MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

DART — A Low Overhead ATM Network
Interface Chip

Randy Osborne, Qin Zheng, John Howard, Ross Casley, Doug Hahn, Takeo Nakabayashi

TR96-18 December 1996

Abstract

DART is an ATM Network Interface Controller chip designed for both high bandwidth and low
overhead communication. Innovative features are direct, protected application access to/from
the network, host-assisted flow control, andssage processitog flexible low overhead com-
munication mechanisms. DART is being manufactured as a commercial product by Mitsubishi
Electric.

Hot Interconnects 1V: A Symposium on High Performance Interconnects, August 1996, pp. 175-
186

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERL - A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

DART — A Low Overhead ATM
Network Interface Chip

Randy Osborne, Qin Zheng, and John Howard - MERL
Ross Casley and Doug Hahn — Sunnyvale Research Lab
Mitsubishi Electric Information Technology Center America, Inc.

Takeo Nakabayashi — System LSI Laboratory, Mitsubishi Electric Corp.

TR-96-18 July 1996

Abstract

DART is an ATM Network Interface Controller chip designed for both high band-
width and low overhead communication. Innovative features are direct, protected
application access to/from the network, host-assisted flow control, and “message
processing” for flexible low overhead communication mechanisms. DART is being
manufactured as a commercial product by Mitsubishi Electric.

In proceedings of Hot Interconnects IV: A Symposium on High Performance Interconnects,
Stanford University, Palo Alto, California, August 15-17, 1996

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice.

Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Information Technology Center America. All rights reserved.

Copyright © Mitsubishi Electric Information Technology Center America, 1996
201 Broadway, Cambridge, Massachusetts 02139

1. First printing, TR96-18, July 1996

DART*— A Low Overhead ATM Network Interface Chip

Randy Osborne! Qin Zheng, and John Howard - MERL
Ross Casley and Doug Hahn — Sunnyvale Research Lab
Mitsubishi Electric Information Technology Center America, Inc.

Takeo Nakabayashi — System LSI Laboratory, Mitsubishi Electric Corp.

Abstract

DART is an ATM Network Interface Controller
chip designed for both high bandwidth and low
overhead communication. Innovative features are
direct, protected application access to/from the
network, host-assisted flow control, and “message
processing” for flexible low overhead communica-
tion mechanisms. DART is being manufactured as
a commercial product by Mitsubishi Electric (part
no. M65433).

1 Introduction

The DART ATM Network Interface Controller in-
tegrates ATM adaption layer processing (AALS5
and AALQ) and a PCI bus interface into a single
chip for full duplex 155Mbps ATM local area net-
works. DART permits high performance — both
high bandwidth and low latency — via hardware
that supports direct, protected, application access
to the network. While such operating system by-
pass techniques have been implemented in proto-
types [1,3,5] (sometimes for special purpose net-
works) or in firmware using expensive NIC cards
[12], to our knowledge DART is the first commer-
cial application of this technique to a NIC chip for
mainstream LANs. The one way latency for a small
message from application to application is 11usec
without a switch and is 16 to 35usec with a sin-
gle switch, depending on the switch and physical
medium.

The reason for our interest in low overhead
communication is two-fold. First, small messages

*DART (Direct Access Receive and Transmit) is a trade-
mark of Mitsubishi Electric Information Technology Center
America, Inc.

tContact: osborne@merl.com or 201 Broadway, Cam-
bridge, MA 02139

are important. In today’s client/server domi-
nated computing systems there are many small re-
quest /response messages. The throughput for such
small messages is dominated by host overhead and
round trip latency. Second, low overhead commu-
nication is important for emerging ways of build-
ing distributed systems, particularly cluster-based
computing. Predictable low latency is also impor-
tant for real-time computing requirements, such as
in industrial control systems.

For very low overhead communication, DART
supports “message processing” — low level pro-
cessing of AAL5 and AALO frames between the
network and application. Possible uses include low
overhead communication mechanisms (e.g. sender-
based protocols [3,9], remote queues [2], and re-
mote memory operations — read and write of mem-
ory in other computers), reflective memory in real-
time systems, filtering of unwanted messages, and
fast/cheap demultiplexing.

DART is a fully featured NIC chip intended
to satisfy the demands of the commercial mar-
ket. DART’s traffic management supports both
the ATM Forum rate-based flow control scheme
[11] and the Quantum Flow Control Consortium
credit-based flow control scheme [8] with flexibility
to follow standards evolution and implement pro-
prietary schemes. The transmit side implements
per connection traffic shaping capable of any trans-
mission rate, four transmission priority levels; and
multiple traffic classes (CBR, VBR, ABR, UBR).
DART supports up to 32K transmit virtual chan-
nels (VCs) and 64K receive VCs active simultane-
ously. To provide a low cost solution, DART can
use host memory for data packets, includes full sup-
port for EDO-DRAM local memory, and does not
require a local processor.

Figure 1 shows the DART chip and an example

Host computer system Interfaoe Card

Host memory

R)%ree RXdong

Buffers

2 | |Interface
Ring Queu :

?

RX

(Receive side block)

Utopia

; M?D)

Layer ATM cells

T Utopid

(Transmit side block)

L) L]

X | nterfaoe

I

"

TXrequest T.

x
Q
o
=3
@

(110
] l

Local Bus Interface

Host
request

Host
\e
table

queue

(HRQ)

Local bus

4
[TT7738

est 3
E trang ation tables !
timing cha n :

TXdone RXdone !

Local (¢ comrol) Memory

(7]

Connection state tmles

Figure 1: DART chip and example operation mode

operation mode. Local memory contains per-VC
state and a timing chain for traffic shaping. Com-
munication between host and DART is via ring
queues: TXrequest and TXdone are transmit re-
quest and transmit complete ring queues; RXfree
is a free buffer ring queue; and RXdone is a re-
ceive complete ring queue. All ring queues and
data buffers can either be in host memory or local
memory. DART requests special host action via
the host request queue (HRQ). The host VC table
holds per-VC traffic management state.

