
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Connection Admission Control for Hard
Real-Time Communication in ATM

Networks

Qin Zheng, Tetsuya Yokotani, Tatsuki Ichihashi, Yasunoni Nemoto

TR96-21 December 1996

Abstract

Connection Admission Control (CAC) is needed in ATM networks to provide Quality of Ser-
vice (QoS) guarantees to real-time connections. This paper presents a CAC scheme based on a
bit-stream traffic model, which is capable of modeling traffic generation patterns of CBR/VBR
connections and traffic distortions within a network, and worst-case queueing analysis to obtain
cell queueing delay bounds. The proposed CAC scheme can be used to establish hard real-time
connections in ATM networks with conventional static priority FIFO queueing switches. The
effectiveness of the scheme is illustrated by applying it to RTnet, an ATM-based real-time plant
control network currently being developed by the Mitsubishi Electric Corporation. The CAC
scheme presented in the paper can also be extended to set up soft real-time connections in ATM
networks.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Connection Admission Control for

Hard Real-Time Communication

in ATM Networks
Qin Zheng

MERL | A Mitsubishi Electric Research Laboratory
Tetsuya Yokotani, Tatsuki Ichihashi

Mitsubishi Electric Information Technology R&D Center
Yasunoni Nemoto

Power and Industrial Systems Center
Mitsubishi Electric Corporation

TR-96-21 September 1996

Abstract

Connection Admission Control (CAC) is needed in ATM networks to provide Quality of
Service (QoS) guarantees to real-time connections. This paper presents a CAC scheme
based on a bit-stream tra�c model, which is capable of modeling tra�c generation
patterns of CBR/VBR connections and tra�c distortions within a network, and worst-
case queueing analysis to obtain cell queueing delay bounds. The proposed CAC scheme
can be used to establish hard real-time connections in ATM networks with conventional
static priority FIFO queueing switches. The e�ectiveness of the scheme is illustrated by
applying it to RTnet, an ATM-based real-time plant control network currently being
developed by the Mitsubishi Electric Corporation. The CAC scheme presented in the
paper can also be extended to set up soft real-time connections in ATM networks.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1996

201 Broadway, Cambridge, Massachusetts 02139



1 Introduction

Asynchronous Transfer Mode (ATM) [1] is a promising technology to provide integrated
services for high-speed digital communication networks. Its ability to support high bandwidth,
high reliability, and guaranteed quality of service communication makes it an ideal network
for supporting many distributed real-time applications. However, to make ATM capable of
supporting hard real-time communications such as that required by plant control systems,
more sophisticated Connection Admission Control (CAC) schemes than conventional ones are
needed.

For example, one way to support real-time communication in ATM networks is to use the
Constant Bit Rate (CBR) service. The CBR service is provided via rate control at sources
which limits the maximum rate that cells of a connection can be injected into a network, and
Connection Admission Control (CAC) which limits the number of real-time connections over
each transmission link. One straightforward CAC scheme for CBR connections is the peak
bandwidth allocation which limits the aggregated bandwidth of all CBR connections over a
transmission link not to exceed the link bandwidth. However, due to tra�c distortions within
a network, peak bandwidth allocation can not guarantee hard cell transmission delay bounds
for CBR connections. Speci�cally, due to cell jitters introduced at upstream nodes, cells of a
CBR connection may arrive at a switching node at a higher rate than they are controlled at
their source. This uctuation in cell rate may cause the aggregated cell arrival rate at a switch
to exceed the outgoing link bandwidth, resulting in unpredictable queueing delays for CBR
cells. Thus to provide hard real-time guarantees for CBR connections, more sophisticated CAC
schemes than the peak bandwidth allocation are needed to ensure that the worst-case delays
do not exceed the delay bounds requested by the connections.

In addition, CBR is not always the most suitable service for real-time communications. Real-
time tra�c can also be bursty. It causes over reservation of network resources if one assigns
a CBR connection with a bandwidth equal to the peak rate that tra�c may be generated.
The Variable Bit Rate (VBR) service as de�ned by the ATM Forum [2] is more suitable for
bursty real-time tra�c. The tra�c model for a VBR connection is described by a peak cell rate
(PCR), a sustainable cell rate (SCR), and a maximum bursty size (MBS). A VBR connection
is allowed to inject up to MBS cells into a network at a rate of PCR under a constraint that
the average cell rate does not exceed SCR. In other words, a connection is allowed to generate
tra�c at a higher rate for a certain period of time if it did not use up the average bandwidth
allocated to it. The VBR service can support bursty real-time communication better than the
CBR service, but it is also more di�cult to perform connection admission control for real-time
VBR connections.

The problem of supporting hard real-time communication in packet or cell switched net-
works has been studied extensively in recent years [3, 4, 5, 6, 7, 8]. Most results, however,
require transmission scheduling and/or shaping mechanisms which have not been implemented
in most of the existing ATM switches. The admission control algorithms for the establish-
ment of hard real-time connections over an ATM network with conventional First In First Out
(FIFO) queueing and scheduling switches was �rst studied by Amitava Raha et. al. [9]. In [9],
a maximum rate function is used to describe tra�c generation patterns at sources and tra�c
distortions within a network, and the worst-case queueing analysis was performed to obtain the
queueing delay bounds for connections.

