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Abstract

The theory of �nite-state automata (FSA) is rich and �nite-state automata
techniques have been used in a wide range of domains, such as switching theory,
pattern matching, pattern recognition, speech processing, hand writing recog-
nition, optical character recognition, encryption algorithm, data compression,
indexing and operating system analysis (Petri-net).

Finite-State devices such as Finite-State Automata, Graphs and Finite-
State Transducers have been known since the emergence of Computer Science
and are extensively used in areas as various as program compilation, hardware
modeling or database management. In Computational Linguistics, although
they were known for a long time, more powerful formalisms such as context-
free grammars or uni�cation grammars have been preferred. However, recent
mathematical and algorithmic results in the �eld of �nite-state technology have
had a great impact on the representation of electronic dictionaries and natural
language processing. As a result, a new language technology is emerging out
of both industrial and academic research. This book presents fundamental
�nite-state algorithms and approaches from the perspective of natural language
processing.

In this chapter, we describe the basic notions of �nite-state automata and
�nite-state transducers. We also describe the fundamental properties of these
machines while illustrating their use. We give simple formal language examples
as well as natural language examples. We also illustrate some of the main
algorithms used with �nite-state automata and transducers.
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1 Preliminaries

Finite-state automata and �nite-state transducers are the two main concepts
commonly used in this book. Both kinds of automata operate on sets of
strings or in other words on sets of sequences of symbols. Since this notion is
so prevalent, in this section we de�ne those concepts as well notations used
throughout this book.

Strings are built out of an alphabet. An alphabet is simply a set of
symbols or characters, �nite (the English alphabet for instance) or in�nite
(the real numbers). A string is a �nite sequence of symbols. The set of
strings built on an alphabet � is also called the free monoid ��. Several
notations facilitate the manipulations of strings. For example, the sequence

(ai)i=1;4 = (w; o; r; d) (1)

will be denoted by \ word " or by w � o � r �d depending on the context. In
addition, � will also denote the concatenation of strings de�ned as follows:

(ai)i=1;n � (bj)j=1;m = (ci)i=1;n+m (2)

with

ci =

(
ai if i � n
bi�n otherwise

However, this notation is rarely used in practice. Instead, the concatena-
tion of \wo" and \rd" is denoted by wo � rd or simply by word. The empty
string, that is the string with no character, will be denoted by �. The empty
string is the neutral element for the concatenation. For a string w 2 ��,

w � � = � �w = w (3)

Given two strings u and v, we denote by u ^ v the string which is the
longest common pre�x of u and v.

Finite-state automata and �nite-state transducers also use extensively the
notion of sets of strings. The concatenation, union, intersection, subtraction
and complementation are operations commonly used on sets of strings.

MERL-TR-96-13 June 1996
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If L1 � �� and L2 � �� are two sets of strings, then the concatenation
of L1 and L2 is de�ned as follows

L1 � L2 = fu � vju 2 L1and v 2 L2g (4)

For a string u 2 �� and a set L � ��, the following notations are often
used:

u0 = � (5)

un = un�1 � u (6)

L0 = f�g (7)

Ln = Ln�1 � L (8)

L� =
[
n�0

Ln (9)

Assuming that L1 and and L2 two sets of strings, the following operations
are de�ned.

L1 [ L2 = fuju 2 L1or u 2 L2g (10)

L1 \ L2 = fuju 2 L1and u 2 L2g (11)

L1 � L2 = fuju 2 L1and u 62 L2g (12)

L = �� � L (13)

L�1
1 � L2 = fwj9u 2 L1; u � w 2 L2g (14)

These notations are extremely useful. For instance, in order to extract
the set of words for which a given pre�x (as \un") can apply, the following
can be used

fung�1 � funlikely, unacceptable, heavilyg = flikely,acceptableg (15)

In general, a singleton fwg and a string w will be identi�ed, this permits
the notations u�1 � L and u�1 � v.

MERL-TR-96-13 June 1996
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2 Finite-State Automata

A few fundamental theoretical properties make �nite-state automata very
exible, powerful and e�cient. Finite-state automata can be seen as de�ning
a class of graphs and also as de�ning languages.

2.1 De�nitions

In the �rst interpretation, �nite-state automata can simply be seen as an
oriented graph with labels on each arc. They are de�ned as follows.

De�nition
[FSA] A �nite-state automaton A is a 5-tuple (�; Q; i; F;E) where � is a

�nite set called the alphabet, Q is a �nite set of states, i 2 Q is the initial
state, F � Q is the set of �nal states and E � Q� (� [ f�g)�Q is the
set of edges.

Finite-state automata can therefore be seen as de�ning a class of graphs.
We will use the following notation when pictorially describing a �nite-

state automaton: �nal states are depicted with two concentric circles; � rep-
resents the empty string; unless otherwise speci�ed formally, the initial state
will be assumed to be the leftmost state appearing in the �gure (usually
labeled 0).

For example, the automaton Am2 = (f0; 1g; f0; 1g; 0; f0g; Em2) with

Em2 = f(0; 0; 0); (0; 1; 1); (1; 1; 1); (1; 0; 0)g

is shown in to the left of Figure 1. This automaton represents the sets of the
multiples of two in binary representation.

Similarly, the automaton Am3 = (f0; 1g; f0; 1; 2g; 0; f0g; Em3) with

Em3 = f(0; 0; 0); (0; 1; 1); (1; 1; 0); (1; 0; 2); (2; 1; 2); (2; 0; 1)g

is shown to the right of Figure 1. This automaton represents the set of the
multiples of three in binary representation.

Another traditional de�nition consists of replacing in De�nition 2.1 the
set of edges E by a transition function d from Q � (� [ f�g) to 2Q. The
equivalence between the two de�nitions is expressed by the following relation:

MERL-TR-96-13 June 1996
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Figure 1: Left: �nite-state automaton representing the multiples of two in bi-
nary representation. Right: �nite-state automaton representing the multiples
of three in binary representation.

d(q0; a) = fq 2 Qj9(q0; a; q) 2 Eg

Both de�nitions are static and relate �nite-state automata to a speci�c
class of graphs.

In the second interpretation, a �nite-state automaton represents a set of
strings over the alphabet �, namely the strings for which there is a path
from the initial state to a terminal state. Formally, this is best stated by
�rst extending the set of edges E or the transition function d in the following
way:

De�nition
[Ê] The extended set of edges Ê � Q��� �Q is de�ned as the smallest set

satisfying

(i) 8q 2 Q; (q; �; q) 2 Ê
(ii) 8w 2 �� and 8a 2 � [ f�g, if (q1; w; q2) 2 Ê and (q2; a; q3) 2 E then

(q1; w � a; q3) 2 Ê.

The transition function is similarly extended.