DART’s PCI bus interface incorporates a 64
word write buffer for transfers to host and a 32
word buffer for host writes to DART. Cells are
sent and received via separate UTOPIA physical
layer interfaces (8 bits wide) with a 39 cell receive
FIFO and a 4 cell transmit FIFO. To reduce de-
sign complexity DART has sole mastership on the
local memory bus. The local bus interface supports
4 banks of DRAM memory with all necessary con-
trol logic and also 4 banks of SRAM and/or general
external devices.

2 Direct Application Access

There has been much research work documenting
the overhead of conventional kernel-based network
interfaces and investigating OS bypass techniques
(e.g. [1,5,10]). The simple design of conventional
network interface hardware forces kernel demulti-
plexing, kernel calls, and heavyweight software in-

MERL-TR-96-18

terfaces (a one size fits all approach).

To support high bandwidth, low overhead, and
application-specific protocols, DART allows an ap-
plication to bypass the OS by providing direct, pro-
tected access to the network. DART uses the Ap-
plication Data Channel [5] idea: hardware looks
up transmit privileges and demultiplexes received
messages using the VC number to index into state
tables maintained by the OS. Address translation
hardware ensures that applications only send and
receive from designated areas setup by the OS.

Figure 2 shows DART’s two direct application
access (DAA) channels. Each DAA channel has
a full set of ring queues, and other mechanisms
and data structures to interact with an applica-
tion. The ring queues and transmit and receive
buffers can be mapped into application space. The
transmit side ensures that an application can only
send cells into the network for the VCs assigned
to that DAA channel. The receive side routes mes-
sages to the proper DAA channel. Each DAA chan-
nel has a separate two-way set associative, variable
sized address translation table implemented using
NIC local memory and managed by the OS. We
expect that typically one DAA channel will be re-
served for the OS to use as in a conventional net-
work interface. Each DAA channel has two free
buffer queues, allowing different buffer areas for
different VCs sharing a DAA channel. This per-
mits a VC to choose the buffer characteristics e.g.
use one free queue for VCs with small messages,

2 July 1996

Application A (or conventional device driver)

video frame

V
DAA Channd! 0 7/
page
receive(addr,...) ﬁ

DAA Channel st T

- set of VCs

- send/receive queues

- memory space

- address trandlation

TXrequest TXdone

Appl iTcati on E E

... t[??.'?y.f.'ﬁ?t..... F
l read Data write
NIC pointer pointer

Application B

object

DAA Channel 1

100 bytes

buffer pool

| System |
H &4 H TXrequest TXdone

: ng% E
queu

_____ T SIS WS

read Data

S) ©
trandation

DART hardware

Appl AVCs Appl BVCES

pointer
queue
Address | E| pointers
trangdlation

——

T network

Figure 2: Direct access architecture, receive side emphasized

another for VCs with large messages. Two free
queues also allows some VCs to use credit-based
traffic management and other VCs simultaneously
to use rate-based.

The ring queues contain fixed size frame descrip-
tors (FDs) shown in Figure 3. The transmit side
has both a short form frame descriptor (FD) for-
mat to reduce the overhead for short messages and
a long form frame descriptor format for larger mes-
sages. The long form allows multiple frames to be
chained together as described in Section 2.1. The
receive side only uses the short form for both free
buffers and filled buffers. The 4-word FDs allow
everything describing a short frame to be conveyed
in a single PCI bus transaction. The presence bits
in each FD allow the host to poll output queues
like RXdone and DART to poll input queues like
TXrequest. Dual presence bits (marked P in the
first and last words in an FD) allow each ring queue
to either be in host memory (desirable for output
queues) or local NIC memory (desirable for input
queues). To notify DART of a non-empty TXre-
quest or to initiate polling of a TXrequest, the host
writes into a notify_in register: the value written
indicates the number of times to read TXrequest
before stopping. To allow low overhead notifica-
tion, the notify_in register (for DAA Channel 1)
can be mapped into application space to enable di-
rect writing by the application.

The following subsections describe novel aspects

MERL-TR-96-18

of DART and implementation details.

2.1 Dynamic Chaining

Head of line blocking can arise in TXrequest if the
head entry cannot be dequeued because the VC
is already busy sending a frame and entries for
higher priority VCs follow that head entry. One
way that others, e.g. Texas Instruments’ 1561 PCI
NIC, have solved this problem is to have a queue
per VC.! Beside the obvious scalability problem
with the queues, there is a more subtle problem
dealing with notification. DART must know which
ring queue to read; it cannot simply poll all the
queues. A bit vector with one bit per queue is
appropriate for notifying up to perhaps 64 or 128
queues, well short of our design goal of 32K VCs.
To scale to that range requires some way to in-
dicate a queue number to DART and that implies
another queue just for notifications. To allow scala-
bility to 32K VCs we decided to use one queue (per
DAA Channel) and folded the notification into the
TXrequest queue.

To solve the head of line blocking problem we
chose a novel solution that dynamically chains to-
gether long format frames. Long frames are com-
prised of a linked list of buffer descriptors (BDs).

LOr at least per class of request. However, since each
ABR VC is independently flow controlled, each ABR VC
must belong to a different queue.

3 July 1996

"Mode S"

UU_CPI and CPCS length are fields required for AALS

Buffer

“Mode M"

Buffer Descriptor (BD)

VPINCI NULL |

previous-last-BD pointer

/ next BD |

buffer pointer !

