
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Segmented Interaction History in a
Collaborative Agent

Charles Rich, Candace L. Sidner

TR96-14 June 1996

Abstract

We have developed an application-independent toolkit, called Collagen, based on the SharedPlan
theory of collaborative discourse, in which interaction histories are hierarchically structured ac-
cording to a userś goals and intentions. We have used Collagen to implement an example collab-
orative interface agent with discourse processing, but not natural language understanding. In this
paper, we concentrate on how a segmented interaction history supports user orientation, intelli-
gent assistance, and transformations, such as returning to earlier points in the problem solving
process and replaying segments in a new context. Superseded by TR97-21.

Third International Conference on Intelligent User Interfaces, Orlando, FL, January, 1997, pp.
23-30.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Segmented Interaction History

in a Collaborative Interface Agent

Charles Rich Candace L. Sidner�

TR-96-14 June 1996

Abstract

We have developed an application-independent toolkit, called Collagen, based on
the SharedPlan theory of collaborative discourse, in which interaction histories

are hierarchically structured according to a user's goals and intentions. We have
used Collagen to implement an example collaborative interface agent with dis-

course processing, but not natural language understanding. In this paper, we
concentrate on how a segmented interaction history supports user orientation,
intelligent assistance, and transformations, such as returning to earlier points in

the problem solving process and replaying segments in a new context.

To appear in Third Int. Conf. on Intelligent User Interfaces,

Orlando, FL, January 1997.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1996

201 Broadway, Cambridge, Massachusetts 02139

�Lotus Development Corporation

Publication History:{

1. First printing, TR-96-14, June 1996

Charles Rich

MERL{A Mitsubishi Electric
Research Laboratory

201 Broadway
Cambridge, MA 02139 USA

+1-617-621-7507
rich@merl.com

Candace L. Sidner

Lotus Development Corporation
55 Cambridge Parkway

Cambridge, MA 02142 USA
+1-617-693-7737
csidner@lotus.com

ABSTRACT

We have developed an application-independent toolkit,
called Collagen, based on the SharedPlan theory of col-
laborative discourse, in which interaction histories are
hierarchically structured according to a user's goals and
intentions. We have used Collagen to implement an ex-
ample collaborative interface agent with discourse pro-
cessing, but not natural language understanding. In this
paper, we concentrate on how a segmented interaction
history supports user orientation, intelligent assistance,
and transformations, such as returning to earlier points
in the problem solving process and replaying segments
in a new context.

Keywords

Interaction history, discourse, segment, collaboration,
interface agent, undo, replay.

INTRODUCTION

One of the key features that should distinguish \intel-
ligent" user interfaces from conventional ones is better
support for the intentional level of human-computer in-
teraction, especially as it unfolds over time. Most con-
ventional work on user interface concentrates on opti-
mizing the appearance and functionality of a single in-
teraction or a short sequence of interactions. In con-
trast, our work is about supporting a user's problem
solving process by relating current actions to the global
context and history of the interaction.

Our approach to achieving this goal has been to draw
upon what is known about human collaborative dis-
course, speci�cally from the SharedPlan work of Grosz,
Sidner, Kraus, and Lochbaum [3, 4, 5, 8, 9]. This work
has provided us with the basic theory and algorithms
necessary build a representation of interaction history in
which problem-solving goals and intentions are explicit.
One of our underlying assumptions is that a human-
computer interface based on human discourse rules and
conventions will be easier for people to learn and use
than one that is not.

observe

Agent

communicate

interact interact

observe

Application

User

Figure 1: Collaborative interface agent paradigm.

We have implemented a application-independent toolkit
for this purpose, called Collagen [14], and used it to
build an complete example system [13] demonstrating
how the information needed to construct a segmented
interaction history can be acquired without unduly dis-
rupting the ow of work. This paper concentrates on
how the segmented history is used to support user ori-
entation, intelligent assistance, and history-based trans-
formations.

In the following sections, after further discussion of our
general approach, we present a sample session with our
demonstration system. We then describe the Collagen's
application-independent discourse processing framework,
following which we discuss history-based transforma-
tions, such as returning to earlier points in the problem
solving process and replaying segments in a new con-
text. All of the examples in this paper are from the
demonstration system, which has been implemented in
Common Lisp and runs in real time (a maximum of a
few seconds per interaction).