De�nition
[d̂] The extended transition function d̂, mapping from Q � �� onto 2Q, is

de�ned by

(i) 8q 2 Q; d̂(q; �) = fqg
(ii) 8w 2 �� and 8a 2 � [ f�g,

MERL-TR-96-13 June 1996
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d̂(q; w � a) =
[

q12d̂(q;w)

d(q1; a)

Having extended the set of edges and the transition function to operate
on strings, we can now relate a �nite-state automaton to a language.

A �nite-state automaton A de�nes the following language L(A):

L(A) = fw 2 ��jd̂(i; w) \ F 6= ;g (16)

A language is said to be a regular or recognizable if it can be recognized
by a �nite-state automaton.

2.2 Closure properties

A large part of the strength of the formalism of �nite-state automata comes
from a few very important results. Kleene's theorem is one the �rst and
most important results about �nite-state automata. It relates the class of
language generated by �nite-state automata to some closure properties. This
result makes �nite-state automata a very versatile descriptive framework.

Theorem 1 (Kleene, 1956) The family of languages over �� that are regular
is equal to the least family of languages over �� that contains the empty set,
the singleton sets, and that is closed under star, concatenation and union.

This theorem equivalently relates �nite-state automata with a syntactic
description. It states that regular expressions, such as the one used within
many computer tools, are equivalent to �nite-state automata.

Related to Kleene's Theorem, �nite-state automata have been shown to
be closed under union, Kleene-star, concatenation, intersection and comple-
mentation, thus allowing for natural and exible descriptions.

� Union. The set of regular languages is closed under union. In other
words, the closure under union guarantees that if A1 and A2 are two
�nite-state automata, it is possible to compute a �nite-state automaton
A1 [ A2 such that L(A1 [ A2) = L(A1) [ L(A2).

MERL-TR-96-13 June 1996
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� Concatenation. The set of regular languages is closed under concate-
nation: if A1 and A2 are two FSA, one can compute a FSA A1 �A2 such
that L(A1 �A2) = L(A1) � L(A2),

1.

� Intersection. The set of regular languages is closed under intersection:
if A1 = (�; Q1; i1; F1; E1) and A2 = (�; Q2; i2; F2; E2) are two �nite-
state automata, then one can compute a �nite-state automaton denoted
A1 \A2 such that L(A1 \ A2) = L(A1) \ L(A2). Such automaton can
be constructed as follows. A1 \ A2 = (�; Q1 � Q2; (i1; i2); F1 � F2; E)
with

E =
[

(q1;a;r1)2E1;(q2;a;r2)2E2

f((q1; q2); a; (r1; r2))g (17)

� Complementation. The set of regular languages is closed under com-
plementation: if A is a �nite-state automaton, then one can compute
a �nite-state automaton denoted �A such that L(�A) = �� � L(A).

� Kleene star. The set of regular languages is closed under Kleene start:
if A is a �nite-state automaton, then one can compute a �nite-state
automaton denoted A� such that L(A�) = L(A)�.

These closure properties of �nite-state automata are powerful. Other
well-known formalisms available in language processing generally do not sat-
isfy all these properties. For example although context-free grammars are
closed under union, concatenation and intersection with regular languages,
context-free grammars are not closed under general intersection nor comple-
mentation. Those two properties are actually very useful in practice espe-
cially when �nite-state automata are used to expressed sets of constraints.
These properties allows to combine them incrementally in a natural fashion.

2.3 Space and Time E�ciency

In addition to the exibility due to their closure properties, �nite-state au-
tomata can also be turned into canonical forms which allow for optimal time
and space e�ciency. These unique properties typically not shared with other

1If L1 and L2 are two subsets of ��, then L1 � L2 = fx � yjx 2 L1 and y 2 L2g

MERL-TR-96-13 June 1996
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frameworks used in natural language processing (such as context-free gram-
mar) also entail the decidability of a wide range of questions as we will see
in the next section.

In general, a given input string may lead to several paths into a �nite-
state automaton A = (�; Q; i; F; d). This is the case since the image of
the transition function d of a given symbol a can be a set of states (� :
Q�(�[f�g)! 2Q). In the case where the image of the transition function is
always a singleton or the empty set, the automaton is said to be deterministic.

De�nition
[DeterministicFSA] A deterministic �nite-state automaton is a 5-tuple (�; Q; i; F; d)

where � is a �nite set called the alphabet, Q is a �nite set of states, i 2 Q
is the initial state, F � Q is the set of �nal states and d is the transition
function that maps Q� � to Q.

Thus if the automaton is in a state q 2 Q and the symbol read from the
input is a, then d(q; a) uniquely determines the state to which the automa-
ton passes. This property entails high run-time e�ciency since the time to
recognize a string is linearly proportional to its length.

Nondeterministic automata permit several possible \next state" for a
given combination of a current state and input symbol. However, for any
given nondeterministic automaton NFA = (�; Q; i; F; d), there is an equiv-
alent deterministic automaton DFA = (�; Q0; fig; F 0; d0). It can be con-
structed as follows. The states of the deterministic automaton are con-
structed as all subsets of the set of states of the nondeterministic automaton.

Q0 = 2Q (18)

F 0 is the set of states in Q0 containing a �nal state in Q.

F 0 = fq0 2 Q0jq0 \ F 6= ;g (19)

And d0 is de�ned as follows:

d0(q0; a) =
[
q2q0

d(q; a) (20)

MERL-TR-96-13 June 1996
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The resulting �nite state automaton is deterministic in the sense that for
a given input symbol and current state, there is a unique state to go to.

Furthermore, a deterministic automaton can be reduced to an equivalent
automaton which has a minimal number of states (Hopcroft, 1971). This
results optimally minimize the space of deterministic �nite-state automata.

Those two results combined give an optimal time and space representation
for �nite-state automata.

In addition to their computational implications, the determinisation and
minimization of �nite-state machines allows �nite-state machines to have
very strong decidable properties.

2.4 Decidability Properties

Given the �nite-state automata A, A1 and A2, and the string w, the following
properties are decidable:

w
?
2 L(A) (21)

L(A)
?
= ; (22)

L(A)
?
= �� (23)

L(A1)
?
� L(A2) (24)

L(A1)
?
= L(A2) (25)

Most traditional frameworks used in natural language processing do not
satisfy all these properties. For example, although (21) and (22) are decid-
able for context-free grammars, the other three properties are not decidable.
Those properties are very convenient when developing a �nite-state automata
and allow the grammar writer to test the consistency of incremental versions
of a grammar written within this framework.

2.5 A Formal Example

Consider the following examples describing the multiple of two, three and six
in binary form. These formal examples have been chosen for their simplicity
and clarity.