BD pointer

UU_CPl | CPCS|ength)

xxax [buff 10 _buffer size xxox [buff 10]_ buffer size

Frame Pstate VPINVCI / — —
Descriptor buffer pointer Frame 4
(FD) UU_CPI_| CPCSlengt D‘f[’)' plor
P]‘.xx [buff I buffer size D) N
0 for mode M 0 foi mode M
1for mode S

buffer pointer !
non-last buffer in frame last buffer in frame

Figure 3: Short and long frame formats

The FD enqueued for frame i of VC j contains
a pointer (called the previous-last-BD pointer; see
Figure 3) to the last BD in frame i — 1 for VC
j (the driver or application can record this). If
DART reads such an FD from TXrequest while
VC j is busy, it writes the BD pointer contained
in the FD of frame 7 into the address specified by
the previous-last-BD pointer in the FD, thus chain-
ing together the BDs for frames ¢ — 1 and <. Dy-
namic chaining pertains only to long mode frame
formats. Short form formats can cause head of line
blocking and thus must be used carefully by the
driver/application (but yield low overhead).

The driver/application can implement the fol-
lowing simple algorithm to dynamically choose how
and when to enqueue a frame in TXrequest. For
each VC maintain a count, #frames, of the number
of frame segments for that VC channel enqueued in
TXrequest but not yet seen in TXdone. Assuming
that #frames is initialized to —1 (the “credit”),
enqueue a frame of whatever type if #frames is
—1 and convert short mode frames to long mode
frames if #frames > 0. If #frames is sufficiently
large, it is more efficient for the driver/application
to statically chain the frames together and then
enqueue the entire chain when #frames drops to
some smaller value.

2.2 Chunking

To reduce the internal fragmentation in the use of
free buffers for receiving short messages, DART al-
lows multiple messages to be stored in a buffer. The
next message for a VC is stored into the remain-
ing buffer chunk following the previous message for
that VC. This solution provides better buffer effi-
ciency than the conventional solution of dynami-
cally choosing between a small buffer queue and
a large buffer queue since it adapts dynamically

MERL-TR-96-18

to the buffer size messages require. Another rea-
son for chunking is to enable easy implementation
of credit-based traffic management schemes: cred-
its can be forwarded based on the total buffer size
in the free buffer queue, without worrying about
buffer space unused due to fragmentation.

2.3 DAA Scalability

With one DAA channel devoted to a traditional
driver interface, only one application can exploit
the direct access and low overhead of the remaining
DAA channel. It is expensive (in hardware) to sup-
port more physical DAA channels. DART provides
two ways to scale DAA to more applications with
some degradation in performance, though much
less than traditional approaches.

The first way is RX side per-VC buffering: each
VC may have a private set of buffers more tailored
to the requirements of that VC. This set is im-
plemented as a linked-list of BDs with the head
pointer in the RX VC table entry. When the VC
exhausts this list, it reverts to a RXfree buffer
queue. While not completely equivalent to a DAA
Channel, this does allow low latency messages to
be deposited directly to application memory even
if the RXdone ring queue is shared by multiple ap-
plications.

The second way is place the ring queues in ker-
nel space so multiple applications can share them
without protection problems while placing the data
buffers in application space for direct access.?

More specifically, on the TX side TXrequest and
TXdone can be in kernel space and data buffers
and BDs in application space. This means an OS
operation in the critical path of sending in order to

2 Address mapping can be configured independently for
the various ring queues and data buffers.

4 July 1996

enqueue a FD and validate pointers. However, as
discussed in Section 2.1, some form of serialization
is required for transmission notification. The sim-
plest way to meet this requirement is to leave the
TXrequest queue in the kernel. Each application
only needs to export that portion of its virtual ad-
dress space corresponding to the buffers and BDs
it wishes to send. On the RX side, one or both
RXfrees can be in kernel space, and RXdone and
data buffers in application space. Since applica-
tions only read RXdone, it can be in shared space
where it can be accessed quickly via each applica-
tion for low overhead. However, the RXfree queues,
like TXrequest, must be writable, and hence must
be in kernel space for protection between multi-
ple applications. Each RXfree can support a buffer
pool with a different virtual address space range by
allowing the entries in the RXfree queues to con-
tain virtual addresses. The applications or kernel
can add buffers to these pools and the driver checks
that the buffer address space ranges are appropri-
ate for the given RXfree queue.

2.3.1 Virtual DAA Channels

A better approach to provide DAA scalability is
to virtualize the DAA channels. We investigated
the following hybrid virtualization strategy to the
point of RTL implementation and testing, but
dropped it from the final design for business and
schedule reasons. As mentioned above, the sim-
plest way to scale the TX side is to leave the TXre-
quest queue in the kernel. However, to ensure that
the OS operation required is just a cheap kernel
trap and enqueue operation (and no pointer valida-
tion), a field in the TX VC table gives the index of
an appropriate translation table to use when trans-
lating buffer and BD pointers for that VC. The ap-
propriate translation table is dynamically loaded
on demand.

On the RX side, all the resources are virtualized
for DAA channel 1. Up to 4K RXfree and RX-
done ring queues can be supported by multiplex-
ing the DART DAA Channel 1 ring queue regis-
ters amongst multiple ring queues. The ring queue
pointers are kept in local memory and loaded into
the DART ring queue registers on demand, like vir-
tual paging. As on the TX side, the translation ta-
ble is also virtualized. A field in each RX VC table
entry contains indices for the appropriate RXfree,
RXdone, and translation table to use for that VC.
Before reading RXfree to get a free buffer or storing

MERL-TR-96-18

a FD to RXdone, DART loads the proper RXfree
or RXdone ring queue pointers. The IN and OUT
pointers are written back to the ring queue tables
afterwards. Each virtual ring queue has the same
full/empty and watermark interrupts interrupts as
for the base ring queues, but these interrupts are
delivered via HRQ entries to allow scalability.