In this paper, we propose a CAC scheme which uses a similar framework as that of [9] but
with following important di�erences:



2

More e�cient tra�c model : a bit-stream tra�c model is used which has the advantage of
being easier to describe tra�c generation pattern of a CBR/VBR connection and tra�c
distortions within a network.

More accurate modeling of tra�c distortions : exact worst-case tra�c distortions (rather
than an upper bound) within a network can be obtained by using the bit-stream tra�c
model. Also, the �ltering e�ect of a transmission link to the aggregated tra�c of multiple
connections can be modeled to obtain tighter queueing delay bounds.

Easier delay bound calculation : explicit algorithms are given for the calculation of worst-
case queueing delays which, unlike that of [9], do not require a maximum operation on
a complex (and sometimes not easy to obtain) function over a continuous interval. Also,
the CAC algorithms proposed in this paper avoid iteration procedures in the delay bound
calculation by having each switch provide �xed delay bounds to connections regardless of
the current tra�c load.

Support for priority scheduling : the CAC scheme presented in this paper allows a switch
to assign multiple priority levels for real-time connections so that heterogeneous real-time
connections can be accommodated more exibly.

The CAC scheme proposed in this paper has been applied to RTnet, an ATM-based real-
time plant control network under development by the Mitsubishi Electric Corporation, to justify
the design of real-time cyclic transmission support using CBR connections and to investigate
the feasibility of supporting VBR connections to accommodate bursty real-time tra�c. The
proposed CAC scheme will also be implemented in RTnet for the management of real-time
connections.

This paper is organized as follows. A bit-stream tra�c model is introduced in Section 2 for
describing CBR/VBR tra�c generations at sources. Section 3 presents bit-streammanipulation
algorithms for modeling tra�c distortions within a network. Queueing delay analysis and CAC
algorithms are delivered in Section 4. Section 5 shows the application of the proposed CAC
scheme for the RTnet, and the paper concludes with Section 6.

2 Bit Stream Tra�c Model

Tra�c of a VBR connection is generated at its source with a constraint of the VBR tra�c
model (PCR; SCR;MBS), where PCR is the peak cell rate, SCR is the sustainable cell rate,
and MBS is the maximum burst size. For the convenience of analysis, we assume in this paper
that time is measured in a unit of cell time which is de�ned as the time needed to transmit one
cell at the full link bandwidth, and cell rate is normalized to the link bandwidth. Let tk denote
the time that the kth cell of a VBR connection is generated, then tk satis�es the following
inequality:

tk �

(
tk�1 + 1=PCR if Ck � 1
tk�1 + 1=SCR if Ck < 1

(1)

where Ck is updated as

Ck = maxfMBS;Ck�1 + (tk � tk�1) � SCR� 1g

with C0 =MBS and t0 equals to the generation time of the �rst cell.

MERL-TR-96-21 March 1996



3

Following cells arrive at a rate of SCR

0

Rate

Time

1

MBS cells arrive at a rate of PCR

Figure 1: Discrete cell generation model of a VBR connection.

The physical meaning of the above tra�c model is that Ck represents the number of tokens
that a VBR connection possesses which is decreased by one each time a cell is sent and increased
at a rate of SCR up to a maximum value of MBS. A source is allowed to generate cells at a
rate of PCR whenever Ck � 1. Otherwise, the cell generation rate is constrained by the rate
at which the token is incremented, i.e., SCR. With this tra�c model, a source is allowed to
generate a burst of up to MBS cells at a rate of PCR as long as it does not exceed an average
transmission rate of SCR. If we de�ne the worst-case tra�c generation pattern during a time
period [0; t] as the one with which the maximum number of cells is generated during this period,
then as shown in Figure 1, the worst-case tra�c generation pattern of a VBR connection is
that MBS cells are generated at a rate of PCR and after that cells are generated at a rate of
SCR continuously.

A CBR connection is described by a peak cell rate PCR which controls the maximum rate
that cells can be generated. Since a CBR connection can be viewed as a VBR connection with
SCR = PCR, we treat CBR as a special case of VBR in this paper.

To perform worst-case queueing analysis, we introduce a bit-stream tra�c model to describe
the worst-case tra�c generation pattern of a VBR connection as shown Figure 2. Speci�cally,
a continuous bit stream is used to approximate the discrete cell generation of a connection in
such a way that the bit stream generates the same number of bits as that of the cell stream at
cell boundaries. As will be seen later, it is a lot easier to analyze continuous bit streams than
discrete cell streams.

A bit stream is described by a bit-stream model

S = f(r(k); t(k));k = 0; 1; � � � ; mg (2)

which represents the bit rate r as a monotonic decreasing step-wise function of time t as shown
in Figure 3. More speci�cally, S represents a bit stream which has a rate r(k) during a time
interval [t(k); t(k+ 1)) for t = 0; � � � ; m with t(m+ 1) =1.

From Figure 2, it is easy to see that the conversion from a discrete cell model to a continuous
bit-stream model for a VBR connection can be performed with the following algorithm.