MERL-TR-96-13 June 1996
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The �nite-state automaton shown to the right of Figure 1 generates the
strings 0; 11; 110; 1001, among others. This automaton generates the set of
binary representations of the multiples of three. As shown by Eilenberg
(1974) and Perrin (1990), this can be seen with the following construction
from �rst principles. Each state represents the remainder of the division by
three with the numerical value of the substring read so far. In the automaton
to the right of Figure 1, state 0 is associated with the remainder 0, state 1 with
the remainder 1 and state 2 with the remainder 2. Then when constructing
the transitions, it su�ces to notice that if w is the string of digits read so far,
then the numerical value of the string wd where d 2 f0; 1g is 2 � w + d and
therefore the remainder of the division by three of wd is d plus two times of
the remainder of the division by three of w (the result expressed in modulo
three). The FSA for the multiple of two shown to the left of Figure 1 can
be similarly constructed. Eilenberg (1974) and Perrin (1990) generalize this
construction to any multiples.

Now suppose we wish to construct the FSA representing the multiples of
six in binary form. We could try to build this automaton from �rst principles.
Although this is possible, the same automaton can be built from simpler
automata by noticing that the set of multiples of 6 is the intersection of the
set of multiples of three with the set of multiples of two. We have previously
shown the automaton for the multiples of two and three (see Figure 1). Then,
the FSA for the set of multiples of six can be constructed as the intersection of
these two automata following (17). The resulting FSA is shown in Figure 2.

The automaton shown in Figure 2 is actually not minimal. The states
(0; 2) and (1; 2) as well as the states (1; 1) and (0; 1) are equivalent. The
corresponding minimal automaton is shown in Figure 3.

2.6 A Natural Language Example

In this section we illustrate the exibility and usefulness of the closure prop-
erties on simple examples of local syntactic constraints, that is constraints
operating on a local context. This example also illustrates the uniformity
achieved with the �nite-state framework. In this framework, the input string,
the lexicon, the local syntactic rules are all represented as �nite-state au-
tomata and the application or combination of rules correspond to operations
on �nite-state automata which produce other �nite-state automata.

The local syntactic rules we consider in this example encode constraint
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Figure 2: Finite-state automaton for the multiples of six obtained by inter-
secting with the FSA of the multiples of two with the FSA of the multiples
of three.
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Figure 3: Minimal automaton corresponding to the automaton shown in
Figure 2.
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Pro

Conj

Det

Figure 4: FSA encoding the morphological information for the word that.

he Pro hopes N

V

that

Pro

Conj

Det

this Det

Pro

works N

V

Figure 5: Automaton representing the morphological analysis of He hopes
that this works

on the lexical ambiguity of words in context. For example, assume we wish
to analyze the sentence

He hopes that this works

For example, a dictionary look-up could identify that the word He is a
pronoun, hopes a noun or a verb, that a pronoun, a conjunction or a de-
terminer, this a determiner or a pronoun and words a noun or a verb. Such
morphological information encoded in the dictionary is naturally represented
by �nite-state automata. Using such representation, the dictionary lookup
associates the automaton of Figure 4 to the word that.

Moreover, since the morphological information of each word is represented
by an automaton, the morphological analysis of the input sentence can also
be represented as a FSA as shown in Figure 5. This encoding allows for a
compact representation of the morphological ambiguities.

So far we have shown that the dictionary and the morphological analysis
of a sentence can be represented as �nite-state automata. The disambiguat-
ing rules are also represented with �nite-state automata. For example, on

MERL-TR-96-13 June 1996



Draft. 12

that Det this Det

Figure 6: Automaton representing the negative rule C1 stating that the par-
tial analysis `that Det this Det" is not possible.

he Pro hopes N

V

that

Pro

Conj

Det

this Det

Pro works N

V

this

Pro

Figure 7: Sentence result of the application of the negative constraint of
Figure 6 to Figure 5.

might need to encode a negative rule that states the partial analysis \that
Det this Det" is not possible. This negative constraint can be encoded by
the automaton shown in Figure 6.

Then, the application of a negative constraint C to a sentence S yields
the sentence

S0 = S � (�� � C � ��) (26)

Applying the constraint of Figure 6 to the sentence in Figure 5 yields the
automaton shown in Figure 7.

The additional rule in Figure 8 states the sequence \that Det ? V" (where
? stands for any word) is impossible. The application of this rule to Figure 7
results in Figure 9

that Det ? V

Figure 8: Automaton representing the negative rule C2 stating that the par-
tial analysis \that Det ? V" is not possible.
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he Pro hopes N

V

that

Pro

Conj

Det

this
Pro

Det

works
N

Vthis
Pro

works
N

Figure 9: Result of the application of the negative rule of Figure 8 to Figure 7.

We have applied two negative rules one after the other. However the
closure properties of �nite-state automata allow us to combine two negative
constraints C1 and C2 into one single rule C1 [C2 where [ is the automaton
union.

(S � �� � C1 � �
�) ��� � C2 � �

� = S � �� � (C1 [ C2) � �
� (27)

Using the notation A for ���A, and using the fact that A�B = A\B,
(27) we have:

(A�B)� C = A \B \ C = A \B [ C = A� (B [ C)

Therefore,

(S � �� � C1 � �
�)� �� � C2 � �

�

= S � (�� � C1 � �
� [ �� � C2 � �

�)

= S � �� � (C1 [ C2) � �
�

Negative rules can therefore be combined using the union operation to
form a single rule.

Using such principles, one can derive a grammar of negative local con-
straints. An example of such grammar is shown in Figure 10. The application
of this negative grammar to the input shown in Figure 5 yields the automaton
of Figure 11.
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that

this

?

Det

Pro this

Pro

Det

Det ?
V

Pro ?

N

Figure 10: A sample grammar of negative local constraints.

he Pro hopes V that Conj this

Pro

Det

works V

works
N

Figure 11: Result of the application of the negative grammar of Figure 10 to
the input shown in Figure 5

This simple example illustrates the homogeneity and exibility of �nite-
state automata. The input string, the dictionary, the grammar and the out-
put of the analysis are all represented as �nite-state automata. The grammar
was constructed from a collection of negative constraints combined with the
union operation over �nite-state automata. This was possible because of the
closure properties of �nite-state automata.

In addition, the decidability properties of �nite-state automata provide
unique tests useful in the construction of the grammar. For example, when a
new rule is proposed, the fact that the inclusion of two �nite-state languages
is decidable allows us to test whether that rule is subsumed by another one.
Similarly, one can test whether two grammars are identical.

And �nally, the algorithmic properties of �nite-state automata (deter-
minisation and minimization) allow us to construct compact grammars that
can be applied very e�ciently.
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3 Finite-State Transducers

The concept of �nite-state transducers is the other main concept used in this
book. Finite-state transducers (FSTs hereafter) can be interpreted as de�n-
ing a class of graphs, a class of relations on strings or a class of transductions
on strings.

3.1 De�nitions

Under the �rst interpretation, a FST can be seen as a FSA where each arc
is labeled by a pair of symbols rather by a single symbol.

De�nition
[FST] A Finite-State Transducer is a 6-tuple (�1;�2; Q; i; F;E) where:

� �1 is a �nite alphabet, called the input alphabet.

� �2 is a �nite alphabet, called the output alphabet.