2.4 Implementation Details
2.4.1 Translation and Fault Handling

DART translates an application virtual address —
of a data buffer, of a buffer descriptor, or in a
ring queue register — to a physical address be-
fore accessing physical memory. This translation
also checks that any pointers (data or buffer de-
scriptor) provided by an application are legitimate.
To reduce translation overhead DART retains vir-
tual and physical versions of most pointers and only
translates either when a structure (e.g. data buffer)
is first accessed or on every page crossing.

DART performs translation using a cache of
translation entries implemented using a table in
local memory. In addition to simplifying DART,
placing the translation cache in local memory
makes it easy to adjust the cache size to achieve
a suitable hit rate. Placement in local memory
also permitted a two way set-associative cache with
little additional complexity. Two sets allows fur-
ther flexibility in configuring DART to maximize
hit rates. One example use is to maintain all the
ring queue entries in one set so that no troublesome
ring queue pointer misses result from capacity or
conflict misses with buffer addresses.

The translation is quite general. DART inter-
prets an address given by an application as a token
and a page offset and examines the translation ta-
ble for a mapping from that token to a physical
page number. The token may be a virtual page
number or it could be any other identifier for a
virtual page that the application arranges (e.g. an
index into a address table).

A translation miss in both sets of the translation
cache causes a translation fault. DART enqueues
a translation fault record in the HRQ which con-
tains the address causing the fault and then DART
interrupts the host. Thereafter faults are handled
differently on TX and RX sides.

If a fault occurs on the TX side, DART freezes
the associated VC (for a buffer pointer or a BD
pointer fault) or freezes the entire DAA channel

5 July 1996

(for a ring queue pointer fault). The host either
fixes the fault and issues a thaw command to re-
sume operation or issues an abort command to
abort the frame (e.g. in case of an illegal address)
or shutdown the DAA channel.

Since DART has little control over the arrival
of cells, it cannot freeze operation indefinitely if
a fault occurs on the RX side. Instead, DART
temporarily suspends operation on the RX side: it
backs out of the faulting operation and then DART
periodically retries the translation. If the transla-
tion succeeds within the retry window, operation
continues from the faulting address. If not, there
are two cases: 1) If the fault is the base address
of a new buffer, DART abandons that buffer and
fetches a new buffer from the appropriate RXfree
queue. The RXfree is disabled if two such time-
out faults occur in a row for the same VC. This
limits the number of faults a malicious application
can cause by loading illegal buffer addresses into
a RXfree. 2) Otherwise, DART aborts the cur-
rent operation, either discarding the current frame
if a buffer pointer fault or shutting down the DAA
channel if a ring pointer. The retry window extends
for 50usec or until the receive FIFO is 3/4 full (30
cells), whichever is smaller. If the host can fix a
fault within this interval it can pin DMA pages on
demand.

HRQ overflow requires careful handling. A fault
record cannot simply be dropped if HRQ is full
since then the host will not be able to determine
that a fault occurred. Instead the operation caus-
ing the fault is rolled back and for a TX side fault,
DART freezes the the VC or ring queue and for
a RX side fault, DART discards the frame or dis-
ables the ring queue. Other types of HRQ entries,
e.g. ABR requests (see Section 3.2) are dropped if
HRQ is full.

2.4.2 Ring Queue Operation

The dual presence bits shown in Figure 3 permit
ring queues to be in either host or local memory as
follows. For a single presence bit scheme, the in-
variant required to avoid races is the producer of a
FD writes the presence bit in the last word written
and the consumer reads the word with the pres-
ence bit first. For simplicity DART always reads
and writes FDs in increasing address order and thus
for queues in host memory the host can obey the
above invariant by accessing FDs in the opposite
order. However for queues in local memory, the

MERL-TR-96-18

PCI bus forces host accesses in the same ascending
order as DART. A second presence bit at the other
end of the FD sidesteps this overconstraint by us-
ing different presence bits to meet the invariant:
both presence bits must be set in a valid FD.

Using presence bits per FD plus ring queue
pointer caching can reduce the average number
of PCI accesses per FD enqueued or dequeued to
nearly 1. The host clears the presence bits wher-
ever the ring queue is located. For an input queue
(TXrequest or RXfree) in host memory, DART
maintains only an OQUT pointer and the host main-
tains an IN pointer and NIC_OUT, a cached copy
of the DART’s OUT pointer. The host periodi-
cally reads OUT and clears the presence bits in
queue entries from NIC_OUT to OUT—1 and then
updates NIC_OUT. For an output queue (TXdone
or RXdone) in host memory, DART maintains an
IN pointer and a copy, HOST_OUT, of the host’s
OUT pointer. DART may fill the output queue un-
til IN = HOST_OUT. The host periodically clears
the presence bits in queue entries from OUT to
HOST_OUT and then writes HOST_-OUT-1 to
OUT.

Each ring queue has a watermark interrupt, sig-
nalled when the number of entries falls below for
input queues/above for output queues a parame-
terized level. The RXdone queues also have a spe-
cial interrupt signalled when the number of end-of-
frame entries exceeds a set level.

2.4.3 TX Pipelining

The TX side functions are considerably more ex-
tensive than on the RX side. Whereas the RX side
simply receives cells and stores them to buffers, oc-
casionally fetching a free buffer and occasionally
writing to RXdone, the TX side must segment data
buffers (i.e. send cell data), perform traffic shap-
ing and traffic management, and fetch FDs from
TXrequest. Traffic shaping and management re-
quire significant logic and a large amount of lo-
cal memory state to be fetched and updated per
cell time. To sustain high bandwidth, particularly
for small message sizes, the TX side must be able
to quickly find FDs enqueued in TXrequest and
prepare the respective VCs for segmentation. Fi-
nally, the TX side must tolerate PCI latency to host
memory (whereas the RX side can overlap PCI la-
tency by using a writeback buffer).