Algorithm 2.1 (Conversion to a bit-stream model) .

The worst-case tra�c generation of a VBR connection with parameters (PCR; SCR;MBS) is
bounded by the following bit stream

S = f(1; 0); (PCR; 1); (SCR; 1 + (MBS � 1)=PCR)g (3)

MERL-TR-96-21 March 1996



4

Bit stream model

0

Rate

Time

1

MBS cells arrive at a rate of PCR Following cells arrive at a rate of SCR

PCR

SCR

Figure 2: Continuous bit-stream model of a VBR connection.

Time

r(1)

0 t(m)

r(0)

r(m)

t(1)

Rate

Figure 3: A general bit-stream model.

MERL-TR-96-21 March 1996



5

Delayed Bit Stream S’

0

Rate

TimeCDV t’

Bit accummulation during delayed period Time when all accummulated bits are released

AREA1 = AREA2

AREA1

AREA2

Original Bit Stream S

Figure 4: Delay of a bit stream.

3 Bit Stream Manipulation Algorithms

When a bit stream passes through a network, it can be delayed, multiplexed/demultiplexed
with other bit streams at queueing points, and �ltered by transmission links. This section
delivers bit stream manipulation algorithms to model such tra�c distortions within a network.

3.1 Delay

Passing a bit stream through a network with a delay variance of CDV can cause clumping of
bits. In the worst case, all bits generated during a time period [0; CDV ] can be delayed until
time CDV and then released at a full link rate, changing the original bit stream S to a delayed
bit stream S' as shown in Figure 4.

The conversion from an original stream S = f((r(k); t(k)); k = 0; :::;mg to a delayed stream
S0 = f((r0(k); t0(k)); k = 0; :::;m0g can be performed with the following steps:

Step 1: Calculate the bit accumulation during the delayed period [0; CDV ] as shown by
AREA1 in Figure 4.

Step 2: Calculate time t0 when all accumulated bits are release, i.e., when AREA2 equals to
AREA1 as shown in Figure 4.

Step 3: Construct a delayed bit stream S' which has a bit rate r0(t) = 1 during time period
[0; t0 � CDV ), and bit rate r0(t) = r(t+ CDV ) for t � t0 � CDV .

The following Pseudo code describes an algorithm implementing the above bit stream con-
version steps:

Algorithm 3.1 (Delay of a bit stream) .

Passing a bit stream S = f((r(k); t(k)); k = 0; :::;mg through one or more queueing points

which have an accumulated maximum delay variation of CDV results in a worst-case delayed

bit stream S 0 = f((r0(k); t0(k)); k = 0; :::;m0g which can be calculated as follows:

AREA1 = 0

AREA2 = 0

MERL-TR-96-21 March 1996



6

k = 0 /* index variable for bit stream S */

k' = 0 /* index variable for bit stream S' */

/* Step 1: calculation of AREA1 */

while (t(k+1) < CDV)

AREA1 = AREA1 + r(k)*(t(k+1)-t(k))

k = k + 1

AREA1 = AREA1 + r(k)*(CDV-t(k))

/* Step 2: calculation of t' */

AREA2 = (1-r(k))*(t(k+1)-CDV)

while (AREA1 > AREA2)

k = k + 1

AREA2 = AREA2 + (1-r(k))*(t(k+1)-t(k))

t' = t(k+1) - (AREA2-AREA1)/(1-r(k))

/* Step 3: construction of S' */

t'(0) = 0

r'(0) = 1

t'(1) = t' - CDV

r'(1) = r(k)

k'=1

while (k < m)

k = k + 1

k' = k' + 1

t'(k') = t(k) - CDV

r'(k') = r(k)

m' = k'

Algorithm 3.1 can be used to calculate the worst-case bit stream arrival of a CBR/VBR
connection at an incoming link of a switch with a known accumulated maximum delay variance
CDV over upstream switches.

3.2 Multiplexing

Suppose two bit streams S1 and S2 arrive at a switch, then the worst-case multiplexed bit
stream rate is the summation of each individual bit stream rate as shown in Figure 5. The
following algorithm calculates the multiplexed bit stream S = S1 + S2:

Algorithm 3.2 (Bit stream multiplexing) .

Let S1 = f(r1(k1); t1(k1)); k1 = 0; � � � ; m1g, S2 = f(r2(k2); t2(k2)); k2 = 0; � � � ; m2g, then the

multiplexed bit stream S = S1 + S2 = f(r(k); t(k)); k = 0; � � � ; mg can be calculated as follows:

k1 = 1 /* index variable for S1 */

k2 = 1 /* index variable for S2 */

m = 0 /* m for S */

r(0) = r1(0) + r2(0)

/* at each time point t where r1(t) or r2(t) changes, */

MERL-TR-96-21 March 1996



7

S = S1 + S2

0

Rate

Time

S1

S2

S
S2

S1

Figure 5: Multiplexing of two bit streams.