� Q is a �nite set of states.

� i 2 Q is the initial state.

� F � Q is the set of �nal states.

� E � Q� ��
1 � ��

2 �Q is the set of edges.

This de�nition emphasizes the graph interpretation of FSTs.
For example, the FST Td3 = (f0; 1g; f0; 1g; f0; 1; 2g; Ed3) where Ed3 =

f(0; 0; 0; 0); (0; 1; 0; 1); (1; 0; 0; 2); (1; 1; 1; 0); (2; 1; 1; 2); (2; 0; 1; 1)g is shown in
Figure 12. We will later see that this transducer functionally encodes the
division by three of binary numbers.

We will also use the notion of path de�ned as follows.

De�nition
[path] Given a �nite-state transducer T = (�1;�2; Q; i; F;E), a path of T is

a sequence ((pi; ai; bi; qi))i=1;n of edges E such that qi = pi+1 for i = 1 to
n� 1.

MERL-TR-96-13 June 1996
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0

0/0

1
1/0

1/1
2

0/0

0/1

1/1

Figure 12: Transducer Td3 representing the division by 3.

A successful path is a path that starts from an initial state and ends in a
�nal state.

De�nition
[successful path] Given a �nite-state transducer T = (�1;�2; Q; i; F;E), a

successful path ((pi; ai; bi; qi))i=1;n of T is a path of T such that p1 = i
and qn 2 F .

An alternate de�nition consists of replacing the set of edges E by a tran-
sition function d, a mapping from Q���

1 to 2Q, and an emission function �,
a mapping from Q � ��

1 � Q into ��
2. The two de�nitions are related with

the following equations:

d(q; a) = fq0 2 Qj9(q; a; b; q0) 2 Eg (28)

�(q; a) = fb 2 ��
2j9(q; a; b; q

0) 2 Eg (29)

One can associate a �nite-state automaton to a �nite-state transducer
by considering the pairs of symbols on the arcs as symbols of a �nite-state
automaton.

De�nition
[Underlying �nite-state automaton] If T = (�1;�2; Q; i; F;E) is a �nite-state

transducer, then its underlying �nite-state automaton (�; Q; i; F;E 0) is
de�ned as follows:

� = �1 � �2 (30)

(q1; (a; b); q2) 2 E0 i� (q1; a; b; q2) 2 E (31)
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All properties of �nite-state automata apply to the underlying automaton
of a transducer. For example, the minimization and determinization algo-
rithms can be applied to the underlying �nite-state automaton. However,
as we will see under the other interpretations of �nite-state automata, the
same notions will denote other concepts when �nite-state transducers are not
interpreted as �nite-state automata.

In addition to the underlying automaton, it is sometimes useful to con-
sider the �rst (or second) component of the labels on the arcs of a given
�nite-state transducer. This leads to the following de�nition.

De�nition
[First and second projection] If T = (�1;�2; Q; i; F;E) is a �nite-state trans-

ducer, then the �rst projection p1 and the second projection p2 of T are
the �nite-state automata de�ned as follows:

p1(T ) = (�1; Q; i; F;Ep1) s.t. Ep1 = f(q; a; q0)j(q; a; b; q0) 2 Eg (32)

p2(T ) = (�2; Q; i; F;Ep2) s.t. Ep2 = f(q; b; q0)j(q; a; b; q0) 2 Eg (33)

Under the second interpretation, FSTs represent relations on strings. For
this interpretation, the set of edges, the transition function and the emission
function are extended to work on strings rather than symbols.

De�nition
[Ê] The extended set of edges Ê, is the least subset of Q���

1���
2�Q such

that

(i) 8q 2 Q; (q; �; �; q) 2 Ê
(ii) 8w1 2 ��

1;8w2 2 ��
2 if (q1; w1; w2; q2) 2 Ê and (q2; a; b; q3) 2 E then

(q1; w1a;w2b; q3) 2 Ê.

This allows us to associate a relation L(T ) on ��
1 � ��

2 to a �nite-state
transducer T as follow:

L(T ) = f(w1; w2) 2 ��
1 ���

2j9(i; w1; w2; q) 2 Ê with q 2 Fg (34)

MERL-TR-96-13 June 1996



Draft. 18

For instance, the transducer Td3 of Figure 12 contains the pair (11; 01).
Since (0; 1; 0; 1) and (1; 1; 1; 0) 2 E, then (0; 11; 01; 0) is in Ê. The reader is
invited to check that the relation L(Td3) contains exactly all pairs such that
the �rst element is a multiple of 3, and such that the second element is the
quotient of the division by three of the �rst element.

The notion of projections of a �nite-state transducer T as de�ned in
De�nition 3.1 corresponds to the notion of projection of L(T ).

Proposition 1 If T = (�1;�2; Q; i; F;E) is a �nite-state transducer, then

L(p1(T )) = fw1 2 ��
1j9w2 2 ��

2 s.t. (w1; w2) 2 L(T )g (35)

L(p2(T )) = fw2 2 ��
2j9w1 2 ��

1 s.t. (w1; w2) 2 L(T )g (36)

Under the third interpretation, a transducer T can be seen as a mapping
jT j from the initial set of strings ��

1 to the power set of strings 2�
�

2 :

jT j(u) = fv 2 ��
2j(u; v) 2 L(T )g (37)

For example, jTd3j(11) = f01g. We will also write, by extension of the
notation, jTd3j(11) = 01 if the arrival set is a singleton.2 We extend this
notation to work on sets of strings:

if V � ��; jT j(V ) =
[
v2V

jT j(v) (38)

De�nition
[Rational Transduction and Rational Function] A transduction � : ��

1 ! 2�
�

2

is called a rational transduction if there exists a �nite-state transducer T
such that � = jT j. If, for any string u in the input set ��

1, jT j(u) is either
the empty set or a singleton, jT j is called a rational function.

2If there is no confusion, the notations are often further extended by denoting the
transducer and the transduction by the same symbol. For instance, one might write
Td3(11) = 01.
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3.2 Closure Properties

As for �nite-state automata, �nite-state transducers get their strengths from
various closure properties and algorithmic properties.

Proposition 2 (Closure under Union) If T1 and T2 are two FSTs, there
exists a FST T1 [ T2 such that jT1 [ T2j = jT1j [ jT2j, i.e. s.t. 8u 2 ��,
jT1 [ T2j(u) = jT1j(u) [ jT2j(u).

Proposition 3 (Closure under Inversion) If T = (�1;�2; Q; i; F;E) is
a FST, there exists a FST T�1 such that jT�1j(u) = fv 2 ��ju 2 jT j(v)g.
Furthermore, the transducer (�2;�1; Q; i; F;E

�1) s.t.

(q1; a; b; q2) 2 E�1 i� (q1; b; a; q2) 2 E (39)

is such a transducer.