To meet TX side performance objectives we took
the following steps. First, we cached VC state ta-

6 July 1996

ble entries, using a writeback policy. This signifi-
cantly improved performance for multi-cell bursts
belonging to the same VC. To improve the perfor-
mance for the more general case of interleaved VCs
we pipelined the segmentation. We used a single
stage pipeline to overlap the PCI payload transfer
with writing back VC state and starting the next
cell. Finally, to lessen the impact of polling TXre-
quest, we overlapped the PCI read from TXrequest
with the startup of the next cell. The actual pro-
cessing of the FD read is delayed until after the VC
state writeback. Overlapping these operations al-
lows DART to achieve full line rate in the presence
of substantial PCI bus latency.

3 Traffic Management

DART provides functions supporting multiple ser-
vice classes and allowing implementations of a wide
variety of traffic management schemes including
ATM Forum’s TM 4.0 and the Quantum Flow Con-
trol Consortium’s QFC. This provision of flexible
and upgradable traffic management functions is es-
sential to follow evolving traffic management spec-
ifications and to accommodate new flow control
schemes.

Specifically, DART provides: 1) Traffic shaping
per VC capable of supporting up to 32K VCs with
transmission rates ranging from 155.52 Mbps to 0.3
Kbps at a resolution of 0.3 Kbps. 2) Leaky bucket
traffic shaping to support variable bit rate (VBR)
VCs. 3) Four transmission priority levels to sup-
port multiple service classes, including CBR (con-
stant bit rate), rt-VBR (real-time VBR), nrt-VBR,
(non-real-time VBR), ABR (available bit rate),
and UBR. 4) Software-assisted ABR flow control
(implemented by the host processor) to support
standard and proprietary ABR schemes.

3.1 Traffic Shaping

Traffic shaping is an essential function to pro-
vide quality of service and avoid traffic congestion
in ATM networks. This function is required for
all ATM service classes supported. ATM Forum
Traffic Management Specification [11] provides a
detailed description of the various ATM service
classes and their traffic shaping requirements.

The traffic shaper schedules cell transmission
times for each VC such that the inter-cell time dt
for a VC is controlled above a certain value. In

MERL-TR-96-18

DART Shaper unit R
Lo riority queues i
scheduling ! prionty 4 :l:\:‘ | output to
+ sche_in_host !
from host :l:\:‘ | segmentor

scheduling from

! segmentor

[current_time] [sche time |
‘

Local Memory

Figure 4: Traffic shaper

other words, after transmission of a cell, the traffic
shaper schedules the VC to send another cell at a
specified future time. If more than one VC is eli-
gible to send a cell, a VC with the highest priority
is selected to send a cell first. Priority control is
needed to support multiple service classes such that
a VC with tight delay or bandwidth requirements
can be assigned a higher priority than others.

DART uses an enhanced timing chain to imple-
ment traffic shaping and priority control. This ap-
proach has the advantage of being able to traffic
shape a large number of VCs at virtually any rate
values. It supports both peak rate and leaky bucket
shaping and integrates traffic shaping and priority
control into a single mechanism.

Figure 4 shows the major elements in DART for
traffic shaping and transmission priority control.

Local memory contains a timing chain for
scheduling VC transmission times. Each entry rep-
resents a cell transmission time (at full line rate)
and contains a list (possibly empty), of VCs eligible
to transmit a cell at that time. current_time points
to an entry representing the current time and
moves forward one entry per cell time. sche_time
points to an entry from which VCs are being de-
queued from the timing chain. sche_time moves
forward one entry after it dequeues all VCs in a
entry until eventually sche_time catches up with
current_time. To rate control a VC with a cell rate
R, after the transmission of a cell the VC is re-
scheduled into an entry which is 1/R entries away
from the entry pointed to by current_time.

The delay queue enables traffic shaping to an
arbitrarily low rate. If a VC’s inter-cell transmis-
sion time is too large to fit into the timing chain,

7 July 1996

the VC is instead enqueued in a linked list delay
queue. The head of the delay queue linked list is
examined periodically and either transferred to the
timing chain if possible or re-queued at the end of
the linked list.

Each VC eligible for transmission, as specified
by the current time entry, is dequeued from the
timing chain and transferred to an on-chip priority
FIFO which is used to schedule VCs for segmen-
tation and cell transmission. Each VC has one of
four possible priority levels. There are 8 FIFO en-
tries for priority levels 0 and 1, 16 entries for level
2, and 32 entries for level 3.

After the segmentor transmits a cell, it resched-
ules the VC in the timing chain to send the next cell
(if any data remains available for that VC)3. The
segmentor indicates a value dt which means the
VC should be scheduled dt entries away from the
current_time pointer in the timing chain. Differ-
ent types of traffic shaping algorithms, e.g., leaky
bucket traffic shaping for VBR VCs, can be imple-
mented by using different ways of calculating dt.

There are two ways to initiate transmission for a
VC. The main way is to insert a FD in the appropri-
ate TXrequest queue. If the VC is idle — or more
precisely, that VC is not scheduled in the timing
chain — when DART reads the FD, DART will in-
sert the VC directly into the shaper FIFO and the
segmentor sends the first cell of the frame as soon
as possible. A secondary way to initiate transmis-
sion is by writing the sche_in_host register. Occa-
sionally it is necessary for the host to re-activate a
stopped VC (e.g. resume after flow control throt-
tling) or send non-shaped raw cells (again, for flow
control). To restart a stopped VC, the host writes
the VC number into sche_in_host and that VC is
moved directly to the priority FIFO queue. To in-
sert a single cell, the host writes the base address
of the cell into sche_in_host and this cell pointer is
likewise moved directly to the shaper FIFO.