COLLABORATIVE INTERFACE AGENT

Our current demonstration system uses the paradigm of
a collaborative interface agent (see Figure 1). However,
as will be clear below, the basic structures for represent-
ing and using the interaction history are not limited to
this paradigm. Our concept of an interface agent is sim-
ilar to the work of Maes [10], except she uses the term

1

 Application

American (AA)

Continental (CO)

Delta (DL)

Eastern (EA)

Lufthansa (LH)

Midway (ML)

Trans World (TW)

United (UA)

USAir (US)

Nonstop Only

BOS

San Francisco Dallas

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

NIL

Save:

Restore: Initial

Undo

Done

Itineraries

60

Display?

San Francisco AA Dallas AA Boston

San Francisco AA Dallas AA Boston

San Francisco AA Dallas AA Boston

San Francisco AA Dallas AA Boston

ESTCSTMSTPST

Boston
(BOS)

Baltimore
(BWI)

Atlanta
(ATL)

Philadelphia (PHL)Pittsburgh
(PIT)

Dallas
(DFW)

Denver
(DEN)

San Francisco
(SFO)

Oakland
(OAK)

Agent

(Scheduling a trip on the route via working forward)

 (Done user identifying route of scheduling a trip as San Francisco to Dallas to Boston, allowing 100+ itineraries)

 (Done user proposing a trip on the route be scheduled via working forward)

 (Done user working on San Francisco to Dallas leg, allowing 60 itineraries)

 (Done user displaying itineraries)

User

Ok

No

Propose working on Dallas to Boston leg.

Replay the segment.

Continue the segment.

Retry the segment.

What should be done next?

Figure 2: Application with overlapping user and agent home windows.

\collaborative" to refer to the sharing of information
between multiple software agents.

The collaborative interface agent paradigm mimics the
relationships that hold when two humans collaborate
on a task involving a shared artifact, such as two me-
chanics working on a car engine together or two com-
puter users working on a spreadsheet together. This
implies, as shown in Figure 1, that the software agent
is able to communicate with and observe the actions of
the user. One of the agent's main responsibilities is to
maintain the history and context of the collaboration,
based partly on communication from the user about her
intentions and partly on observation of the user's ac-
tions.

The agent can also interact directly with the shared ap-
plication program. The agent queries the state of the
application using the application's programming inter-
face (API). The agent could also modify the state of
the application through the API. However, the inter-
face agent paradigm is more complete when the agent
modi�es the application state using the same graphical
interface as the user.

Although, in the long run, communication between users
and interface agents will very likely be in spoken nat-
ural language, we have decided for both practical and
methodological reasons not to include natural language
understanding in our current system. As a practical
matter, natural language understanding, even in this
limited setting, is a very di�cult problem in its own

right, which we would like to sidestep for the moment.
From a methodological point of view, we want to empha-
size that discourse theory addresses the content of col-
laborative communication at a very fundamental level,
regardless of what language it is in.

As the internal semantic (i.e., content) representation
of the communication between the user and agent, we
employ an arti�cial language developed by Sidner [15].
Simple string templates are used to translate messages
from this internal representation into English sentences
for the user to read.

DEMONSTRATION SYSTEM

Figure 2 shows how the architecture of Figure 1 is real-
ized on a user's display. The large window labelled \Ap-
plication" is a direct-manipulation interface to an airline
schedule database and a simple constraint checker. By
pressing buttons, moving sliders, and so on, the user
can specify and modify the geographical, temporal, and
other constraints on a planned trip. The user can also
retrieve and display possible itineraries satisfying the
given constraints. A typical session to schedule a com-
plicated trip, e.g., one involving four or �ve cities, lasts
about 15 minutes and entails about 150 actions (mouse
clicks) on the application window.

The smaller overlapping windows in the upper-right and
lower-left corners of the screen in Figure 2 are the agent's
and user's home windows, through which they commu-
nicate with each other. These windows are moveable
and expand and shrink as their use changes. In a typi-

2

cal session, application actions by the user and agent are
interleaved with communication actions between them.
The agent manipulates objects in the application win-
dow by pointing and clicking with the hand icon shown
in its home window.

For additional discussion of issues related to adding a
collaborative agent to graphical user interfaces, see [13].

SAMPLE SESSION

The sample session in this section provides:

� a further introduction to the application domain,
� an example of interactively and incrementally building
a segmented interaction history, and

� examples of using the segmented history to support
user orientation and intelligent assistance.

This session is only one of many possible variations in
the order of actions and division of labor between the
user and agent. Notice that we will use the terms \his-
tory" and \context" somewhat interchangeably below.
The technical distinction between these needs to wait
until the underlying discourse processing algorithms and
data structures are described in the next section.