Before turning our attention to the closure property under composition,
we note that a transducer that has input or output transitions on words can
be turned into a transducer that has transitions on letters. This is captured
in the following remark.

Remark 1 (Letter Transducer) If T1 = (�1;�2; Q; i; F;E1) is a trans-
ducer such that � 62 jT1j(�) then, there is a transducer T2 = (�1;�2; Q2; i2; F2; E2)
called a letter transducer such that

(i) jT1j = jT2j
(ii) E2 � (Q1 � (�1 [ f�g)� (�2 [ f�g)�Q2)
(iii) E2 \ (Q1 � f�g � f�g �Q2) = ;

Informally speaking, (ii) is achieved by basically braking up each edge
in T1 into simple letter edges by adding intermediate states in T2. (iii) is
achieved by eliminating arcs labeled with (�; �) using the traditional epsilon
removal algorithm for �nite-state automata (by considering the transducer
as a �nite-state automaton for which (�; �) is the epsilon symbol).

We can now give a constructive statement of the closure property under
composition by restricting the property to letter transducers with no loss of
generality.
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Proposition 4 (Closure under Composition) If T1 = (�1;�2; Q; i; F;E1)
and T2 = (�2;�3; Q2; i2; F2; E2) are two letter FSTs, there exists a FST T1�T2
such that for each u 2 ��

1, jT1 � T2j(u) = jT2j(jT1j(u)). Furthermore, the
transducer T3 = (�1;�3; Q1 �Q2; (i1; i2); F1 � F2 � F2; E3) s.t.

E3 = f((x1; x2); a; b; (y1; y2))j9c 2 �2 s.t. (x1; a; c; y1) 2 E1 and (x2; c; b; y2) 2 E2g

[f((x1; x2); a; b; (y1; y2))j(x1; a; �; y1) 2 E1; (x2; �; b; y2) 2 E2g

[f((x1; x2); a; �; (y1; y2))j9c 2 �2 s.t. (x1; a; c; y1) 2 E1 and (x2; c; �; y2) 2 E2g

[f((x1; x2); �; b; (y1; y2))j9c 2 �2 s.t. (x1; �; c; y1) 2 E1 and (x2; c; b; y2) 2 E2g

satis�es

jT3j(u) = jT1 � T2j(u) = jT2j(jT1j(u));8u 2 ��
1

However, contrary to �nite-state automata, in general, the set of rational
transductions is not closed under intersection. This means that if T1 and T2
are two FSTs, it is possible that there exists no FST T3 such that jT3j(u) =
jT1j(u) \ jT2j(u) for any u 2 ��

1.
For example, the transducer Tanbm shown to the left of Figure 13 de-

�nes the transduction jTanbm j(c
n) = fanbmjm � 0g and the transducer

Tambn shown to the right of Figure 13 de�nes the transduction jTambn j(c
n) =

fambnjm � 0g. The intersection of those relations is such that jT1\T2j(cn) =
jT1j(cn)\ jT2j(cn) = fanbng. This relation cannot be encoded as a FST since
the second projection of a FST is a regular language and since fanbnj � 0g
is not a regular language.

0

c/a

1
ε/b

ε/b

0

ε/a

1
c/b

c/b

Figure 13: Left. Finite-state transducer Tanbm. Right. Finite-state transducer
Tambn.

There are cases where the intersection of two �nite-state transducers is
a �nite-state transducer. The class of �-free transducers is closed under in-
tersection and has therefore been extensively used in numerous applications
such as morphology and phonology.
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De�nition
[�-free letter transducer] A �nite-state transducer T = (�1;�2; Q; i; F;E) is

called an �-free letter �nite-state transducer i�

E � Q� �1 � �2 �Q (40)

Proposition 5 The class of �-free letter �nite-state transducers is closed un-
der intersection. In addition, the intersection of two �-free letter �nite-state
transducers is obtained by intersecting their underlying �nite-state automata.

3.3 A Formal Example

To illustrate the exibility induced by the closure properties, let us come back
to the example of the transducer Td3 of Figure 12. Suppose one wants to build
a transducer that computes the division by 9. There are two possible ways
of tackling the problem. The �rst consists of building the transducer from
�rst principles. The second consists of building the transducer Td3 encoding
the division by three and then composing it with itself since Td9 = Td3 � Td3.
This is parallel to numerous problems of language processing for which the
problem at hand can be decomposed.

The transducer Td9, computed by composing Td3 with itself is shown in
Figure 14.

It is also interesting to note that the inverse transducer of Td3, denoted
T�1
d3 , maps any binary number to its multiplication by three.

3.4 A Natural Language Example

We illustrate two techniques for �nite-state transducers on a simpli�ed case
of derivational morphology. In this example, our objective is to derive words
from the pre�x co and a lexicon of simple English words. We assume that
our lexicon consist of the following three words:

o�er
design
develop
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(0,0)

0/0

(1,0)

1/0

(2,0)

0/0

(0,1)

1/0

(2,1)
1/0

(1,1)

0/0

0/1

1/1

1/1

(2,2)

0/0 1/1

(1,2)
0/1

0/1

(0,2)
1/1

1/1
0/1

1/0

0/0

Figure 14: Finite-state transducer computing the division by nine obtained
by composing with FST for the division by three of Figure 12 with itself.

From this lexicon, we wish to derive the words co-o�er, codesign and
codevelop. For the purpose of illustration, we assume that the pre�x co
requires a hyphen when the following letter is o. Otherwise, the pre�x co is
concatenated with no hyphen.

The problem is stated formally in terms of relations on strings. Given a
word w, we consider the symbolic string CO+ � w representing the morpho-
logical derivation where the pre�x co has been applied. The problem then
consists of �nding a rational function �co such that �co(CO+ �w) is the correct
pre�xed word, in our case:

�co(CO+o�er) = co-o�er
�co(CO+design) = codesign
�co(CO+develop) = codevelop

There is little interest in describing this function extensively. Instead,
we wish to construct a function that can be applied to any English word
without having to encode the English lexicon in the function itself. Two
simple methods to build a �nite-state transducer for the function �co are
presented. The �rst method demonstrates the closure under composition
of �nite-state transducers while the second the closure under intersection of
�-free letter transducers.
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3.4.1 Rule Composition

This approach consists of building a series of cascaded �nite-state transduc-
ers. The output of a transducer is feed to the input of the next transducer.
The idea is to write a series of rules from the most general rule to the most
speci�c rule.

In our example, the �rst transducer Tco1 encodes the most general rule
which simply concatenates the pre�x co. It transforms the symbolic string
CO+w to cow and acts as the identity function on all other cases. The
corresponding transducer is shown in Figure 15. In Figure 15 and in the
following �gures, a question mark (?) on an arc transition originating at
state i stands for any input symbol that does not appear as an input symbol
on any other outgoing arc from i. An arc labeled labeled ?=? on an arc
transition originating at state i stands for the input-output identity for any
input symbol that does not appear as an input symbol on any other outgoing
arc from i.