3.2 ABR Flow Control

DART provides unique hardware support to en-
able flexible and low overhead ABR flow control in
software on the host system to enable a low-cost
end system implementation. Both the ATM Fo-
rum’s rate-based TM4.0 ABR flow control and the
Quantum Flow Control Consortium’s credit-based

3 After completing a frame the VC is rescheduled once
more to ensure proper spacing between frames.

MERL-TR-96-18

Host system
Host memory ! HRQ requet | ! incoming
! submission ! ' cells
} HRQn [T~ 3 ! DART ' outgoing
: / HRQ / i cells
z T RM cell | Local bus.
O fetching | ocal bus:
g RM Table 9 — =2
T |
N ve Table : 9{ TX control tabl%
i Local memory
3 TX control 3
otable
PClbus ' ! update | |nterface card

Figure 5: ABR flow control framework

lossless ABR, flow control schemes can be fully im-
plemented at the host driver level.

Figure 5 shows the framework for ABR, flow con-
trol in DART. For the ATM Forum rate-based
scheme, DART generates forward Resource Man-
agement (RM) cells by DMA from per-VC RM cell
templates in host memory. RM cells received from
the network are enqueued by DART in the Host Re-
quest Queue (HRQ) in host memory. The host pe-
riodically examines these RM cells, turning around
forward RM cells by modifying a per-VC field in
local memory and processing backward RM cells
by adjusting the per-VC rate parameters in local
memory. In addition to the forward and backward
RM cell events, an entry is also enqueued in the
HRQ whenever a forward RM cell is sent. This
permits implementation of source timeout rate re-
duction.

For the QFC scheme, DART meters cell trans-
mission according to the outstanding credit bal-
ance. To perform the cell metering, DART main-
tains a per VC cell counter on the TX side. When
this reaches a defined cell_limit for that VC, DART
halts transmission for that VC and enqueues a VC-
stopped message in the HRQ. On the RX side,
DART forwards all received QFC credit and pro-
tocol cells (except for state check cells) to the host
via the HRQ. The RX side also maintains a per VC
cell counter for state synchronization. With the ex-
ception of state check cells, the host is responsible
for 1) generating (as raw cells) all credit and QFC
protocol cells, 2) processing all credit and QFC pro-
tocol cells in HRQ, and 3) implementing the QFC
protocol, including restarting a stopped VC when
credit arrives. QFC uses state check cells to resyn-
chronize the sender and receiver state in case of
lost cells. DART generates check cells to ensure

8 July 1996

Event Time
interrupt entry 3.6 to 8.6
3 RM cell events (hot caches) 4.1

3 RM cell events (cold caches) 15
interrupt exit 2.1

Table 1: ABR overhead (all times in psec)

that they have the proper cell count. On the RX
side, DART maintains the proper position of the
check cell within the data stream by writing a spe-
cial FD to RXdone containing the information in
the check cell, the RX cell count, and the current
buffer offset for that VC.

DART’s host assisted traffic management incurs
some host overhead. On one hand, the host should
be interrupted as infrequently as possible to min-
imize the overhead. On the other hand, ABR re-
quests submitted to the HRQ should be processed
as soon as possible to improve the responsiveness
of ABR flow control. To minimize the host ABR
overhead, DART generates just one HRQ interrupt
for all ABR requests submitted within a user spec-
ified interrupt period.

We estimated host overhead in the target
PC+Windows NT environment as follows. Since
we do not yet have a full WNT driver for DART, we
instead made three separate measurements: 1) We
measured the interrupt “entry” time from appli-
cation until acknowledging a network interface in-
terrupt in the lowest level WNT interrupt handler.
2) At user level we measured the time to perform
the 3 RM cell handling events, including reading
the HRQ, that we would expect for sustained ABR
traffic (source sending a RM cell, destination turn-
ing around a received RM cell, and source receiving
a RM cell). 3) We measured the interrupt “exit”
time from acknowledging a network interface in-
terrupt in WNT until return to application level.
To measure entry and exit times we patched the
WNT binary to collect performance data using the
Pentium hardware event counters.*

The results for a 100MHz Pentium PC with
256Kbyte secondary cache and 40Mbytes non-EDO
DRAM are shown in Table 1. The variability in the
entry time is mostly due to kernel I-cache misses
(1 to 19) and occasional kernel I-TLB misses (1 to
3). From these results we estimate 9.8 to 29.8usec

4Brad Chen assisted greatly, using methodology de-
scribed in [4].

MERL-TR-96-18

to process 3 RM cell events. At full line rate of
155 Mbps, with the minimum interrupt period set
to one RM period (32 cell times) this overhead will
be experienced on average every 86usec, yielding
a host overhead of 11% to 35% for full line rate
duplex ABR. Since it is unlikely that the caches
will be completely cold after 60usec, we do not ex-
pect to sustain the worst case overhead. In typical
use, we expect much less overhead for the following
reasons:

e Host ABR processing overhead is proportional
to the ABR traffic bandwidth. Such over-
head occurs only when transmitting or receiv-
ing ABR traffic. All other traffic types, i.e.,
CBR/VBR/UBR, do not require a host’s in-
volvement for flow control. The host overhead
is significantly smaller in the presence of other
types of traffic and/or when the host is not si-
multaneously sending and receiving ABR traf-
fic at full line rate. In fact, a 100MHz PC with
the current (Winsock) TCP/IP stack is not
capable of sustaining data transfer anywhere
near 155Mbps.

e When an end system is sending and/or receiv-
ing at high rates, the network driver is in-
volved a lot in transmitting and receiving data
frames. The driver can also check the HRQ
after submitting or receiving a frame to/from
the network interface card so that no ABR in-
terrupts need to be generated when the host is
performing driver tasks. This can reduce the
ABR interrupt overhead and also improve the
responsiveness of software ABR flow control.

e Since the processing of ABR requests is not
time critical, the host can batch ABR requests
to amortize overhead by increasing the mini-
mum interrupt period. A longer interrupt pe-
riod is equivalent to making the network loop
longer.

