MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

COLLAGEN: When Agents Collaborate
with People

Charles Rich, Candace L. Sidner

TR96-16 July 1996

Abstract

We take the position that autonomous agents, when they interact with people, should be governed
by the same principles that underlie human collaboration. These principles come from research
in computational linguistics, specifically collaborative discourse theory, which describes how
people communicate and coordinate their activities in the context of shared tasks. We have
implemented a prototype toolkit, called Collagen, which embodies collaborative discourse prin-
ciples, and used it to build a collaborative interface agent for a simple air travel application. The
potential benefits of this approach include application-independence, naturalness of use, and
ease of learning, without requiring natural language understanding by the agent. Superseded by
TR97-21.

First International Conference on Autonomous Agents, Marina del Rey, CA, February, 1997,
pp. 284-291 and reprinted in M. Huhns and M. Singh, editors, Readings in Agents, Morgan
Kaufmann, San Francisco, CA, 1997, pp. 117-124

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERL — A MITSUBISHI ELECTRIC RESEARCH LABORATORY

http://www.merl.com

COLLAGEN:

When Agents Collaborate with
People

Charles Rich Candace L. Sidner*

TR-96-16 July 1996

Abstract

We take the position that autonomous agents, when they interact with people,
should be governed by the same principles that underlie human collaboration.
These principles come from research in computational linguistics, specifically col-
laborative discourse theory, which describes how people communicate and coordi-
nate their activities in the context of shared tasks. We have implemented a proto-
type toolkit, called Collagen, which embodies collaborative discourse principles,
and used it to build a collaborative interface agent for a simple air travel applica-
tion. The potential benefits of this approach include application-independence,
naturalness of use, and ease of learning, without requiring natural language un-
derstanding by the agent.

To appear in First Int. Conf. on Autonomous Agents,
Marina del Rey, CA, February 1997.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy 1n whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors
and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Information Technology Center America. All rights reserved.

Copyright © Mitsubishi Electric Information Technology Center America, 1996
201 Broadway, Cambridge, Massachusetts 02139

*Lotus Development Corporation

Publication History:—
1. First printing, TR-96-16, July 1996

COLLAGEN:
When Agents Collaborate with People

Charles Rich
MERL-A Mitsubishi Electric
Research Laboratory
201 Broadway
Cambridge, MA 02139 USA

rich@merl.com

Abstract

We take the position that autonomous agents, when
they interact with people, should be governed by the
same principles that underlie human collaboration.
These principles come from research in computational
linguistics, specifically collaborative discourse theory,
which describes how people communicate and coor-
dinate their activities in the context of shared tasks.
We have implemented a prototype toolkit, called Col-
lagen, which embodies collaborative discourse prin-
ciples, and used it to build a collaborative interface
agent for a simple air travel application. The po-
tential benefits of this approach include application-
independence, naturalness of use, and ease of learning,
without requiring natural language understanding by
the agent.

Introduction

The current explosion of work on autonomous agents
is primarily driven, as it should be, by the excitement
of finding useful results in specific applications. In par-
allel, however, we also need to be developing a foun-
dation of application-independent principles and tech-
niques. This paper reports on a principled approach
to the part of an autonomous agent which interacts
with—and collaborates with—people.

We take the position that agents, when they interact
with people, should be governed by the same principles
that underlie human collaboration. Our motivation for
this position is the assumption that a style of interac-
tion which embodies familiar rules and conventions will
be easier for people to learn and use than one that does
not. This i1s similar to the arguments that motivated
the development of direct-manipulation graphical user
interfaces to take advantage of users’ preexisting famil-
iarity with the manipulation of real objects.

To find the principles underlying human collabora-
tion, we appeal to research on collaborative discourse,
specifically the SharedPlan work of Grosz & Sidner

Candace L. Sidner
Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142 USA

csidner@lotus.com

(1986, 1990), Grosz & Kraus (1996), and Lochbaum
(1994, 1995). This work provides us with a well-
specified computational theory that has been empir-
ically validated across a range of human tasks. Apply-
ing this theory to autonomous agents poses a number
of challenges, including:

e applying the theory without requiring natural lan-
guage understanding by the agent,

e embodying the application-independent algorithms
and data structures in a toolkit,

e and providing a modular description for application-
specific information.