0

1C/c

3a/a ... z/z

2
O/o +/ε

?/?

Figure 15: General pre�xation rule transducer Tco1.

The second transducer Tco2 encodes the most speci�c rule which adds a
hyphen when the word starts with the letter o. In other words, the symbolic
string CO+ow is rewritten to co-ow. For all other cases, this rule should act
as the identity function. The corresponding transducer is shown in Figure 16.

Then, the transducer representing the whole mapping �co is obtained by
composing Tco2 with Tco1:

�co = jTco2 � Tco1j

The �nal mapping (see Figure 17) achieves the desired e�ect. Given an
input word which does not start with the letter o (say design) the second
transducer realizes the transformation of the string CO+ into co (therefore
maps CO+design to codesign) and the �rst transducer Tco1 acts as the iden-
tity. In other words:
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0

1
C/c

4
a/a ... z/z

5

C/C

2O/o
3

+/-
o/o ?/?

6
O/O 7+/+

a/a ... n/n p/p ... z/z

Figure 16: Transducer Tco2 representing the speci�c pre�xation of co for
words beginning with o.

(Tco2�Tco1)(CO+design) = Tco1(Tco2(CO+design)) = Tco1(CO+design) = codesign

(0,0)

(1,3)
C/c

(4,3)
a/a ... z/z

(5,1)

C/c

(2,3)O/o
(3,3)

+/-
o/o ?/?

(6,2)
O/o (7,3)

+/ε

a/a ... n/n p/p ... z/z

Figure 17: Transducer Tco2 � Tco1.

On the other hand, given a word which starts with the letter o, say
o�er, the second transducer Tco2 acts as the identity and the �rst transducer
transforms the string CO+ to co-:

(Tco2 � Tco1)(CO+o�er) = Tco1(Tco2(CO+o�er)) = Tco1(CO+o�er) = co-o�er

This simpli�ed example illustrates how one might write a sequence of
rules from the most general rules to the most speci�c rules.

A similar approach was originally introduced in the context of compu-
tational phonology where rules describe the way an abstract phoneme is
realized into a sound according to the context. Each abstract symbol is
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transformed by default into a given sound while a set of more speci�c rules
describe alternate realizations within more speci�c contexts.

3.4.2 Rule Intersection

Another way of building a transducer representing the �nal mapping �co con-
sists of approximating iteratively through a sequence of intersections. This
method can be seen as successively approximating a mapping. Each trans-
ducer constructed with this approach encodes a speci�c phenomenon and
acts as identity for all other cases. Then by intersecting all the transducers,
the method guarantees that the \greatest" common behavior is achieved.

Since in general �nite-state transducers are not closed under intersection,
we will restrict ourself to �-free letter transducers which are closed under in-
tersection (see Section 2.2). In addition, in order to make correspond strings
of di�erent lengths, we use the number 0 as an additional symbol to make
the input and output of the same length. To eliminate this symbol from the
�nal output, we will compose the result of the intersection with a transducer
that erases this symbol (See Figure 18).

0 0/ε a/a ... z/z -/-

Figure 18: Finite-state transducer T0 used to erase all occurrences of the
intermediate symbol 0.

In the case of our example of pre�xation of co, we start with the trans-
ducer T1 shown in Figure 19 which systematically attaches the pre�x co with
and without a hyphen and acts as the identity function on all other cases.
T1 behaves functionally as follows:

CO+o�er
jT1j
! fco0o�er, co-o�erg (41)

CO+design
jT1j
! fco0design, co-designg (42)

w
jT1j
! fwg (43)

(44)
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0

1C/c 3
a/a ... z/z

2O/o

+/-

+/0

?/?

Figure 19: T1

T1 is an approximation of the relation we wish to construct since it realizes
a superset of that relation. For example, the strings coo�er and co-o�er are
associated with the symbolic string CO+o�er. For this input, we wish to
eliminate the output string coo�er. To remedy this problem, we construct
the transducer T2 shown in Figure 20. T2 attaches the pre�x co only with
a hyphen to words an initial o (such as o�er) and combines co with and
without a hyphen for all other cases. T2 acts functionally as follows:

CO+o�er
jT2j
! fco-o�erg (45)

CO+design
jT2j
! fco0design, co-designg (46)

w
jT2j
! fwg (47)

(48)

0

1
C/c

4
a/a ... z/z

5

C/c

2O/o
3

+/-
o/o ?/?

6
O/o 7+/0

+/-

a/a ... n/n p/p ... z/z

Figure 20: T2

On the other hand, the strings codesign and co-design are associated by
T1 with the symbolic string CO+design. We wish to eliminate the string
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co-design for that input. In order to remedy this problem, we construct the
transducer T3 shown in Figure 21. T3 attaches the pre�x co without a hyphen
to words that do not start with an o (such as design) and combines co with
and without a hyphen for all other cases. T3 acts functionally as follows:

CO+o�er
jT3j
! fco0o�er; co-o�erg (49)

CO+design
jT3j
! fco0designg (50)

w
jT3j
! fwg (51)

(52)

0

1
C/c

4
a/a ... z/z

5

C/c

2O/o
3

+/0

+/-
o/o ?/?

6
O/o

7+/0
a/a ... n/n p/p ... z/z

Figure 21: T3

Therefore, the transducer (T1\T2\T3)�T0 realizes the desired mapping.
It attaches the pre�x co without a hyphen to all words not starting with the
letter o, it attaches co with a hyphen to words with an initial o.

CO+o�er
j(T1\T2\T3)�T0j

�! fco-o�erg (53)

CO+design
j(T1\T2\T3)�T0j

�! fcodesigng (54)

w
j(T1\T2\T3)�T0j

�! fwg (55)

(56)
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3.5 Ambiguity

In addition to the properties used to de�ne subclasses of �nite-state automata
(such as cyclicity and determinicity), the set of rational transductions is also
often classi�ed with respect to their ambiguity. When multiple outputs are
possible, the term transduction is used in contrast to the term function3

where at most one output is allowed. For a transduction, there is an input
word that can be mapped to �nitely and possibly in�nitely many outputs.

For example, the transducer Ta!b�c� of Figure 22 maps the input a to an
in�nite set of outputs b � c�. These kinds of transductions, for which an input
can me mapped to an in�nite number of outputs, often arise in intermediate
results and are very common in practice.

0 1
a/b

ε/c

Figure 22: Transducer Ta!b�c�

The �rst characterization of �nite-state transductions takes into account
whether or not there is an input associated with an unbounded number of
outputs.

De�nition
[Simply Finitely Ambiguous] A �nite-state transducer T is called simply

�nitely ambiguous transductions if for any string w, the set jT j(w) is
�nite.

De�nition
[In�nitely Ambiguous] A �nite-state transducer T which is not simply �nitely

ambiguous is called an in�nitely ambiguous �nite-state transducer.