/* calculate r(t) = r1(t) + r2(t) */

While ((k1 <= m1) & (k2 <= m2))

m = m + 1

if (t1(k1) < t2(k2)) /* r1(t) changes first */

t(m) = t1(k1)

r(m) = r1(k1) + r2(k2-1)

k1 = k1 + 1

else if (t1(k1) > t2(k2)) /* r2(t) changes first */

t(m) = t2(k2)

r(m) = r1(k1-1) + r2(k2)

k2 = k2 + 1

else /* both r1(t) and r2(t) change */

t(m) = t2(k2)

r(m) = r1(k1) + r2(k2)

k1 = k1 + 1

k2 = k2 + 1

if (k1 <= m1) /* append tail of S1 */

for (k1=k1; k1<=m1; k1++)

m = m + 1

r(m) = r1(k1) + r2(k2-1)

t(m) = t1(k1)

else if (k2 <= m2) /* append tail of S2 */

for (k2=k2; k2<=m2; k2++)

m = m + 1

r(m) = r1(k1-1) + r2(k2)

t(m) = t2(k2)

3.3 Demultiplexing

Suppose a bit stream S1 is aggregated from a bit stream S2 and some other bit streams, then
the removal of S2 from S1 results in a new bit stream S whose bit rate r(t) = r1(t) � r2(t)
as shown in Figure 6. The calculation of S = S1 � S2 can be performed with the following
algorithm:

MERL-TR-96-21 March 1996



8

S = S1 - S2

0

Rate

Time

S2

S2

S1

S

S1

Figure 6: Demultiplexing of two bit streams.

Algorithm 3.3 (Bit stream demultiplexing) .

Let S1 = f(r1(k1); t1(k1)); k1 = 0; � � � ; m1g, S2 = f(r2(k2); t2(k2)); k2 = 0; � � � ; m2g, then the

demultiplexed bit stream S = S1�S2 = f(r(k); t(k)); k = 0; � � � ; mg can be calculated as follows:

k1 = 1 /* index variable for S1 */

k2 = 1 /* index variable for S2 */

m = 0 /* m for S */

r(0) = r1(0) - r2(0)

/* at each time point t where r1(t) or r2(t) changes, calculate */

/* r(t) = r1(t) - r2(t) */

While ((k1 <= m1) & (k2 <= m2))

m = m + 1

if (t1(k1) < t2(k2)) /* r1(t) changes first */

t(m) = t1(k1)

r(m) = r1(k1) - r2(k2-1)

k1 = k1 + 1

else if (t1(k1) > t2(k2)) /* r2(t) changes first */

t(m) = t2(k2)

r(m) = r1(k1-1) - r2(k2)

k2 = k2 + 1

else /* both r1(t) and r2(t) change */

t(m) = t2(k2)

r(m) = r1(k1) - r2(k2)

k1 = k1 + 1

k2 = k2 + 1

if (k1 <= m1) /* append tail of S1 */

for (k1=k1; k1<=m1; k1++)

m = m + 1

r(m) = r1(k1) - r2(k2-1)

t(m) = t1(k1)

MERL-TR-96-21 March 1996



9

1

0

Rate

Time

Original Bit Stream S

t’

AREA2

Filtered Bit Stream S’

AREA1

Queue Build-up

Time when all accummulated bits are released

AREA1 = AREA2

Figure 7: Bit stream �ltering.

3.4 Filtering

Multiplexing of several bit streams at a queueing point may result in an aggregated bit rate
exceeding the link bandwidth. The outgoing bit stream is thus �ltered by the outgoing transmis-
sion link as shown in Figure 7. The conversion of an incoming bit stream S = f(r(k); t(k));k =
0; � � � ; mg to a �ltered outgoing bit stream S0 = f(r0(k); t0(k)); k = 0; � � � ; m0g can be performed
with the following steps:

Step 1: Calculate the maximum queue buildup during the time period when the incoming bit
rate exceeds the outgoing link rate, i.e., when r(t) > 1, as shown by AREA1 of Figure 7.

Step 2: Calculate time t0 when all accumulated bits are released, i.e., when AREA2 equals to
AREA1 as shown in Figure 7.

Step 3: Construct a �ltered bit stream S0 which has a bit rate r0(t) = 1 for t 2 [0; t0), and bit
rate r0(t) = r(t) for t � t0.

The following algorithm implements the above steps:

Algorithm 3.4 (Bit stream �ltering) .

Passing a bit stream S = f(r(k); t(k)); k = 0; 1; � � � ; mg through a transmission link with band-

width of 1 cell per cell time results in a �ltered bit stream S 0 = filter(S) = f(r0(k0); t0(k0)); k0 =
0; 1; :::; m0g which can be calculated as follows:

AREA1 = 0

AREA2 = 0

k = 0 /* index variable for S */

k' = 0 /* index variable for S' */

if (r(k) <= 1) /* bit stream is not changed */

S' = S

else

r'(k') = 1

k'++

MERL-TR-96-21 March 1996



10

/* step 1: calculation of maximum queue build-up */

while (r(k) > 1)

AREA1 = AREA1 + (r(k)-1)*(t(k+1)-t(k))

k = k + 1

/* step 2: calculation of t'(1), the time when the queue becomes empty */

while (AREA1 > AREA2)

AREA2 = AREA2 + (1-r(k))*(t(k+1)-t(k))

k = k + 1

t'(k') = t(k) + queue/(1 - r(k-1))

r'(k') = r(k-1)

/* step 3: fill up the rest of S' */

while (k <= m)

k' = k' + 1

r'(k') = r(k)

t'(k') = t(k)

k = k + 1

Tra�c �ltering by transmission links smooths the incoming bit streams at a queueing point,
and thus can greatly reduce the cell queueing delay bounds.