Our solutions to these problems are the focus of
this paper. To develop these solutions, we have im-
plemented both a prototype toolkit called Collagen!
(for Collaborative agent) and an air travel application
using it. Because this paper concentrates on Colla-
gen, it will by necessity be sketchier on the prototype
application. Whenever possible, general issues will be
illustrated in the air travel domain; a short sample ses-
sion 1s also presented at the end of this paper. Readers
are referred to (Rich & Sidner 1996a, 1996b) for more
details on the air travel application system.

Collagen and the air travel application have both
been implemented in Common Lisp. All of the exam-
ples in this paper are from our demonstration system,
which runs in real time (maximum of a few seconds per
interaction).

Collaboration and Discourse

This section provides a brief overview of the theory on
which Collagen is based. Readers are referred to the
referenced literature for more detail.

Collaboration 13 a process in which two or more
participants coordinate their actions toward achieving
shared goals. Most collaboration between humans in-
volves communication. Discourse is a technical term
for an extended communication between two or more
participants in a shared context, such as a collabora-
tion.

Figure 1 shows the structure of a generic collabora-
tion between a software agent and a human user. The-
ories of collaboration and discourse tell us about the

!Collagen is a fibrous protein that occurs in vertebrates
as the chief constituent of connective tissue.

mutual beliefs
SharedPlans
focus of attention

communication

(observations,
reports)
User \ / Agent \
actions actions

Figure 1: Collaborating with an agent.

structure and function of the “stuff” inside the clouds,
which constitutes part of the human user’s mental state
and is computationally represented inside the agent.
At this level of abstraction, this model applies to au-
tonomous agents of all kinds.

Notice that communication between the user and
agent includes observations and/or reports of their ac-
tions. It 1s clear that reports of actions, e.g., “I have
done X,” are a kind a communication. We also include
direct observations of actions as a kind of communica-
tion when, as is often the case in close collaboration,
both participants know and intend that their actions
are observed. For example, in our example applica-
tion, all agent and user actions are mutually observ-
able through a direct-manipulation graphical interface
(see Figure 3). Collagen also supports collaborations
in which actions are only reported, e.g., where an agent
is performing actions at a remote network site.

SharedPlans

Grosz & Sidner’s (1990) theory predicts that, for suc-
cessful collaboration, the participants need to have mu-
tual beliefs? about the goals and actions to be per-
formed and the capabilities, intentions, and commit-
ments of the participants. The formal representation
of these aspects of the mental states of the collabora-
tors is called a SharedPlan.

As an example of a SharedPlan in the air travel do-
main, consider the collaborative scheduling of a trip
wherein participant A (e.g., the user) knows the con-
straints on travel and participant B (e.g., the agent)
has access to a database of all possible flights. To suc-
cessfully complete the collaboration, A and B must
mutually believe that they:

e have a common goal (to find an itinerary that satis-
fies the constraints);

e have agreed on a sequence of actions (a recipe) to
accomplish the common goal (e.g., choose a route,

2A and B mutually believe p iff A believes p, B believes
p, A believes that B believes p, B believes that A believes
p, A believes that B believes that A believes p, and so
on. This is a standard philosphical concept whose infinite
formal definition is not a practical problem.

specify some constraints on each leg, search for itin-
eraries satisfying the constraints);

e are each capable of performing their assigned actions
(e.g., A can specify constraints, B can search the
database);

e intend to do their assigned actions; and

e are committed to the overall success of the collab-
oration (not just the successful completion of their
own parts).

Collagen provides data structures and algorithms for
representing and manipulating goals, actions, recipes,
and SharedPlans.

Several important features of collaboration should
be noted here. First, participants do not usually be-
gin a collaboration with all of the conditions above in
place. They typically start with only partial knowledge
of the shared environment and the other participants
and use communication as well as individual informa-
tion gathering to determine the appropriate recipe to
use, who should do what, and so on.

Second, notice that SharedPlans are recursive. For
example, the first step in the recipe mentioned above,
choosing a route, is itself a goal upon which A and B
might collaborate.

Finally, planning (coming to hold the beliefs and
intentions required for a collaboration) and execution
(acting upon the current intentions) are usually inter-
leaved for each participant and among participants.

Focus of Attention
In Grosz & Sidner’s (1986) theory, the shifting focus of

attention in a discourse is represented by a focus stack
of discourse segments. A segment is a contiguous se-
quence of communication acts that serve some purpose.
For example, a question and answer sequence consti-
tutes a discourse segment whose purpose is (usually) to
achieved shared knowledge of some fact. Segments are
often hierarchically embedded. For example, a ques-
tion/answer segment may include a question clarifica-
tion subsegment.