For instance, the transducer Tan!(bjc)n of Figure 23, is therefore simply
�nitely ambiguous since dom(jT j) = a� and j jT j(an) j = 2n.

3The term mapping is sometimes also used. We avoid this terminology and we use
the verb \map" in a neutral manner. When using this verb we do not imply that the
transducer in question is a function.
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0

a/c
a/b

Figure 23: Simply �nitely ambiguous transducer Tan!(bjc)n

The second characterization captures the fact that the ambiguity is bounded
independently of the input string.

De�nition
[UniformlyAmbiguous] A �nite-state transducer T is calledUniformly �nitely

ambiguous if there exists a number N such that, for any input string w,
j jT j(w) j � N .

For example, the transducer Tan!(bjc)n of Figure 23 is not Uniformly
�nitely ambiguous. However, the transducer Ta!bjc of Figure 24 is Uniformly
�nitely ambiguous.

0 1
a/c

a/b

Figure 24: Uniformly �nitely ambiguous transducer Ta!(bjc)

If a transduction is �nitely ambiguous then it is equal to a �nite union
of rational functions. For sake of simplicity, we refer to such a transduction
as such, that is as a �nite union of rational functions (rather than Uniformly
�nitely ambiguous).

In summary, the various levels of ambiguity are characterized by the terms
shown in Figure 25.

3.6 Rational Functions

We now focus on rational functions. Since rational functions as well as ratio-
nal transductions are given in practice through a transducer representation,
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In�nitely Ambiguous Transductions

Simply Finitely Ambiguous Transductions

Finite Union of Rational Functions
=

Uniformly Finitely Ambiguous Transductions

Rational Functions
=

Functional Rational Transductions

Figure 25: Various levels of ambiguity for rational transductions

we will �rst have to say how transducers representing rational functions can
be distinguished from transducers representing non-functional transductions;
this will be the main topic of this section. Later in the chapter we will de-
scribe several operations that apply only if the transduction is functional,
thus making the notion important in numerous concrete situations.

First a remark about terminology: the reader should be aware that in
the literature as well as in this book, rational functions are sometimes also
called �nite-state functions, �nite-state mappings or rational partial functions
among other terms.

Sometimes it is known a priori that a given transducer represents a func-
tion. For instance the transduction of Section 3.4.1 was built by composing
rules represented by transductions. Since each individual rule is functional
and since the composition of two functions is still a function, we know that
the �nal result, namely the composition of all rules, is still a function. How-
ever, such line of reasoning is not always possible and one needs special
methods to decide whether a given transducer represents a function. Con-
sider the method of Section 3.4.2: in that case each rule is represented by
a non-functional transducer and the �nal system is obtained by computing
the intersection between each of these transducers. Therefore, nothing in the
construction guarantees that the result is a function. On the other hand,
recall that the system is expected to compute a pre�xation on words and
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that this pre�xation is expected to be functional4. Hence, a program that
decides whether a transducer is functional can be used as a debugging tool:
if the �nal system is not functional whereas the problem shows that it should
be, then the list of intersections is probably incomplete.

The decidability of this question has been originally proven by Sch�utzenberger
in the following theorem:

Theorem 2 (Sch�utzenberger 1975) Given a transducer T , it is decidable
whether jT j is functional.

This decidability question can be di�cult. In the case of the transduction
of Figure 24, it is obvious that the transduction is not a function since a can
clearly be mapped to two outputs, b and c. However, it is not obvious to
decide whether the transducer of Figure 26 is functional. An input string
such as ab can go through three successful paths and one should check that
each path leads to the same output. In that case, each of the three paths
leads to the output bcd. An approach based on the enumeration of all possible
input strings is not feasible in general.

0

1
a/b

3
a/bc

2

a/bcd

b/cd

b/d

b/ε

Figure 26: T�: an example of an ambiguous transducer representing a ratio-
nal function.

First, rational functions have the important property that they can be
represented by a certain class of transducers, namely unambiguous transduc-
ers:

De�nition

4The system handles a simpli�ed pre�xation system. In a complete pre�xation the sys-
tem would be expected to be a �nite union of rational functions since numerous pre�xation
rules are optional.
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[Unambiguous transducer] An unambiguous transducer is a transducer for
which each input is the label of at most one successful path.

For instance, neither the transducer of Figure 24 nor the one of Figure 26
is unambiguous. By contrast, the transducer of Figure 27 representing the
same transduction is unambiguous. Obviously, any transduction represented
by an unambiguous transducer is functional and the following theorem shows
that the converse is true too.

0 1
a/bcd

b/ε

Figure 27: Unambiguous representation of Tab�!bcd

Theorem 3 (Eilenberg 74) Any rational function � can be represented by an
unambiguous transducer if � (�) = ; or f�g.

We will now describe an algorithm that, given any transducer representing
a function, builds an unambiguous transducer representing the same function.
The same algorithm will also be used later to decide whether a transduction
was functional in the �rst place.

Let us consider again the transducer T� of Figure 26. Since the string ab
is the input of three successful paths, namely

path1 = (0; a; b; 1) � (1; b; cd; 2)

path2 = (0; a; bc; 3) � (3; b; d; 2)

path3 = (0; a; bcd; 2) � (2; b; �; 2)

the transducer T� is ambiguous.
Before building the unambiguous transducer, we apply two simpli�cation

operations on the transducer.
The �rst one consists of restricting the input labels of the transition to

simple letters (in contrast to � and multi-letter words).
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Proposition 6 (epsilon removal for transducers) If T = (�1;�2; Q; i; F;E)
is such that jT j(�) = ; and such that there is no loop

(q1; �; u1; q2) � : : : � (qn; �; an; q1)

whose input labels are in f�g then there exists a transducer T 0 = (�1;�2; Q; i; F;E
0)

such that jT j = jT 0j and

E0 � Q� �1 ���
2 �Q

In other words, for a restricted class of transducers, it is possible to remove
all epsilons on the input of the transitions.

Informally speaking, the epsilon removal for transducers is similar to the
epsilon removal of automata. Recall �rst that E can be assumed to be a
subset of Q��1[f�g���

2�Q. We �rst de�ne E� = E \ (Q�f�g���
2�Q)

and the concatenation of edges by (q1; a; u; q2) �(q3; b; v; q4) = (q1; a �b; u �v; q4)
if q2 = q3. With these de�nitions, the set E0 of edges of the new transducer
T 0 is de�ned by

E 0 = Ê� � (E � E�) � Ê�

or, in other words, E0 is the set of edges of the original transducer extended
on the left and on the right with the edges whose input labels are �. The
fact that there is no loop labeled with � as input guarantees that the set Ê�

is �nite and that therefore E0 can be built e�ectively. It is easy to show that
(i; u; v; q) 2 Ê0 with q 2 F i� (i; u; v; q) 2 Ê and that therefore jT 0j = jT j.5

As a particular case, if T is a function such that jT j(�) = ; then T can
be assumed to be epsilon-free, that is, if E is its set of edges then E �
Q��1 � ��

2 �Q.
Before building the unambiguous transducer of a given function we need

a second simpli�cation:

Remark 2 If T = (�1;�2; Q; i; F;E) is a transducer then there exists a
transducer T 0 = (�1;�2; Q

0; i0; F 0; E0) satisfying jT j = jT 0j such that if

(i; u1; v1; q1) � : : : � (qn�1; un; vn; q)

and
(i; u1; v

0
1; q

0
1) � : : : � (q

0
n�1; un; v

0
n; q

0)

are two paths of T 0 then there exists j such that vj 6= v0j.