The session begins with the user being given the follow-
ing problem statement:

You are a Boston-based sales representative plan-
ning your trip home from San Francisco. On the
way, you would like to meet a customer in Dal-
las who is only available afternoons between 1 and
4 p.m. You would like to avoid overnight ights and
y on American Airlines.

The user could just start working on scheduling this
trip herself by pointing and clicking on the application
window. Instead, she chooses to communicate with the
agent to initiate a collaboration. Clicking on the arrow
at the bottom of her home window causes the window
to expand showing her current communication choices:

Propose scheduling a trip.
What have we been doing?

There is only one possible collaboration to propose here,
since the demonstration system was built with only one
toplevel goal in mind. A real application would have a
range of high-level goals. The agent indicates its accep-
tance of the user's proposal by displaying \Ok" in its
home window. Note that at this point the agent has
only generic knowledge of the typical tasks involved in
scheduling a trip and recipes (general methods) for per-
forming them. It does does not know anything about
the user's particular problem or preferences.

The user now clicks in sequence on three cities on the
map. The agent recognizes these three application (i.e.,
mouse) actions as forming a segment whose purpose is
to identify one of the parameters of the current goal, i.e.,
the route of the trip. If the user requests a display of
the interaction history at this point (by choosing \What
have we been doing?" from her communication menu),

the following would be displayed in the agent's home
window:

(Jointly scheduling a trip on the route)
USER: "Propose scheduling a trip."
AGENT: "Ok."
(User identifying route of scheduling a trip as San Francisco

to Dallas to Boston)
USER: Add San Francisco to the route.
USER: Add Dallas to the route, allowing 97 itineraries.
USER: Add Boston to the route, allowing 100+ itineraries.

Notice that the interaction history above is hierarchi-
cally structured. Each segment in the hierarchy has a
purpose, which is described in parentheses at the start of
the segment. The elements of a segment are either prim-
itive (communication or application) actions or subseg-
ments. Communication actions are indicated by quota-
tion marks. In general, the purpose of each subsegment
contributes to its parent segment's purpose.

The most basic function of the segmented interaction
history is to orient the user. For example, if the user left
her computer in the middle of working on a problem and
returned after a few hours (or days), the history would
help her reestablish where in the problem solving process
she was.

The user now clicks on \Ok" in her home window to
signal the end of the current segment. The agent now
takes the initiative and asks:

How should a trip on the route be scheduled?

This question is an example of intelligent assistance in
which the agent helps the user focus on what needs to be
decided next in order to push the current task forward.
The user is free either to answer the agent's question
or to ignore it and proceed on her own. If she chooses
to answer, the following option will be presented in her
communication menu:

Propose scheduling a trip on the route via ___ .
working forward

working backward

The agent knows about two recipes for scheduling a trip:
working forward on the legs of the trip starting at the
originating city and working backward starting at the
�nal destination. The user chooses working forward,
after which the agent says:

Propose you work on San Francisco to Dallas leg.

Here again the agent uses the current context to assist
the user, in this case to suggest the next subtask. Work-
ing on a leg entails manipulating the \interval bars" in
the horizontal slider area below the map (see Figure 2)
to specify latest arrival and earliest departure times at
a city.

We skip ahead now to the end of the sample session,
where the interaction history is as shown in Figure 3.
Notice the varying level of detail in this history: the
selected segment, in which the agent and user jointly
speci�ed airlines, is shown in full, while the internal el-
ements of the other segments are suppressed. The user

3

(Jointly scheduling a trip on the route via working forward)
(Done user identifying route of scheduling a trip as

San Francisco to Dallas to Boston, allowing 100+ itineraries)
(Done user proposing a trip on the route be scheduled

via working forward)
(Done user working on San Francisco to Dallas leg,

allowing 70 itineraries)
(Done user working on Dallas to Boston leg, allowing 55 itineraries)
(Done jointly specifying airlines, allowing 10 itineraries)

USER: Add American specification, allowing no itineraries.
(Done agent adding United specification)

AGENT: "Propose I add United specification."
USER: "Ok."
AGENT: Add United specification, allowing 10 itineraries.

(Done user displaying itineraries)

Figure 3: History at end of sample session.

can interactively control the level of detail in interaction
histories by single and double clicking on segments sim-
ilarly to the way hierarchial �le structures are typically
inspected.