The SharedPlan and focus stack representations are
connected through discourse segment purposes: each
discourse segment is associated with a SharedPlan for
its purpose.

In the natural flow of a collaboration, new seg-
ments and subsegments are created, pushed onto the
focus stack, completed, and then popped off the stack.
Sometimes, participants also interrupt each other, aban-
don the current segment (purpose) even though it is
not complete, or return to earlier segments.

Discourse Algorithms

The two key algorithms in Collagen are discourse inter-
pretation, which is a reimplementation of Lochbaum’s
(1994) rgraph augmentation algorithm, and discourse
generation, which is essentially the inverse of interpre-
tation.

User Communication Menu

Propose working on Dallas to Boston leg.
Who should work on Dallas to Boston leg? .

Where are we?

Segmented Interaction History

(Jointly scheduling a trip on the route)

USER: "Propose scheduling atrip."

AGENT: "Ok."

(User identifying route of scheduling a trip as San Francisco

to Dallas to Boston)

USER: Add San Francisco to the route.
USER: Add Dallas to the route, allowing 97 itineraries.
USER: Add Boston to the route, allowing 100+ itineraries.

Discourse . .
Interpretation Recipe Library

History List Fmmmm = — = .
Recipe Tree : \-/ |
| |
| !
— I
< -r= :
| . !
! 1
A
Focus Stack : gent :
\L ! Decision |
! 1
X Making I
Discourse | and :
Generation : _ |
\ Execution :
! 1
! 1
—_— ! I
p— ! I
— o ____ :_ = \
1
! I
Agenda R T
Application
Actions

Communication

Figure 2: Collagen architecture.

The main job of discourse interpretation is to see
how the current communication or observed action can
be viewed as contributing to the current discourse pur-
pose, 1.e., the purpose of the top segment on the focus
stack. For example, if the current purpose is to jointly
schedule a trip, and the user proposes a route, the
agent interprets this as the first step in the scheduling
recipe. The intepretation algorithm also takes care of
deciding when to push a new segment on the stack or
pop the current segment.

It is tempting to think of discourse intepretation as
plan recognition, which is known to be exponential in
the worst case (Kautz 1990). However, this misses a
key property of normal human discourse, namely that
the participants work hard to make sure that their
partners understand their intentions without a large
cognitive search. In order to explain an observed or
reported act, Collagen only searches through the steps
of the current recipe or all known recipes for the cur-
rent goal (and this is not done recursively). As we will
see below, the agent relies on the user to communicate
enough so that it can follow what is going on without
having to do arbitrary plan recognition.

The discourse generation algorithm looks at the cur-
rent focus stack and associated SharedPlan and pro-
duces a prioritized agenda of (possibly partially spec-
ified) actions which would contribute to the current
discourse segment purpose. For example, if the cur-
rent purpose is to jointly schedule a trip, the agenda
includes an action in which the agent asks the user
to propose a route. In general, the agenda contains
communication and other actions by either the user

or agent, which would advance the current problem-
solving process.

Collagen

Collagen 1s a toolkit that embodies a set of conventions
for collaborative discourse in the same sense that, for
example, the Motif toolkit embodies a set of conven-
tions for the graphical design of user interfaces. Gen-
erally speaking, what Collagen provides 1s a standard
mechanism for maintaining the flow and coherence of
agent-user interaction. In addition to saving imple-
mentation effort, using such a toolkit provides consis-
tency across applications, and to the extent that the
conventions are based on good principles, leads to ap-
plications that are easier to learn and use.

Even when using a toolkit, you still must provide a
lot of application-specific information. After discussing
the generic architecture of Collagen below, we will fo-
cus on how this application-specific information is pro-
vided and used.

Architecture

Figure 2 is a blow-up of Figure 1 to show the inter-
nal architecture of the part of the agent that interacts
with the user. As commented earlier, the architecture
at this level is applicable to all kinds of agents. In ad-
dition to the components shown in this figure, Colla-
gen also includes a layer of special windowing facilities
(Rich 1996) to support the interface agent paradigm
(see later section).