4 Worst-case Queueing Analysis and CAC Algorithm

In this section, we show how the bit-stream model and manipulation algorithms presented in
the last section can be used to construct Connection Admission Control (CAC) algorithms for
the establishment of CBR/VBR connections in an ATM network.

4.1 Assumptions

Connection admission control is used to determine whether or not a network has enough re-
sources to accommodate new connections. A CAC algorithm depends on (1) the types of QoS
parameters requested by a connection; (2) the types of queueing and scheduling mechanisms
used at a switching node; and (3) connection setup sequence, i.e., how a CAC algorithm is used
within the whole connection setup procedure.

QoS parameters .
To support hard real-time communication in plant control networks, we use the end-to-
end queueing delay bound D as the QoS parameter for a CBR/VBR connection. In other
words, successful establishment of a connection with parameters (PCR; SCR;MBS;D)
means that a network guarantees that cells of this connection will not experience queueing
delays larger than D within the network as long as the connection does not inject more
cells into the network than that constrained by a peak cell rate PCR, a sustainable cell
rate SCR, and a maximum bursty size MBS.

Queueing and scheduling mechanism .
The way in which a switch uses to queue and schedule transmission of incoming cells di-
rectly a�ects a switch's ability of providing QoS guarantees to connections. Sophisticated
queueing and scheduling schemes like per-VC queueing and deadline scheduling allow a

MERL-TR-96-21 March 1996



11

AREA1

0

Rate

Time

1

D(t)

t

S

AREA

S1

g(t)

Figure 8: Queueing delay calculation.

switch to provide di�erent QoS guarantees for each individual connections. In this re-
port, however, we assume a basic static priority First-In-First-Out (FIFO) queueing and
scheduling scheme to ensure the applicability of our CAC algorithms to existing systems
like RTnet. Speci�cally, with a static priority FIFO scheduling mechanism, incoming
cells of a connection are stored in one of the priority FIFO queues. Cells stored in a
higher priority queue are always sent before those in a lower priority queue. Within the
same queue, cells are sent in the same order as they are deposited into the queue. With
this queueing mechanism, connections of the same priority have the same queueing delay
bound at the queueing point.

Connection setup sequence .
We assume a distributed connection setup procedure. Speci�cally, each switching node in
a network provides a maximum queueing delay bound Dmax to CBR/VBR connections
whereby Dmax equals to the size of the FIFO queue for CBR/VBR connection at the
switching node. A source end system requests a CBR/VBR connection by sending a
SETUP message containing its tra�c and QoS parameters, i.e., (PCR; SCR;MBS;D),
along a preselected route to the destination. Each switch on the route processes the
SETUP message by checking whether or not there are enough resources to accommodate
this new connection by executing a CAC algorithm. If the connection passes the CAC
check, the switch forwards the SETUP message to a downstream node on the route.
Otherwise, the switch sends back a REJECT message notifying upstream switches and
the source end system that the requested connection can not be established. If the SETUP
message successfully reaches a destination end system, a CONNECTED message is sent
back to the source end system notifying the completion of connection setup. The source
end system can then start sending data cells.

4.2 Queueing delay bound calculation

With assumptions given above, we �rst derive an algorithm to calculate the queueing delay
bound for a connection of transmission priority p. Let S = f(r(k); t(k)); k = 0; � � � ; mg be the
aggregated arriving bit stream of priority p, and let S1 = f(r1(k1); t1(k1)); k1 = 0; � � � ; m1g be
the �ltered aggregated arriving bit stream of priority levels higher than p at a queueing point.
Then as shown in Figure 8, the queueing delay bound for S can calculated with the following
steps:

MERL-TR-96-21 March 1996



12

Step 1: For each time point t � 0, �nd a corresponding time point g(t) such that AREA1
equals to AREA. The physical meaning of g(t) is that in the worst case, a bit of S arrived
at time t would leave the queueing point at time g(t).

Step 2: Let D(t) = g(t)� t, then D(t) is the worst-case queueing delay for a bit of S arrived
at the queueing point at time t. Notice that D(t) is a monotonic increasing function in
an interval where r(t) > 1� r1(g(t)) and a monotonic decreasing function in an interval
where r(t) < 1� r1(g(t)).

Step 3: Find time t0 such that r(t0) = 1 � r1(g(t0)). Since r(t) is a monotonic decreasing
function and 1 � r1(g(t)) is a monotonic increasing function, the maximum of D(t) is
reached at a time t0. In other words, the queueing delay bound for S equals D(t0).

Since r(t) and r1(t) change only at a �nite number of time points, the queueing delay bound
can be obtained with a �nite number of operations. The following algorithm implements the
above steps:

Algorithm 4.1 (Calculation of queueing delay bound) .