The airline speci�cation segment in Figure 3 is expanded
in full to show an example of the agent performing an
application act, in addition to just communicating with
the user. The user began this segment by requiring all
ights use American airlines, which resulted in no possi-
ble itineraries. Whenever a constraint (such as an airline
speci�cation) is entered or changed, the application pro-
gram automatically recomputes the number of possible
itineraries and displays this number in the box labelled
\Itineraries." In the segmented interaction history, the
number of possible itineraries after each segment or ac-
tion is indicated if it is di�erent from the number before.

Noticing that the user had over-constrained the trip, the
agent proposed adding United airlines which, with the
user's approval, it did. The agent did not propose this
particular airline at random|it used the application's
API to �nd an airline that would in fact increase the
number of possible itineraries.

Given the interaction above, it is tempting to think of
what the agent is doing as plan recognition, which is
known to be exponential in the worst case [6]. However,
this misses a key property of normal human discourse,
namely that speakers work hard to make sure that their
conversational partners can understand their intentions
without a large cognitive search. As we will see in the
next section, the only search performed by the agent's
discourse processing is through the steps of the current
recipe or all known recipes for the current segment's
purpose (and this is not done recursively). We think
it will be reasonable to expect users to communicate
enough so that the agent can follow what is going on
without having to do general plan recognition.

DISCOURSE PROCESSING IN COLLAGEN

This section provides an overview of Collagen's discourse
processing algorithms and data structures. Since the
goal of this work is to use well-established human dis-
course algorithms, readers are referred to the referenced

act8

recipeparameter2

act7

recipe6

Focus
Stack

History
List

who

user

who

user

value1

parameter1

Recipe Tree

recipe

step2

step3step1

AGENT: Act3.

(Stopped jointly doing act2 via recipe2)

USER: Act4.

USER: Act7.

USER: "Parameter1 of act6 is value1."

(User doing act8)

act6

who

user

(Stopped jointly doing act1 via recipe1)

(Done agent doing act5 via recipe5)

(User doing act6 on value1 via recipe6)

(User doing act8)

Figure 4: Internal discourse state representation.

literature for more details.

Discourse processing in Grosz and Sidner's SharedPlan
framework [4, 5] has the three interrelated components,
represented internally as shown in Figure 4:

� The linguistic structure of a discourse includes the hi-
erarchical grouping of acts into segments.

� The attentional state of a discourse captures the shift-
ing focus of attention of the participants. We repre-
sent attentional context as a focus stack1 of discourse
segments (shown in the �gure as growing downward)
plus a history list, which contains toplevel segments
that have been popped o� the stack.

� The intentional structure of a discourse, correspond-
ing to the current partial status of the participants'
SharedPlans, is represented as a recipe tree, which is
a reimplementation of Lochbaum's rgraph [8].

The main job of discourse processing is to explain how
the current communication or application act contributes
to the current discourse purpose, i.e., the purpose of the
top segment on the focus stack. This breaks down into
�ve main cases. The current act either:

� directly achieves the current purpose,
� is one of the steps in a recipe for the current purpose
(this may involve retrieval from the recipe library),

� identi�es the recipe to be used to achieve the current
purpose,

1The focus stack also constrains the use of de�nite references,

such as \the route."

4

� identi�es who should perform the current purpose or
a step in the current recipe, or

� identi�es an unspeci�ed parameter of the current pur-
pose or a step in the current recipe.

The last three cases above are instances of a larger class
of explanations that Lochbaum [9] calls \knowledge pre-
conditions."

It is important to note that these discourse process-
ing algorithms and data structure are application-inde-
pendent. The only application-speci�c information used
is the recipe library, which contains an abstract speci�ca-
tion of each act type and its parameters, plus recipes for
implementing the non-primitive acts. The recipe library
for the current demonstration contains 15 act types and
8 recipes. It is probably about half the size it needs to
be to reasonably cover the application domain.

Segments

In the example discourse state in Figure 4, there are
two segments on the focus stack and two segments in
the history list. The elements of two of these segments
are shown expanded to the right. When a segment is
popped o� the stack, it is added to the history list if
and only if it has no parent segment.

Segments on the stack are called open, because they may
still have acts added to them. Segments that have been
popped o� the stack are called closed. All the segments
in the history list and their subsegments are closed. Seg-
ments on the stack may have closed subsegments.

A segmented interaction history is thus a printout of the
history list and the focus stack, in which each segment is
described by an English gloss of its purpose. Open seg-
ments are glossed with a present participle, such as \do-
ing;" closed segments are glossed starting with \done"
or \stopped." For example, Figure 5a is a printout of
the history list and stack in Figure 4.