The first thing to notice about the architecture in
Figure 2 is that the agent’s decision making and exe-

cution is a “black box.” We are not trying to provide
a toolkit for building a complete agent. At the heart
of the agent there may be a rule-based expert system,
a neural net, or a completely ad hoc collection of code.
What we are providing are mechanisms for this black
box to use when communicating with the user. Said
another way, Collagen provides a generic framework
for recording and communicating the decisions made
by the agent (and the user), but not for making them.

User Presentations

From the user’s point of view, a collaborative agent
built using Collagen presents itself in three ways. All
of these presentations are in natural language, which
is generated from an internal artificial language (de-
scribed below) by simple string template substitutions.

First (see bottommost arrow in the Figure 2), the
user sees direct communications from the agent. The
content of such a communication could be a question,
an answer, a proposal, a report, etc. The exact method
by which such communications are presented to the
user depends on the application. For interface agents,
Collagen provides a particular style of overlapping win-
dows; other applications could simply print into a pre-
defined message area.

Second (see topmost arrow in Figure 2), the user
communicates to the agent by selecting from the dy-
namically-changing user communication menu, which
is computed from the current discourse agenda. What
we are doing here is using expectations generated by
discourse context to replace natural language under-
standing. The user is not allowed to make arbitrary
communications, but only to select from communica-
tions expected by the discourse interpretation algo-
rithm. Thus, unlike usual ad hoc menu-driven interac-
tion, the user menu in Collagen is systematically gen-
erated from an underlying model of orderly discourse.
The choices in the user communication menu are sim-
ply the subset of the discourse agenda which are com-
munication acts that may be performed by the user
(plus a few special entries, such as “Where are we?”
to request printout of the segmented history described
below). An example of a user communication menu
in our example application can be see in the lower left
corner of Figure 4.

Finally (see middle arrow Figure 2), the user can
request a printout of parts of the agent’s internal dis-
course state in the form of a segmented interaction his-
tory (see example Figure 5). Segmented interaction
histories are one of Collagen’s most useful features.
They are like log files, except that they are hierarachi-
cally structured and include not only primitive actions,
but also the user’s and agent’s higher-level goals and
intentions. The most basic function of the segmented
interaction history 1s to orient the user. For example,
if the user needed to leave her computer in the middle
of working on a problem and returned after a few hours
(or days), the history would help her reestablish where
in the problem solving process she was.

The segmented interaction history also serves as a
menu for history-based transformations, such as re-
turning to earlier points in the collaboration or replay-
ing earlier segments in a new context. See (Rich &
Sidner 1996b) for more about history-based transfor-
mations.

Inside the Agent

The left side of Figure 2 shows the components of Col-
lagen inside the agent. At the top of the figure, the dis-
course interpretation module receives selections from
the user communication menu. Even though the user
menu is presented in natural language, there 1s no nat-
ural language understanding required here, since each
entry in the menu is associated with the artificial lan-
guage expression from which it was generated.

The interpretation module updates the agent’s in-
ternal discourse state representation according to the
rules of discourse theory and the specific content of
the user’s communication. The agent’s internal dis-
course state consists of the focus stack described earlier
(shown growing downward in the figure), the history
list, which records toplevel segments that have been
popped off the stack, and the recipe tree, which is a
concrete representation of some of the mutual beliefs
in SharedPlans. The recipe library, which is also an
input to discourse interpretation, will be discussed in
its own section below.

The discourse generation module constantly updates
the agenda as the discourse state changes.

Notice that the agent communication arrow at the
bottom of Figure 2 originates in the agent decision
making box. Only application-specific code can de-
cide what the agent should actually say (or do) at any
particular time. However, the Collagen architecture
does provide resources which this application-specific
agent code can use to support intelligent assistance.
Collagen provides software interfaces (API’s) for the
recipe library, the discourse state representation, and
the agenda.

For example, the agent in our air travel application
consults the recipe tree as part of determining the best
suggestion to make when the user has added too many
constraints to her trip. Also, our example agent of-
ten chooses one of the entries on the current discourse
agenda as its next action.

Task Modelling

In order to use Collagen, an agent developer must pro-
vide a formal model of the collaborative task(s) be-
ing performed by the agent and user. Defining this
model is very similar to what is called “data modelling”
in database or “domain modelling” in artificial intelli-
gence (Brodie, Mylopoulos, & Schmidt 1982). Tt also
overlaps with modern specification practices in soft-
ware engineering, although the goals and recipes in a
task model for collaborative discourse include more ab-
stract concepts than are usually formalized in current

software practice, except for in expert or knowledge-
based systems.