Let S = f(r(k); t(k)); k = 0; � � � ; mg be the aggregated arriving bit stream of priority p and

S1 = f(r1(k1); t(k1)); k1 = 0; � � � ; m1g be the �ltered aggregated arriving bit stream of priority

levels higher than p at a queueing point. Then the queueing delay bound D = delay bound(S; S1)
for S can be calculated as follows:

D = 0 /* queueing delay bound */

k = 0 /* index for S */

k1 = 0 /* index for S1 */

AREA = 0

AREA1 = 0

while (r(k) > 1-r1(k1)) /* no need to check D(t) otherwise */

AREA = AREA + r(k)*(t(k+1)-t(k))

/* now find g(t) for t=t(k) */

while ((AREA > AREA1) & (r(k) > (1-r1(k1))) & (k1 < m1))

AREA1 = AREA1 + (1-r1(k1))*(t1(k1+1)-t1(k1))

k1 = k1 + 1

if (AREA <= AREA1)

g(t) = t1(k1) - (AREA1-AREA)/(1-r1(k1-1))

k = k + 1

D = g(t) - t(k)

else // either r(k)<=1-r1(k1) or k1=m1

k=k+1

g(t) = t(k) - (AREA-AREA1)/r(k-1)

D = g(t) - t(k)

break // maximum D found

Notice that if p is the highest priority level, r1(t) = 0 for all t � 0. Then the maximum
queueing delay can be simply calculated as AREA1 as shown in Figure 7 for the bit stream S.

MERL-TR-96-21 March 1996



13

4.3 Connection Admission Control Algorithm

To perform the worst-case queueing analysis as described above, the following information needs
to be kept for each switching node:

� Tra�c and QoS parameters for each connection: (PCR; SCR;MBS;CDV ), where PCR; SCR;MBS

are the peak cell rate, sustainable cell rate, and maximum bursty size as de�ned in Section
2, and CDV is the maximum accumulated cell delay variance over upstream nodes.

� For each pair of incoming link i and outgoing link j, and each priority level p of outgoing
link j, store the following bit streams:

{ Sia(i; j; p): the aggregated bit stream of all connections of priority p coming in from
incoming link i and going out from outgoing link j;

{ Sia(i; j)(p): the aggregated bit stream of all connections of priority levels higher than
p coming in from incoming link i and going out from outgoing link j;

{ Sif(i; j; p): �ltered bit stream of Sia(i; j;p);

{ Sif(p): �ltered bit stream of Sia(i; j)(p);

{ Soa(j; p): aggregated bit stream of Sif (i; j;p) over all incoming links i;

{ Soa(j)(p): aggregated bit stream of Sif(i; j)(p) over all incoming links i;

{ Sof(j)(p): �ltered bit stream of Soa(j)(p)

With �xed numbers of incoming/outgoing links and priority levels of a switch, the mem-
ory needed to store the above data structures is proportional to the number of connections
established over the switch.

Assume that a switch supports a queueing delay bound of D(j; p) for outgoing link j and
transmission priority p, and let (PCR; SCR;MBS;CDV ) be the tra�c parameters of a new
connection with incoming link i, outgoing link j, and priority level p, then the connection can
be established at the switch if and only if the addition of this connection does not a�ect the
switch's delay bound guarantees. This delay bound check can be performed using Algorithm 4.1
with the following steps:

Step 1: Calculate the arrival bit stream S for the new connection using Algorithm 2.1 and
Algorithm 3.1 with the connection's tra�c parameters (PCR; SCR;MBS;CDV ).

Step 2: Calculate a new aggregated arriving bit stream at the incoming link i: S0

ia(i; j;p) =
Sia(i; j; p) + S, and a new �ltered aggregated bit stream S0

if(i; j; p) = filter(S0

ia(i; j; p))
using Algorithm 3.2, and Algorithm 3.4, respectively.

Step 3: Calculate a new aggregated bit stream at the outgoing link j: S0

oa(j; p), which can be
obtained by �rst subtracting Sif (i; j;p) from Soa(j; p) and then adding S0

if (i; j;p) using
Algorithm 3.2 and Algorithm 3.3, respectively.

Step 4: Calculate the queueing delay bound D0(j; p) = delay bound(S0

oa(j; p); Sof(j; p)) for
priority p at outgoing link j using Algorithm 3.1. If D0(j; p) is larger than the switch's
delay bound D(j; p), stop, the connection can not be established at the switch. Otherwise,
go to Step 5 to check if the new connection a�ects connections of lower priority levels
(connections of higher priority levels will not be a�ected by the new connection).

MERL-TR-96-21 March 1996



14

Step 5: For each priority level p1 which is lower than p and assigned to real-time connections,
calculate the queueing delay bound D0(j; p1) at outgoing link j using steps described
below:

� Calculate a new a new aggregated bit stream S0

oa(j)(p1) by �rst subtracting Sif (i; j; p)
from Soa(j)(p1) and then adding S0

if(i; j; p) using Algorithm 3.2 and Algorithm 3.3,
respectively.

� Calculate a �ltered bit stream of Sof(j)(p1) = filter(Soa(j)(p1)) using Algorithm 3.4.