In any case, the rapid roll out of fast PCs, e.g.
200MHz Pentium Pros, will lead to reduced rela-
tive overhead. For QFC, larger switch buffer capac-
ity per VC will also reduce the frequency at which
HRQ processing overhead occurs.

To some degree there exists a contradiction
between low overhead communication and host-
assisted ABR processing. However, host-assisted
ABR processing is an indiscriminate drag on all
host activity and adds no more overhead on average

9 July 1996

Host memory "
hwm data at specified address

PCI Il 23
<:H -
[TX side RX:side
: _| loca
prbcn% | memory
TR =
L2 ultiplexed
""""" =] RXITX
ST “Fo-processot
1
DART chip :

Figure 7: Remote write

for small messages than it does for large messages.
Thus eliminating the per message OS overhead for
small messages is still important to make them cost
effective. In addition, in many cases VBR will be a
better choice for low latency, small message traffic
than the ATM Forum’s ABR scheme.

For more information on DART’s traffic manage-
ment implementation see [14].

4 Message Processing

Message processing is low level processing of frames
(i.e. messages) between retrieving a frame from the
host and injecting it in the network (TX), and
between receiving a frame from the network and
storing it to the host (RX). On the RX side, mes-
sage processing provides a way to examine incom-
ing frames before depositing them in host mem-
ory. Possible uses include sender-based protocols,
remote queues [2], and remote memory operations
for extremely low latency communication (remote
reads and writes), host-less filtering of unwanted
messages (such as arise with ATM Forum style
LAN emulation), and fast/cheap demultiplexing.
On the TX side, message processing provides a
very low overhead way to inject messages with the
appropriate format for message processing at the
destination and also provides the mechanism for
host-less remote reply operations.

To support message processing, DART includes
means for inserting, extracting, and examining
“control information” to/from the beginning of
messages. This support facilitates vendor and cus-
tomer experimentation with new developments in
communication protocols. DART includes a mem-
ory mapped interface to a message co-processor on

MERL-TR-96-18

Frame arrives

Send N words
to co-proc

wait for
command
send send M more
word to co-proc

Disable message
processing: do
restore and store rest

to co-proc2

(for variableTength control info)

W interrupt?

< Y
storerest of frame .
to RXfree buffer(s) generate interrupt

writes FDs as buffersfill

Figure 8: RX side message processing

discard rest of
frame

the DART local memory bus. On receiving a mes-
sage on a specially marked VC, DART writes a
specified part of the beginning of the message to
an external co-processor and reads and interprets
a simple command returned by the co-processor
(see Fig. 7). On the TX side, DART also has a
small amount of support whereby DART sends a
specified part of the beginning of a message to an
external co-processor and reads and interprets a
simple command returned by the co-processor.

As an experimental feature, message processing
could only impose a minor burden on the rest of
DART. One constraint arising was single master-
ship on the local bus. This precluded a direct con-
nection to a microprocessor to realize the message
co-processor and led to the memory mapped inter-
face. However, such an interface allows simple co-
processor implementations, such as a FPGA, that
can achieve quite elaborate functionality.

Figure 8 shows a flowchart of DART’s RX side
message processing operation. The diamonds de-
note commands, which are orthogonal. Table 2
lists a subset of these commands and some example
uses. Specified length mode stores up to specified

10 July 1996

Host memory
read from specified address

PCI_—
= I
TX side RX side
.‘" 4 3 — | loca
<' ©. g processin | memory
=¥ =
: rggi%ags 2 | || muitiplexed
6 .5 =L R
: : [co-processor
: 1
P 3
‘ ==
: control} : inati
data | ATM o I, for destination
i cal | SR for reply
can({ol 2
info
header

Figure 9: Remote read

amount of data starting at either an buffer address
given by the co-processor (the “external buffer”) or
a buffer address obtained from a RXfree. This sec-
ond option permits part of frame (e.g. the TCP/IP
header) to be stored to one buffer and the remain-
der (e.g. the data) to following buffers obtained
from RXfree.

DART’s TX side message processing is simpler.
DART sends a fixed number of bytes from the FD
(if short mode frame) or first BD (if long mode
frame) to the message co-processor so it can deter-
mine the operation to perform. The read_coproc
command reads a specified amount of data from
a given location and prepends it to the front of
the out-going frame. For small messages up to
8 bytes in size, it is possible to store the data
directly in a short mode FD and have the mes-
sage co-processor form the outgoing frame using
the read_coproc command. With TXrequest in lo-
cal memory, this option provides very low latency
since only a single PCI transaction is required to
transfer the FD including data (sourced from the
floating point registers).

For implementation simplicity all TX and RX
message processing applies only to first cell in a
frame.

As demonstrated by Active Message [13] imple-
mentations, a host processor can certainly perform
all the message processing functions. However, the
per-message interrupts of Active messages preclude
high bandwidth for small messages. DART’s mes-
sage processing support minimizes host overhead
and provides sustained high bandwidth in addition
to low latency.

MERL-TR-96-18

One of most innovative features in DART is spe-
cial support for request-reply, e.g. remote read.
Request-reply is intrinsically difficult to support
since the received request must not only be decoded
like a remote write, but a send must also be initi-
ated for the reply. DART provides a special path
to enable simple request-replies, like remote read,
to bypass the host. Referring to Fig. 9, initially
DART handles a remote read the same as a remote
write: the RX side writes a specified amount of the
frame data to the message co-processor and then
reads a command. If the command is “send re-
ply”, the RX side passes arguments — essentially
an FD — to the TX side via the bypass registers
and then the TX side takes over. The TX side
polls these registers just like a TXrequest queue
and upon finding an entry invokes TX side mes-
sage processing to generate the reply message: the
read_coproc command prepends the reply control
info to the reply data sent from a host memory
location by DMA.