Recipe Tree

The recipe tree is composed of alternating act and recipe
nodes, as illustrated in Figure 4. Both acts and recipes
have bindings, shown as labelled stubs in the �gure, with
constraints between them speci�ed in their recipe library
de�nitions. An act node has a binding for each of its
parameters, who performs it and, if it is non-primitive,
a recipe node. A recipe node has a binding for each step
in the recipe. To support the nonmonotonic changes
in discourse state required for negotiation and history-
based transformations, bindings and the propagation of
logical information in the recipe tree are implemented
using a truth-maintenance system.

For example, in Figure 4, act6's sole parameter has
been bound to value1 and act6's recipe has been bound
to recipe6. If a history-based transformation \undoes"
act7 and act8, then act6's recipe binding will be re-
tracted. Similarly, act6's parameter binding will be re-
tracted if the �rst communication act in its segment is
undone.

In general, the root of the recipe tree is the purpose
of the base segment of the focus stack, and each sub-
segment corresponds to a subtree, recursively. The ex-
ception is when there is an interruption, i.e., a segment
which does not contribute to its parent, in which case
we have a disconnected recipe tree for that segment.
Recipe trees remain associated with segments even af-
ter they are popped o� the stack.

The recipe tree is not (currently) presented graphically
to the user. However, it underlies much of the intelligent
assistance that the agent provides.

There are many other issues having to do with interac-
tively and incrementally building segmented interaction
histories which are not addressed in this section, such as
dealing with unexpected user actions and allowing ne-
gotiation about proposals. We have tentative solutions
in some of these areas; others are the topic of current
research. In the remainder of this paper, however, we
will concentrate on how the history is used once it is
built.

INTELLIGENT ASSISTANCE
One of the most basic types of intelligent assistance is
suggesting what to do next. The agent provides this as-
sistance essentially by running the discourse interpreta-
tion algorithm described above \backwards" to produce
an agenda of (possibly partially speci�ed) expected acts,
i.e., acts which would cause the binding of the current
discourse purpose's unbound parameters, etc.

Priorities are assigned to acts in the agenda based on
some simple application-independent heuristics. For ex-
ample, the highest priority is assigned to steps of a
recipe, all of whose parameters have been bound and
all of whose predecessors in the recipe have been ex-
ecuted. The agent often proposes the highest priority
act from this agenda.

For example, the agent's question near the beginning
of the sample session, \How should a trip on the route
be scheduled?", is the gloss of a statement in Sidner's
arti�cial language proposing that the user perform the
communication act of choosing a recipe for the current
purpose. Later in the session, when the agent says,
\Propose you work on San Francisco to Dallas leg," it
is proposing that the user perform the �rst step in the
current recipe.

In addition to this application-independent algorithm,
the discourse state representation and the agenda of ex-
pected acts generated from it are also useful resources
for writing application-speci�c agent code. For exam-
ple, in the air travel domain, knowing whether the user
is working forward or backward a�ects the order in
which constraints are removed by the agent in an over-
constrained situation.

Finally, the context-dependent communication menu in
the user's home window is itself a kind of intelligent
assistance derived from the discourse agenda. Except
for a few special entries, such as \What have we been

5

doing?" and the transformation requests described in
the next section, the choices in the user communica-
tion menu are simply the subset of the discourse agenda
which are communication acts that may be performed
by the user.

HISTORY-BASED TRANSFORMATIONS
Making the interaction history an explicit, manipulable
object, and the fact that it is structured according to
the user's intentions, presents the possibility for power-
ful transformations on the state of the problem solving
process. In this section, we describe three basic cate-
gories of such transformations, which we call stopping,
returning, and replay. The framework in which to under-
stand these transformations is in terms of their di�erent
e�ects on the application state and the discourse state.

The details of application state representation depend,
of course, on the application. For the purpose of this
discussion, we assume the application provides some
method for reestablishing any earlier state, neglecting
the important engineering tradeo�s between copying the
entire state of an application at various \checkpoints"
versus keeping enough information to reconstruct in-
termediate states by undoing or replaying actions. (If
checkpointing is expensive, segment boundaries suggest
good places at which to do so.)

The discourse state representation was described in de-
tail in the preceding section. Of the three components of
discourse state, only the focus stack and recipe tree are
changed by the transformations below. The elements of
closed segments are never modi�ed. A copy of the stack
and recipe tree are stored at the start and end of each
segment. (Because the elements of a segment are acts
and subsegments, the start of a segment does not always
correspond to the end of another segment.)