On the one hand, task modelling can be thought
of as an unfortunate hidden cost of applying discourse
theory. On the other hand, the need for an explicit task
model should be no surprise. From an artificial intelli-
gence point of view, what the task model does is add
a measure of reflection—“self-awareness,” if you like—
to a system. Reflection is a well-known technique for
improving the performance of a problem-solving sys-
tem. From a software engineering point of view, the
task model can be thought of as part of the general
trend towards capturing more of the programmer’s de-
sign rationale in the software itself. Also, since the
agent is not required to use the task model alone for its
decision making and execution, the model only needs
to be complete enough to support communication and
collaboration with the user.

In the remainder of this section, we discuss and il-
lustrate some of the issues in building task models,
starting with the artificial discourse language and then
moving on the recipe library.

Artificial Discourse Language

As the internal representation for user and agent com-
munication acts, we use Sidner’s (1994) artificial dis-
course language. Sidner defines a collection of con-
structors for basic act types, such as proposing, retract-
ing, accepting, and rejecting proposals. Our current
implementation includes only two of these act types:
PFA (propose for accept) and AP (accept proposal).

PFA(t, participanty, belief, participants)

The semantics of PFA are roughly: at time ¢, participant;
believes belief, communicates his belief to participants,
and intends for participants to believe it also. If partic-
ipanty responds with an AP act, e.g., “Ok”, then belief
is mutually believed.

Sidner’s language at this level is very general—the
proposed belief may be anything. For communicat-
ing about collaborative activities; we introduce two
application-independent operators for forming beliefs
about actions: SHOULD(act) and RECIPE (act,recipe).

The rest of the belief sublanguage is application-
specific. For example, to model our air travel ap-
plication, we defined appropriate object types (e.g.,
cities, flights, and airlines), relations (e.g., the origin
and destination of a flight), and goal/action construc-
tors (e.g., scheduling a trip, adding an airline specifica-
tion). We can imagine automatically extracting some
of these definitions from declarations in the implemen-
tation code for the agent.

Below are examples of how some of the communi-
cations in our example application are represented in
the artificial discourse language. In each example, we
show the internal representation of the communica-
tion followed by the English gloss that is produced by
a straightforward recursive substitution process using
string templates associated with each operator. Ital-

icized variables below denote parameters that remain
to be bound, e.g., by further communication.
PFA(36,agent ,SHOULD (add-airline(¢,agent,ua)) ,user))
36 AGENT: "Propose I add United specification."”

Notice below that a present participle template 1s
used when the participant performing an act is un-
specified.

PFA(1,user,SHOULD (schedule(t, who, route)) ,agent)
1 USER: "Propose scheduling a trip."

Questions arise out of the embedding of PFA acts as
shown below (route is a constructor for route expres-
sions).

PFA(11,agent,
SHOULD(PFA (¢; ,user,

RECIPE (schedule(t; , who,
route(bos,dfw,den,sfo,bos)),
recipe) , agent)),

user)

11 AGENT: "How will a trip on Boston to Dallas to
Denver to San Francisco to Boston be scheduled?"

Recipe Library

At its most abstract, a recipe is a resource used to
derive a sequence of steps to achieve a given goal
(the objective of the recipe). Although very general,
application-independent recipes exist, such as divide
and conquer, we are primarily concerned here with
application-specific recipes.

In our implementation, a recipe is concretely rep-
resented as a partially ordered sequence of act types
(steps) with constraints between them. The recipe
library contains recipes indexed by their objective.
There may be more than one recipe for each type of
objective.

The recipe library for the example application con-
tains 8 recipes defined in terms of 15 different goal or
action types. It is probably about half the size it needs
to be to reasonably cover the application domain.

Recipes with a fixed number of steps are easily rep-
resented in our simple recipe formalism. However, in
working on our example application, we quickly dis-
covered the need for more complicated recipes whose
step structure depends on some parameters of the ob-
jective. For example, two common toplevel recipes
for scheduling a trip are working forward and working
backward. The working-forward recipe works on the
legs of a trip in order starting with the first leg; the
working-backward recipe starts with the last leg. In
both cases, the number of steps depends on the length
of the route.

Rather than “hairing up” our recipe representa-
tion as each difficult case arose, we decided instead
to provide a general-purpose procedural alternative,
called recipe generators. Recipes such as working for-
ward/backward are represented in Collagen as proce-
dures which, given an objective, return a recipe. A
predicate can also be associated with a recipe to test
whether it is still applicable as it 1s being executed.