� Calculate a new queueing delay bound for priority p1 using Algorithm 3.1: D0(j; p1) =
delay bound(Soa(j; p1); Sof(j)(p1)).

Step 6: If D0(j; p1) > D(j; p), the connection can not be established over the switch. Other-
wise, the connection passes the CAC check at the switch.

Some discussions about the above CAC scheme:

1. In the above CAC scheme, an accumulated cell delay variance CDV is needed to calculate
the worst-case arrival bit stream of a connection. For hard real-time connections, this CDV
can be calculated as the summation of maximum queueing delays over upstream switches,
which represents the worst-case variation of queueing delays that cells of connection may
experience. This worst case, however, is very unlikely to happen in practice since the
probability of a cell's having maximum queueing delays over all switches on its route is
very small. Thus for soft real-time connections, a less conservative CDV accumulation
scheme such as square-root summation of queueing delay bounds over upstream switches
can be used to accommodate more real-time connections in a network. Comparison of
hard and soft CAC schemes will be given in Section 5.

2. The proposed CAC scheme supports multiple priority levels for real-time connections.
The advantage of using multiple priority levels is that connections with diverse delay
bound requirements can be supported more e�ciently (i.e., connections requesting large
delay bounds can be assigned low priority levels). However, the computation and memory
required to perform the CAC check also increase proportionally with the number of prior-
ity levels used to support real-time connections. So for networks where fast establishment
of switched real-time VCs is needed, the number of priority levels assigned for supporting
real-time tra�c should not be too large.

3. The proposed CAC scheme can be implemented either distributedly at switches or cen-
trally at a connection admission control server. For permanent real-time connections, the
CAC check can also be performed o�-line for which case the memory and computation
requirements would not be a big issue.

5 Connection Admission Control for RTnet

The Real-Time Industrial Control Network (RTnet), currently being developed at the Power and
Industrial Systems Center of Mitsubishi Electric Corporation, is an ATM-based high speed local
area network designed for next generation plant control systems. The CAC scheme presented
in this paper has been used in the design phase of RTnet to verify the network's ability of
supporting real-time communication. Speci�cally, the proposed CAC scheme has contributed
to (1) validate the way in which real-time cyclic transmission is supported, (2) investigate

MERL-TR-96-21 March 1996



15

terminals

node

ring
node

ring
node

ring
node

ring

terminals

terminals

terminals

Figure 9: RTnet topology.

period (ms) delay (ms) memory size (KB) bandwidth (Mbps)

high speed 1 1 4 32

medium speed 30 30 64 17.5

low speed 150 150 128 6.8

Table 1: Types of cyclic transmission.

the feasibility of supporting real-time VBR service, and (3) determine bu�er requirement at
switched for real-time tra�c. The CAC scheme will also be implemented in the next version
of RTnet for the management of switched real-time connections. In this section, we present
some evaluation results showing how the proposed CAC scheme can be applied to a real world
system such as RTnet.

As shown in Figure 9, a typical con�guration of RTnet employs a star-ring topology where
ring nodes are connected together via dual 155 Mbps links and multiple end terminals are
attached to each ring node. One advantage of this con�guration is that the network can tolerate
any single link/node failure by a using hardware ring wrap-around technology similar to that
used in FDDI networks.

An important real-time application supported by the RTnet is cyclic transmission which
implements a kind of real-time shared memory among terminals in a network. Speci�cally,
each terminal uses the cyclic transmission facility to periodically broadcast its portion of shared
memory to the network and receives updates of other portions of the shared memory from other
terminals. Table 1 shows three types of cyclic transmissions that are supported by the RTnet
which lists the memory update period, maximum allowable update delay, maximum size of
the shared memory, and the calculated maximum bandwidth required for each type of cyclic
transmission.

To investigate whether or not an RTnet has enough capacity to support cyclic transmissions
with the CBR service, we applied our CAC scheme to a typical RTnet with 16 ring nodes and

MERL-TR-96-21 March 1996



16

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

delay (cell time)

aggregated average bandwidth (Mbps)

N=1
N=4
N=8
N=16

Figure 10: End-to-end queueing delay bounds.

each ring node has N terminals attached to it. The maximum number of terminals that can
be connected to a ring node 16. Each node has a highest priority FIFO queue of 32 cells
to accommodate cyclic tra�c. At a 155 Mbps transmission speed, one cell time is about 2.7
microseconds. Thus a 32-cell FIFO queue represents a maximum of 32� 2:7 = 87 microseconds
of queueing delay at each node. In other words, each ring node contributes a maximum of 87
microseconds of CDV to connections established through it.