The basic unit to which history-based transformations
are applied is the segment. Requests to apply transfor-
mations applicable to the current segment (the top of
the stack) always appear at the end of the user's com-
munication menu, e.g,

Stop user working on Dallas to Boston leg.
Undo user working on Dallas to Boston leg.

To apply transformations to other segments, the user
requests display of the interaction history (\What have
we been doing?") and then selects the appropriate seg-
ment in the history display. Applicable transformation
requests for the selected segment are then automatically
added to the communication menu. The segmented in-
teraction history serves a kind of orientation function
here for �nding the argument to a history-based trans-
formation.

Stopping
The simplest history-based transformation is to pop the
current segment o� the focus stack without changing
the application state. Furthermore, if the purpose of
the popped segment contributes to its parent, the ap-
propriate unbindings are also performed in the recipe

tree. The stop transformation is applicable only to open
segments.

The user may employ this transformation to let the
agent know that, even though the current goal has not
been achieved, she is no longer working towards it. It
may also be useful when the agent has misunderstood
what the current goal is. Stopping is a component of
some of the more complicated transformations described
below.

Returning
Returns are a category of transformation in which both
the application and discourse states are reset to an ear-
lier point in the problem solving process. There are
three forms of return, which we call retry, revisit, and
undo. In all three forms, the application state is reset to
the state at the start (retry and undo) or end (revisit)
of the target segment.

Retry and Revisit

Intuitively, retry is the transformation to use when you
want to return to working on an earlier goal|achieved
or not|and try achieving it a di�erent way. Retry is
applicable to any segment.

Revisit is the transformation to use when you want to
pick up where you left o� working on an earlier goal, es-
pecially one that was stopped. Revisit is applicable only
to closed segments, since all open segments are currently
being worked on.

To illustrate retry and revisit, Figure 5a shows the his-
tory corresponding to Figure 4, with the segment to be

(a) Before return:
(Stopped jointly doing act1 via recipe1)

(Stopped jointly doing act2 via recipe2)
AGENT: Act3.
USER: Act4.

(Done agent doing act5 via recipe5)
(User doing act6 on value1 via recipe6)

USER: "Parameter1 of act6 is value1."
USER: Act7.
(User doing act8)

(b) Retry (return to start of) segment:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Stopped user doing act6 on value1 via recipe6)
(Returning to jointly doing act1 via recipe1)

(Retrying jointly doing act2)
USER: "Retry jointly doing act2."

(c) Revisit (return to end of) segment:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Stopped user doing act6 on value1 via recipe6)
(Returning to jointly doing act1 via recipe1)

(Revisiting jointly doing act2 via recipe2)
USER: "Revisit jointly doing act2 via recipe2."
AGENT: Act3.
USER: Act4.

Figure 5: Examples of returning.

6

returned to selected. Figures 5b and 5c show the inter-
action histories after a retry or revisit transformation
has been applied. Notice that in both cases, there are
two segments on the stack after the return.2 Notice also
that in a revisit transformation the recipe is preserved,
whereas in a retry the recipe becomes unbound.

In general, resetting the discourse state for a retry or
revisit involves an appropriate stop followed by resetting
the stack and recipe tree to their states at either the
start (retry) or end (revisit) of the selected segment. If
the segment being returned to (e.g., act2 in Figure 5) is,
or its parent is, on the history list, then the appropriate
segment to stop is the segment at the base of the stack
(e.g., act6), thereby emptying the stack. Otherwise, the
appropriate segment to stop is the open sibling segment
of the segment being returned to, if any.

Undo

Undo is the familiar transformation in which you want
to pretend that you never even started working on a
goal. Undo is applicable only to open segments, or if the
stack is empty, the most recent segment in the history
list or any of its terminating subsegments. For example,
undoing act6 in the initial state of Figures 4 and 5a
would yield an empty stack and the following history:

(Stopped jointly doing act1 via recipe1)
(Done agent doing act5 via recipe5)
(Undone user doing act6 on value1 via recipe6)

Resetting the discourse state to undo an open segment
involves the same steps as stopping that segment. The
only di�erence is that with undo the application state
is also reset. Undoing the last (or terminating) segment
on the history list (when the stack is empty) requires
only unbinding that segment's purpose from its parent
in the recipe tree.

