, 1991.

13. A. Kaufman, Daniel Cohen, Ronald Yagel, "Volume
Graphics", IEEE Computer, Vol 23, 7, pp. 51-64, 1993.

14. A. Kaufman, "Volume Visualization", CRC Handbook of
Computer Science and Engineering, 1996.

15. G. Knittel, "A scalable architecture for volume render-
ing", Comput. and Graphics, Vol. 19, No. 5, pp. 653-
665, 1995.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. P. Lacroute and M. Levoy, "Fast volume rendering using a
shear-warp factorization of the viewing transform", proc.
SIGGRAPH, Computer Graphics, pp. 451-457, 1994.

Y. Lee, D. Terzopoulos, and K. Waters, "Realistic model-
ing for facial animation", Computer Graphics (proc.
SIGGRAPH), pp. 55-62, 1995.

D. Metaxas, D. Terzopoulos, "Dynamic deformation of
solid primitives with constraints", Computer Graphics
(proc. SIGGRAPH), Vol 26, 2, pp. 309-312, 1992.

B. Mirtich, J. Canny, "Impulse-based simulation of rigid
bodies", proc. 1995 Workshop on Interactive 3D Graph-
ics, pp. 181-188, April, 1995.

A. Pentland, J. Williams, "Good vibrations: modal dy-
namics for graphics and animation", Computer Graphics,
Vol 23, 3, pp. 215-222, July, 1989.

H. Pfister, " ", Ph.D. thesis, SUNY at Stony Brook, Aug.
1996.

T. Sedeberg and S. Parry, "Free-form Deformation of Solid
Geometric Models", Computer Graphics (proc.
SIGGRAPH) Vol 22, 4, Aug. 1986, pp. 151-160.

L. Sobierajski and A. Kaufman, "Volumetric ray tracing",
proc. Volume Visualization Symposium, Washington,
DC, pp. 11-18, 1994.

L. Sobierajski, A. Kaufman, "Volumetric radiosity",
Technical Report 94.01.05, Computer Science, SUNY
Stony Brook, 1994.

D. Terzopoulos, J. Platt, A. Barr, K. Fleischer
"Elastically deformable models", Computer Graphics, Vol
21, 4, pp. 205-214, July, 1987.

D. Terzopoulos, Kurt F., "Modeling inelastic deforma-
tion: viscoelasticity, plasticity, fracture", Computer
Graphics, Vol 22, 4, pp. 269-278, Aug., 1988.

D. Terzopoulos, K. Waters, "Physically-based facial mod-
eling, analysis, and animation", J. Visualization and
Computer Animation, Vol. 1, pp. 73-80, 1990.

S. Wang and A. Kaufman, "Volume sculpting", ACM
Symposium on Interactive 3D Graphics, Monterey, CA,
pp. 151-156, April 1995.

S. Wang and A. Kaufman, "Volume sampled elementiza-
tion of geometric primitives", Proceedings Visualization
'93, San Jose, CA, pp. 78-84, October 1993.

K. Waters, "A Muscle model for animating three-
dimensional facial expression", Computer Graphics, Vol.
21, 4, July, 1987, pp. 17-24.

	Title Page
	Title Page
	page 2

	3D ChainMail: a Fast Algorithm for Deforming Volumetric Objects
	page 2
	page 3
	page 4
	page 5