Most of the afore-mentioned uses of message
processing are obvious. fetch&add can be imple-
mented using a register maintained by the message
co-processor. Remote queues [2], with data stored
directly in a named queue, can be implemented us-
ing the co-processor to maintain queue pointers:
the message control info identifies the queue and
the co-processor generates the address at which
DART stores the message data. This is a simple
form of a virtual ring queue (c.f. Section 2.3.1).

5 Results

Simulation results from the full design Verilog RTL
model for two endstations (including PCI bus) con-
nected back to back without a switch show 11usec
application-to-application memory latency for a
single cell message. Remote writes and reads of
up to 32 bytes take 1lusec and 22usec respec-
tively. The RX side can process all message sizes
at full link bandwidth (155Mbps). There is 1.1usec
startup time per message chain on the TX side
(above the cell slot time of 2.7usec) and thus a
stream of single cell messages using short frame
format attains 70% of maximum bandwidth.

Using first generation ATM NIC hardware (Fore
100 series NIC) and host software, [7] reported
25usec for a 32 byte remote write and 45usec for
a 32 byte remote read. These are warm-cache
numbers involving about 17usec of host process-

11 July 1996

Command

Example use

deposit specified data size at specified address
deposit specified data size in buffer
send more control info to co-processor
interrupt after storing
send reply
abort frame

remote write of any 4 byte multiple
demultiplex header and data to separate buffers
variable length control info
Active messages
remote read, fetch&add
filtering

Table 2: Example Message Processing Commands

ing for the first cell in a remote memory oper-
ation and thus are not sustainable at full band-
width. Using second generation ATM NIC hard-
ware (Fore 200 series NIC) and i960 firmware,
[12] indicated 22usec for application-to-application
latency.® Extrapolating from the numbers in [12]
suggests about 44usec for a 32 byte remote read.
For two cell messages the one way latency jumps
by a discontinuous additional 27usec [12]. Finally,
a stream of single cell messages attains about 30%
of maximum bandwidth.

6 Conclusion

DART is a full featured, commercial ATM NIC
chip with flow control and supporting 11usec
end-to-end latency at high bandwidth. With
a single switch we expect end-to-end latency
of 16 to 35usec, depending on the switch and
physical medium. This performance enables a
PC/workstation with a single DART interface to
support both traditional LAN applications and
emerging high bandwidth and low latency appli-
cations, such as cluster-based computing. Message
processing support provides a kernel for a variety
of low overhead communication mechanisms.

References

[1] Blumrich et al, “Two virtual Memory Mapped Network
Interface Designs”, Hot Interconnects 94

[2] Brewer et al, “Remote Queues: Exposing Messages
Queues for Optimization and Atomicity”, SPAA95

[3] Buzzard et al, “Hamlyn: A High-Performance Network
Interface with Sender-based Memory-management”, Hot In-
terconnects 95

SHalf the round trip number in [12] and subtracting
10.5usec (an overestimate using the latency for SONET [6])
to eliminate switch latency. The DART Verilog roughly sim-
ulates a TAXI interface like the Fore NIC uses. Using Mit-
subishi’s SONET TC chip on each link end would add an
average of 6.8usec latency over TAXI for each link traversal.

MERL-TR-96-18

[4] Chen, B. et al, “The Measured Performance of Personal
Computer Operating Systems”, ACM Transactions on Com-
puter Systems, Volume 14, Number 1, February 1996.

[5] Druschel, P. and Peterson, P. and Davies, B., “Expe-
riences with a High-Speed Network Adaptor: A Software
Perspective”, SIGCOMM94

[6] Fore Systems Technical Assistance (March 96) and Data
Communications, March 95

[7] R. Osborne, “A Hybrid Deposit Model for Low Over-
head Communication in High Speed LANs”, 4th IFIP Int’l
Workshop on Protocols for High Speed Networks, Aug. 1994

[8] “Quantum Flow Control”, Version 2.0, Gaddis and Kelt,
Eds., July 1995. Available via http://www.qfc.org

[9] Swanson, M. and Stoller, L., “Low Latency Worksta-
tion Cluster Communications Using Sender-based Proto-
cols”, University of Utah, June 1994

[10] Thekkath, C. and Levy, H. and Lazowska, E., “Sepa-
rating Data and Control Transfer in Distributed Operating
Systems”, ASPLOS VI, Oct. 1994

[11] Traffic Management 4.0, ATM Forum Document af-tm-
0056, April 1996 (formerly TM95-0013R10, February 1996)

[12] von Eicken et al, “U-Net: A User-Level Network Inter-
face for Parallel and Distributed Computing”, SOSP95

[13] von Eicken et al, “Active Messages: A Mechanism for
Integrated Communication and Computation”, Int’l Sym-
posium on Computer Architecture, May 1992

[14] Zheng et al, “Implementation of Flexible ABR Flow
Control in ATM Networks”, TR96-08, MERL/Mitsubishi
Electric ITA, April 1996

Acknowledgements

The authors thank Dr. Masao Nakaya of Mitsubishi Electric
and Dr. Tohei Nitta of Mitsubishi Electric Information Tech-
nology Center America (ITA) for making the DART project
possible. The authors also thank Dr. Hugh Lauer and Dr.
Abhijit Ghosh of ITA for their contribution in managing the
project.

12 July 1996

	Title Page
	Title Page
	page 2

	DART --- A Low Overhead ATM Network Interface Chip
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