Replay
Replay is a transformation which allows you to reuse
earlier work in a slightly di�erent, i.e., the current, con-
text. The basic idea is that all of the application acts
in the selected segment are put together into one (pos-
sibly hierarchical) \recipe," which is then executed by
the agent in the current context.

When executing such a replay recipe, it is important for
the agent to be prepared for the possibility that some
of the acts, e.g., adding an airline that has already been
speci�ed, may not be valid in the current context. De-
pending on the speci�c details of the agent's interface to
the application, such errors may need to be handled by
application-speci�c code in the agent, or may be taken
care of by the application's existing API or graphical
interface.

Figure 6 is example of how replay can be used, together
with returns, in a realistic scenario from the example

2Act1, the purpose of the parent of the segment being returned

to, is glossed as \returning to" rather than \retrying" or \revisit-

ing," because, in general, we could be returning to the middle of

it.

(Jointly scheduling a trip on the route via working forward)
(Done user identifying route of scheduling a trip as

San Francisco to Dallas to Boston, allowing 100+ itineraries)
(Done user proposing a trip on the route be scheduled

via working forward)
(Done user working on San Francisco to Dallas leg,

allowing 70 itineraries)
(Done user working on Dallas to Boston leg, allowing 55 itineraries)

USER: Add Dallas stopover with arrival ... departure ...
USER: Change Dallas stopover to arrival ... departure ...
USER: Add Boston arrival ...
USER: Change Boston to arrival ...

(Done jointly specifying airlines, allowing 10 itineraries)
(Done user displaying itineraries)

(Retried user identifying route of scheduling a trip as
Oakland to Dallas to Boston, allowing 100+ itineraries)

USER: "Retry user identifying route of scheduling a trip."
USER: Add Oakland to the route.
USER: Add Dallas to the route, allowing 87 itineraries.
USER: Add Boston to the route, allowing 100+ itineraries.

(Done user working on Oakland to Dallas leg, allowing 93 itineraries)
(Replayed working on Dallas to Boston leg, allowing 8 itineraries)

USER: "Replay user working on Dallas to Boston leg."
AGENT: Add Dallas stopover with arrival ... departure ...
AGENT: Change Dallas stopover to arrival ... departure ...
AGENT: Add Boston arrival ...
AGENT: Change Boston to arrival ...

(Done user displaying itineraries)
(Revisiting jointly specifying airlines)

USER: "Revisit jointly specifying airlines."
USER: Add American specification, allowing no itineraries.
(Done agent adding United specification)

AGENT: "Propose I add United specification."
USER: "Ok."
AGENT: Add United specification, allowing 10 itineraries.

USER: Add USAir specification, allowing 26 itineraries.

Figure 6: Transformations in example applica-
tion.

application domain continuing on from the end of Figure
3. Recall that this is a textual history of interactive
events, such as mouse clicks and display updates, in the
application and home windows. Parts of the history
have been expanded to show details of interest. The
segment that is going to be replayed is shown selected
and underlining has been added to highlight the three
transformation segments.

After displaying itineraries at the end of the sample ses-
sion (see gap in Figure 6), the user got the idea of trying
to leave from the nearby Oakland airport instead of San
Francisco. In order to pursue this alternative, she re-
turned to (retried) the �rst subsegment in the history,
this time entering the route Oakland-Dallas-Boston on
the map in the application window. Notice that the ap-
plication state at the end of this retried segment did not
include any city arrival/departure constraints.

Next, the user constrained her departure time from Oak-
land (\Done user working on Oakland to Dallas leg" in
the history). Then, instead of manually (re-)entering
the arrival/departure constraints for Dallas and Boston,
she requested replay of the selected segment.

7

After displaying and reviewing the possible itineraries
starting in Oakland, however, the user decided to return
to working on the San Francisco route after all. In par-
ticular, at the end of Figure 6, she is revisiting the ear-
lier airline speci�cation segment (�fth subsegment down
from the top) in order to see what happens if she adds
USAir to the speci�ed airlines.

RELATED WORK
Cohen et al. [1] �rst demonstrated the use of an explicit,
structured interaction history to allow users to locate
and return to earlier contexts. The structure of Co-
hen's histories, however, only captured the relationship
between questions and follow-up questions in a query in-
terface. By selecting a node in the question tree, users
could follow up on any earlier question, not just the
most recent one. Our history representation, by com-
parison, captures the relationship between both actions
and communications (including questions) and the goals
to which they contribute, making possible much more
powerful intelligent assistance and transformations.