A symmetric tra�c generation pattern is �rst investigated where each terminal generates
the same amount of tra�c (i.e., the cyclic memory is equally divided among terminals) with
an total normalized tra�c load B. The hard CAC scheme presented in Section 4.3 is used to
setup a broadcast CBR connection with a PCR = B=16N for each terminal. The obtained
maximum end-to-end queueing delay bounds as a function of tra�c load B and the number of
terminals per node N are plotted in Figure 10 from which we can conclude the following:

� For N = 1, up to 75% of cyclic tra�c (115 Mbps) can be supported with end-to-end
queueing delays smaller than 370 cell times (1 ms). This is much more than the targeted
maximum amount of cyclic tra�c to be supported in RTnet. As the number of terminals
attached to each ring node N increases, the tra�c generated by each ring node becomes
more bursty, thus resulting in larger queueing delays and less cyclic tra�c that can be
supported by the network. With a maximum con�guration of N = 16 terminals per
ring node, about 35% of cyclic tra�c (55 Mbps) can be supported with an end-to-end
queueing delay bound of 370 cell times. This is enough to accommodate the high speed
cyclic tra�c. For a network with smaller numbers of ring nodes and/or terminals, all
three types of cyclic tra�cs can be supported with a single transmission priority level.

� Notice that the worst-case aggregated tra�c from N CBR connections with a peak cell
rate R is the same as that of a VBR connection with PCR = N , SCR = N � R, and
MBS = N . Thus from Figure 10 we can also learn the RTnet's ability of supporting

MERL-TR-96-21 March 1996



17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bandwidth

p

N=1
N=8
N=16

Figure 11: Asymmetric cyclic tra�c support.

VBR connections. For example, from the \N = 16" curve, it can be concluded that up to
35% of real-time VBR tra�c can be supported with a queueing delay bound of 370 cell
times if the summation of MBS0s of VBR connections established at terminals attached
to a ring node does not exceed 16. This shows that it is quite feasible to support the
real-time VBR service in RTnet using the proposed CAC scheme.

To study RTnet's ability of supporting asymmetric tra�c, we let one terminal generate p%
of the total tra�c and divide the rest tra�c equally among other terminals. The total amounts
of cyclic tra�c that can be supported by the network as functions of p and the number of
terminals per node N are plotted in Figure 11. From the �gure we see that the total amount of
real-time tra�c that can be supported by a network varies with tra�c generation patterns. In
general, less tra�c can be support when the tra�c generation pattern becomes more asymmetric
(larger p) and more bursty (largerN). In the current version of RTnet, all real-time connections
are permanent connections. Thus the proposed CAC algorithm are used to set up real-time
connections o�-line. The outcomes of the CAC check also help to set network parameters such
as ring node bu�er sizes and number of priority levels needed to support a given set of real-time
connections. For the next version of RTnet, in which switched real-time connections will be
supported, the proposed CAC scheme is to be implemented in a central connection management
server to set up and tear down real-time connections on-line.

We also evaluated the bene�ts of using multiple priority levels for supporting real-time
tra�c. Figure 12 shows the extra amount of real-time tra�c that can be supported by an
RTnet if two priority levels are used for cyclic tra�c.

Finally, Figure 13 shows the extra amount of real-time tra�c that can be supported if we
use a soft CAC scheme as discussed in Section 4.3.

MERL-TR-96-21 March 1996



18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bandwidth

p

1 priority
2 priorities

Figure 12: Asymmetric cyclic tra�c support with two priority levels.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bandwidth

p

soft CAC
hard cac

Figure 13: Comparison of soft and hard CAC schemes.

MERL-TR-96-21 March 1996



19

6 Conclusions

We presented in this paper a bit-stream based connection admission control scheme for the
establishment of hard real-time connections in ATM networks with conventional static priority
FIFO switches. The proposed scheme has been used to verify the design of RTnet, an ATM-
based real-time network for industrial control systems, and it is going to be implemented in the
next version of RTnet for the management of real-time connections.

References

[1] M. Prycker, Asynchronous transfer mode: solution for broadband ISDN, Ellis Horwood
Limited, Chichester, West Sussex, PO191EB, England, 1991.

[2] The ATM Forum, \Tra�c Management Speci�cation,", April 1996. Version 4.0.

[3] D. Ferrari and D. C. Verma, \A scheme for real-time channel establishment in wide-area
networks,", vol. SAC-8, no. 3, pp. 368{379, April 1990.

[4] Q. Zheng and K. G. Shin, \On the ability of establishing real{time channels in point{to{
point packet{switched networks," IEEE Transactions on Communication, pp. 1096{1105,
March 1994.

[5] L. Zhang, \Virtual Clock: A new tra�c control algorithm for packet-switched networks,"
ACM Trans. Computer Systems, vol. 9, no. 2, pp. 101{124, May 1991.

[6] A. K. J. Parekh, A generalized processor sharing approach to ow control in integrated

services networks, PhD thesis, Massachusetts Institute of Technology, February 1992.

[7] Q. Zheng, \An enhanced timed-round-robin tra�c control scheme for atm networks," Pro-

ceedings of the 21st Local Computer Network Conference, November 1996.

[8] H. Zhang and S. Keshav, \Comparison of rate-based service discipline," Proceedings of ACM
SIGCOMM, Zurich, Switzerland, pp. 113{121, September 1991.

[9] A. Raha, S. Kamat, and W. Zhao, \Admission control for hard real-time connections in
ATM LANs," Proceedings of IEEE INFOCOM'96, pp. 180{188, April 1996.

MERL-TR-96-21 March 1996


	Title Page
	Title Page
	page 2


	Connection Admission Control for Hard Real-Time Communication in ATM Networks
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20