A related category of application-specific procedures
in the recipe library are recipe recognizers. These are

primarily used for the bottom-up grouping of a se-
quence of similar actions on the same object into a
single abstract action. For example, such a recognizer
is invoked in our example application when the user
moves the same time constraint indicator back and
forth several times in a row.

Example Application

Our example application concerns solving problems
such as the following:

You are a Boston-based sales representative plan-
ning your trip home from San Francisco. On the
way, you would like to meet a customer in Dallas
who is only available afternoons between 1 and
4 p.m. You would like to avoid overnight flights
and fly on American Airlines.

Scheduling a more complicated trip, e.g., one involv-
ing four or five cities, typically takes a user about 15
minutes and entails about 150 user or agent actions.

Interface Agents

In addition to illustrating the general framework for
agent-user collaboration shown in Figure 1, our exam-
ple agent is more specifically an interface agent (see
Figure 3). The collaborative interface agent paradigm
mimics the relationships that hold when two humans
collaborate on a task involving a shared artifact, such
as two mechanics working on a car engine together or
two computer users working on a spreadsheet together.

In the collaborative interface agent paradigm, the
agent can both communicate with and observe the ac-
tions of the user. One of the agent’s main responsi-
bilities is to maintain the history and context of the
collaboration.

The agent can also interact directly with the shared
application program. The agent queries the state of the
application using the application’s programming inter-
face (API). The agent modifies the application state
using the same graphical interface as the user, so that
the user can observe the agent’s actions.

Our concept of an interface agent is similar to Maes’s
(1994), although she uses the term “collaborative” to
refer to sharing information between multiple software
agents, rather than collaboration between agents and
people.

Figure 4 shows how the architecture of Figure 3
is realized on a user’s display. The large window la-
belled “Application” is a direct-manipulation interface
to an airline schedule database and a simple constraint
checker. By pressing buttons, moving sliders, and so
on, the user can specify and modify the geographical,
temporal, and other constraints on a planned trip. The
user can also retrieve and display possible itineraries
satisfying the given constraints.

The smaller overlapping windows in the upper-right
and lower-left corners of the screen in Figure 4 are
the agent’s and user’s home windows, through which
they communicate with each other. These windows are

User Agent

communicate

observe obsetve

interact interact

Application

Figure 3: Collaborative interface agent paradigm.

moveable and expand and shrink as their use changes.
In a typical session, application actions by the user and
agent are interleaved with communication actions be-
tween them. The agent manipulates objects in the ap-
plication window using the hand icon currently shown
at rest in its home window.

For additional details on some of the implementation
issues related adding an interface agent to graphical
user interfaces, see (Rich & Sidner 1996a).

Sample Session

The user could just start working by herself on schedul-
ing the San Francisco-Dallas-Boston trip above by di-
rectly manipulating objects in the application window.
Instead, she chooses to communicate with the agent to
initiate a collaboration. Clicking the arrow at the bot-
tom of her home window causes the window to expand
showing her current communication menu:

|Pr0pose scheduling a trip. |\

Where are we?

There 1s only one possible collaboration to propose
here, since this example system was built with only one
toplevel goal in mind. A typical real application would
have a range of high-level goals. The agent indicates its
acceptance of the user’s proposal by displaying “Ok”
in its home window. Note that at this point the agent
has only its generic knowledge of the typical tasks in-
volved in scheduling a trip and recipes for performing
them. It does does not know anything about the user’s
particular problem or preferences.

The user now clicks in order on three cities on the
map. The agent recognizes these three actions as form-
ing a segment whose purpose is to identify one of the
parameters of the current goal, i.e., the route of the
trip. If the user requests a display of the segmented
interaction history at this point (by choosing “Where
are we?” from the communication menu), the follow-
ing would be displayed in the agent’s home window:

= Application

— Agent

PST : mST : csT : EST
I~ American (AA) 3 3 3 Propose you work on Dallas to Boston leg.
_I Continental (CO) 3 3 3
_l Delta (DL)
_l Eastern (EA) : : , Boston =l 1
' _IDenver: ' (8OS)
I Lufthansa (LH) ! (DEN) | !
_I Mid ML San Francisco ' ' | Pittsburg IPhiladelphia (PHL)
ek (4] (SFO) (@ . . . _IBaltimore
_I Trans World (TW) : 3 ; (BWI)
I United (UA) : : : Save: | Itineraries
' : '
_1 USAir (US) : ' : _lAtlanta - 60
! ! Dallas ! (ATL) Restore: Initial |
' ' (DFW) ' Display?
I Nonstop Only ' ' ' play
' ' ! Undo
i i i Done
BOS
PST)
San Francisco Dallas
MST
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
CST 1 . . . [. . . [. [. . . [. . .]
I i LI i LI 1
EST 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm
] |
— U 5 —
| = TolE Dallas IAAI Boston ‘ A
=
Dallas [an] Boston |
Propose specifying airlines. Dallas IAAI Boston \
§ @
N
n Where are we? Dallas [AA[Boston] /
-
-

Figure 4: Example application screen.

(Jointly scheduling a trip on the route)

USER: "Propose scheduling a trip."

AGENT: "Ok."

(User identifying route of scheduling a trip as San Francisco

to Dallas to Boston)

USER: Add San Francisco to the route.
USER: Add Dallas to the route, allowing 97 itineraries.
USER: Add Boston to the route, allowing 100+ itineraries.

Notice that the interaction history above is hierar-
chically structured. The purpose of each segment is
shown in parentheses at the start of the segment. The
elements of a segment are either primitive actions or
subsegments. Communication actions are indicated by
quotation marks. In general, the purpose of a subseg-
ment contributes to the purpose of the parent segment.

The user now clicks “Ok” in her home window to
signal the end of the current segment. After a brief
pause to see if the user is going to do something else,
the agent takes the initiative and asks:

How should a trip on the route be scheduled?

This question i1s an example of intelligent assistance
in which the agent helps the user focus on what needs
to be decided next in order to push the task forward.
The user is free either to answer the agent’s question
or to ignore it and proceed on her own. If she chooses
to answer, the following option will be presented in her
communication menu:

Propose scheduling a trip on the route via ____ .

working forward |%

working backward

The user chooses the working forward recipe and
then asks “What should be done next?”, to which the
agent replies:

Propose you work on San Francisco to Dallas leg.

Here again the agent uses the current context to as-
sist the user, in this case to suggest the next step in
the current recipe. Working on a leg entails manipu-
lating the “interval bars” in the horizontal slider area
below the map (see Figure 4) to specify latest arrival
and earliest departure times at each city.

We skip ahead now to the end of the sample session,
where the interaction history is as shown in Figure 5.
Notice the varying level of detail in this history: the

(Jointly scheduling a trip on the route via working forward)
(Done user identifying route of scheduling a trip as
San Francisco to Dallas to Boston, allowing 100+ itineraries)
(Done user proposing a trip on the route be scheduled
via working forward)
(Done user working on San Francisco to Dallas leg,
allowing 70 itineraries)
(Done user working on Dallas to Boston leg, allowing 55 itineraries)

(Done jointly specifying airlines, allowing 10 itineraries)
USER: Add American specification, allowing no itineraries.
(Done agent adding United specification)

AGENT: "Propose | add United specification.”
USER: "Ok."
AGENT: Add United specification, allowing 10 itineraries.

(Done user displaying itineraries)

Figure 5: History at end of sample session.

selected segment in which the agent and user jointly
specify airlines is shown in full, while the internal ele-
ments of the other segments are suppressed. The user
can interactively control the level of detail in interac-
tion histories by single and double clicking on segments
similarly to the way hierarchial file structures are typ-
ically inspected.

The airline specification segment in Figure 5 is ex-
panded in full to show an example of the agent per-
forming an application act, rather than just commu-
nicating with the user. The user began this segment
by requiring all flights use American airlines, which re-
sulted in no possible itineraries. Whenever a constraint
(such as an airline specification) is entered or changed,
the application program automatically recomputes the
number of possible itineraries and displays this num-
ber in the box labelled “Itineraries.” In the segmented
interaction history, the number of possible itineraries
after each segment or action is indicated if it is different
from the number before.

Noticing that the user had over-constrained the trip,
the agent proposed adding United airlines which, with
the user’s approval, it did. The agent did not propose
this particular airline at random—it used the applica-
tion’s API to find an airline that would in fact increase
the number of possible itineraries.