In Moore et al.'s work [7, 12], which focuses on expla-
nation dialogues, users are presented with a full textual
history of their interaction with the system, from which
they may select any phrase as the context for a further
query. Unlike our approach, Moore's history display has
no explicit structure other than the alternation of user
and system utterances. Internally, however, Moore's
work does use a deep representation of the user's and
system's goals.

The basic idea underlying Collagen's user communica-
tion menu, namely replacing natural language under-
standing by natural language generation based on the
expectations of context, has also been used by Fischer [2]
for cooperative information retrieval and by Mittal and
Moore [11] for clari�cation subdialogues.

Finally, in terms of overall goal, the most closely re-
lated work is Stein et al.'s MERIT system [16], which
also strives to systematically apply human discourse the-
ory (albeit a di�erent one) to human-computer interac-
tion. However, rather than explicitly representing the
linguistic, attentional, and intentional structures under-
lying collaboration as in Collagen, MERIT relies on in-
teraction scripts. Even though they are nondetermin-
istic, these scripts lack the exibility and richness of
structure which Collagen provides and which supports
the functions of a collaborative agent. For example, al-
though the hierarchical dialogue history in the MERIT's
CORINNA interface looks similar to a segmented inter-
action history, there is no representation in MERIT of
the purpose of each segment or how it contributes to its
parent.

CONCLUSION
We have demonstrated an application-independent ap-
proach to representing and using a segmented interac-
tion history to support user orientation, intelligent as-
sistance, and history-based transformations. This work
is part of a broader agenda to apply principles of human

collaboration and discourse to improve human-computer
interaction.

Our future plans include:

� improving the exibility and robustness of Collagen's
discourse processing algorithms, especially as related
to incompleteness of the agent's recipe library,

� a pilot user study to compare using the example ap-
plication with and without the interface agent,

� supporting negotiation between the user and agent,
� and extending the interaction history representation
to include higher-level, application-independent struc-
tures, such \making a comparison," with associated
history-based transformations.

REFERENCES
1. P. Cohen et al. Synergistic use of direct manipulation

and natural language. CHI'89, pp. 227{233.

2. M. Fischer, E. Maier, and A. Stein. Generating coopera-
tive system responses in information retrieval dialogues.
INLGW'94, pp. 207{216.

3. B. J. Grosz and S. Kraus. Collaborative plans for com-
plex group action. Arti�cial Intelligence, 1996.

4. B. J. Grosz and C. L. Sidner. Attention, intentions, and
the structure of discourse. Computational Linguistics,
12(3):175{204, 1986.

5. B. J. Grosz and C. L. Sidner. Plans for discourse. In
P. R. Cohen, J. L. Morgan, and M. E. Pollack, editors,
Intentions and Communication, chapter 20, pages 417{
444. MIT Press, Cambridge, MA, 1990.

6. H. Kautz. A circumscriptive theory of plan recognition.
In P. R. Cohen, J. L. Morgan, and M. E. Pollack, ed-
itors, Intentions and Communication, chapter 6, pages
105{133. MIT Press, Cambridge, MA, 1990.

7. B. Lemaire and J. Moore. An improved interface for
tutorial dialogues: Browsing a visual dialogue history.
CHI'94, pp. 16{22.

8. K. E. Lochbaum. Using collaborative plans to model the
intentional structure of discourse. TR 25-94, Harvard
U., Ctr. for Res. in Computing Tech., 1994. PhD thesis.

9. K. E. Lochbaum. The use of knowledge preconditions
in language processing. IJCAI'95, pp. 1260{1266.

10. P. Maes. Agents that reduce work and information over-
load. Comm. ACM, 37(17):30{40, July 1994.

11. V. Mittal and J. Moore. Dynamic generation of follow-
up question menus: Facilitating interactive natural lan-
guage dialogues. CHI'95, pp. 90{97.

12. J. Moore and W. Swartout. Pointing: A way toward
explanation dialogue. AAAI'90, pp. 457{464.

13. C. Rich and C. Sidner. Adding a collaborative agent to
graphical user interfaces. UIST'96. To appear.

14. C. Rich and C. Sidner. Collagen: When agents collab-
orate with people. Agents'97. To appear.

15. C. L. Sidner. An arti�cial discourse language for collab-
orative negotiation. AAAI'94, pp. 814-819.

16. A. Stein and E. Maier. Structuring collaborative
information-seeking dialogues. Knowledge-Based Sys-

tems, 8(2-3):82{93, April 1995.

8

	Title Page
	Title Page
	page 2

	Segmented Interaction History in a Collaborative Agent
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