Related Work
Cohen (1992) and Jacob (1995), among others, have

explored discourse-related extensions to direct manip-
ulation interfaces that make previous context directly
available. However, most work on applying human dis-
course principles to human-computer interaction, e.g.,
(Lambert & Carberry 1991, Yanklovich 1994), has as-
sumed that natural language understanding will be ap-
plied to the user’s utterances. Terveen (1991) has ex-
plored providing intelligent assistance through collab-
orative graphical manipulation without explicitly in-
voking the agent paradigm.

The two systems we know of that are overall closest
in spirit to our own are Stein et al.’s MERIT (1995)
and Ahn et al.’s DenK (1994). MERIT uses a different
version of discourse theory and compiles it into a finite-
state machine representation, which is less flexible and
extensible. DenK has the goal of providing a discourse-
based agent, but has not yet modelled collaboration.

Conclusion

We have demonstrated the feasibility of an application-
independent toolkit for applying human collaborative
discourse principles to autonomous software agents.
We hope the sample scenario above suggests that this
approach can lead to agents that are natural and easy
to collaborate with.

Our future plans include:

e improving the flexibility and robustness of the dis-
course processing algorithms, especially as related to
incompleteness of the agent’s recipe library,

e supporting negotiation between the user and agent,

e a pilot user study to compare using the example ap-
plication with and without the interface agent, and

e using Collagen to build agents that operate remotely
in space and time (e.g., on the Internet), which will
require more discussion between the agent and user
about past and future actions.

References

Ahn et al, R. 1994-5. The DenK-architecture: A funda-
mental approach to user-interfaces. Al Review 8:431-445.
Brodie, M.; Mylopoulos, J.; and Schmidt, J., eds. 1982.
On Conceptual Modelling. NY, NY: Springer-Verlag.
Cohen, P. 1992. The role of natural language in a multi-
modal interface. UIST 92, pp. 143-149.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence. To appear.
Grosz, B. J., and Sidner, C. L. 1986. Attention, intentions,
and the structure of discourse. Computational Linguistics
12(3):175-204.

Grosz, B. J., and Sidner, C. L. 1990. Plans for dis-
course. In Cohen, P. R.; Morgan, J. L.; and Pollack,
M. E.| eds., Intentions and Communication. Cambridge,
MA: MIT Press. chapter 20, 417-444.

Jacob, R. J. K. 1995. Natural dialogue in modes
other than natural language. In Beun, R.-J.; Baker, M;
and Reiner, M., eds., Dialogue and Instruction. Berlin:
Springer-Verlag. 289-301.

Kautz, H. 1990. A circumscriptive theory of plan recog-
nition. In Cohen, P. R.; Morgan, J. L.; and Pollack,
M. E.| eds., Intentions and Communication. Cambridge,
MA: MIT Press. chapter 6, 105-133.

Lambert, L., and Carberry, S. 1991. A tripartite plan-
based model of dialogue. In Proc. 29th Ann. Meeting ACL.
Lochbaum, K. E. 1994. Using collaborative plans to model
the intentional structure of discourse. TR 25-94, Harvard
Univ., Ctr. for Res. in Computing Tech. PhD thesis.
Lochbaum, K. E. 1995. The use of knowledge precondi-
tions in language processing. [JCAI’95 pp. 1260-1266.
Maes, P. 1994. Agents that reduce work and information
overload. Comm. ACM 37(17):30-40.

Rich, C.; and Sidner, C. 1996a. Adding a collaborative
agent to graphical user interfaces. UIST’96. To appear.
Rich, C.; and Sidner, C. 1996b. Segmented interaction
history in a collaborative interface agent. 3rd Int. Conf.
on Intelligent User Interfaces. To appear.

Rich, C. 1996. Window sharing with collaborative inter-
face agents. ACM SIGCHI Bulletin 28(1):70-78.

Sidner, C. L. 1994. An artificial discourse language for
collaborative negotiation. AAAI’9} pp. 814-819.

Stein, A.) and Maier, E. 1995. Structuring collaborative
information-seeking dialogues. Knowledge-Based Systems
8(2-3):82-93.

Terveen, G.; Wroblewski, D.; and Tighe, S. 1991. In-
telligent assistance through collaborative manipulation.
1JCAID91, pp. 9-14.

Yanklovich, N. 1994. Talking vs. taking: Speech access to
remote computers. CHI'94, pp. 275-276.

	Title Page
	Title Page
	page 2

	COLLAGEN: When Agents Collaborate with People
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