5The case of � should be handled separately.
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In other words, it is possible to assume that if two paths have the same in-
put, then they have di�erent outputs. T 0 is obtained from T by determinising
the underlying automaton.

Note that it is still possible that the outputs, when concatenated together,
build the same word. For instance, the transducer T� of Figure 26 veri�es
the remark above but it still has at least the three following paths

path1 = (0; a; b; 1) � (1; b; cd; 2)

path2 = (0; a; bc; 3) � (3; b; d; 2)

path3 = (0; a; bcd; 2) � (2; b; �; 2)

for which the inputs are similar but for which the outputs, when concate-
nated, lead to the same word bcd.

Building an equivalent unambiguous transducer consists of selecting, for
each input string of the domain, a particular path. Since the transducer rep-
resents a function, each path should generate the same outputs and therefore
selecting one in particular will not modify the set of outputs for the input
string. For instance, for the input string ab, we will see that the unambiguous
transducer equivalent to T� will contain path1 but not path2 and path3.

De�nition
[Output decomposition] If (i; a1; u1; q1) � : : : � (qn�1; an; un; qn) is a path of a

�nite-state transducer T = (�1;�2; Q; i; F;E), then the output decom-
position of this path is de�ned to be the word

u1 � � � u2 � � � : : : � � � un

of (�2[f�g)� in which � is a separation mark between the output labels.

The previous remark guarantees that if two paths have the same input,
their output decompositions are di�erent and we are now able to de�ne an
ordering on paths. Suppose that �2 is ordered, then we extend the ordering
to �2 [ f�g by � < a for a 2 �2. This ordering on �2 [ f�g also de�nes
an ordering on (�2 [ f�g)� and on paths: we say that pathi < pathj i�
the output decomposition of pathi is smaller than the output decomposition
of pathj . Now, for each input string, we can select a minimal path. For
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instance, the three decompositions of our example are ordered as follows:
b � cd < bc � d < bcd � � and path1 is therefore selected. In other words,
for each input string, we select the path that emits symbols sooner than the
others.

This process of selecting, for each input string, the minimal path can be
done directly on the transducer through the algorithm of Figure 30.

We will now illustrate this algorithm on T�. The output will be the
transducer T� of Figure 28 which will later be pruned into the �nal trans-
ducer of Figure 29. The states of T� are built dynamically starting with
the initial state. Each state contains a pair (x1; S) in which x1 refers to a
state of Q (state set of the original transducer) and in which S refers to
a subset of Q. x1 indicates a position in T whereas S indicates the set of
positions that could be followed with the same input but with a strictly
smaller (in the sense de�ned above) output. The initial state is labeled (0; ;)
to indicate that state being followed in T� is 0 and that, at this point, no
other paths with smaller output could have been followed. The program
then builds the transition of this initial state: the �rst transition, labeled
a=b, corresponds to the transition (0; a; b; 1) of T� and points to a set labeled
(1; ;). 1 corresponds to the arrival state 1 of (0; a; b; 1) and ; indicates that
no smaller path can be followed with a as input. In contrast, the second
transition ((0; ;); a; bc; (3; f1g)) corresponds to the transition (0; a; bv; 3) of
T� but, in that case, the a strictly smaller path, with the same input, was
also possible in T�. (0; a; b; 1) < (0; a; bc; 3) and therefore this second tran-
sition points to a state labeled (3; f1g) in which f1g indicates that there
is a smaller path whose last state is the state 1 of T�. In a similar way,
the third transition ((0; ;); a; bcd; (2; f3; 1g)) corresponds to (0; a; bcd; 2) in
T� whereas f3; 1g indicates that two strictly smaller paths, with an identical
input, end at the states 3 and 1 of T�. This completes the transitions of the
initial state. The transitions of the states (1; ;) and (2; ;) follow the same
construction. For the state (3; f1g), however, the situation is di�erent: the
algorithm �rst builds the transition ((3; f1g); b; d; (2; f2g)) but then notices
that S 0 \ fy1g = f2g \ f2g = f2g is not empty. This means that, from state
(0; ;) to (2; f2g), one could have followed a strictly smaller path, with the
same input, from 0 to 2 and that, therefore, the current path, not being min-
imal, should be removed. Hence, the state (3; f1g) doesn't have any output
transition and will be deleted during pruning. In a similar way, the state
(3; f3; 1g) doesn't have any output transition but, on the other hand, it is
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not deleted during pruning since it is a terminal state.

(0,Ø)

(1,Ø)

a/b

(3,{1})
a/bc

(2,{3,1})

a/bcd

(2,Ø)
b/cd

b/ε

Figure 28: T�: building an unambiguous representation (before pruning).

0

1a/b

3

a/bcd

2
b/cd

b/ε

Figure 29: T�: unambiguous representation, after pruning.

Note that this algorithm works for any input transducer, that is it termi-
nates on any input. If the transduction represented by the input transducer
is functional, then the result represents the same transduction. If, on the
contrary, the transduction is not functional, the resulting unambiguous trans-
ducer represents a rational function whose domain is equal to the domain of
the original transducer and whose outputs are included in the outputs of the
original transduction. That is, given any transducer T , if T2 is the trans-
ducer built from T through the algorithm of Figure 30 then T2 veri�es the
following: Dom(T2) = Dom(T ), and, for each x 2 Dom(T ), jjT2j(x)j = 1 and
jT2j(x) � jT j(x).

We still don't know how to decide whether the transduction represented
by a given transducer is functional. In other words, we don't know whether
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Function UNAMBIGUOUS
Input: FST T = (�1;�2; Q; i; F;E)
Output: FST T2 = (�1;�2; Q2; i2; F2; E2)

Q2 = F2 = E2 = ;;i2 = q = 0;
C[0] = (i; ;);
dof

Q2 = Q2 [ fqg;
(x1; S) = C[q];
if (x1 2 F ) and S \ F = ; then F2 = F2 [ fqg;
foreach (x1; a; w; y1) 2 E

S 0 = ;;
foreach (x1; a; w0; y01) 2 E s.t. w0 < w

S0 = S 0 [ fy01g;
foreach x2 2 S

foreach (x2; a; w0; y02) 2 E
S0 = S 0 [ fy2g;

if (S 0 \ fy1g = ;)
e =addSet(C; (y1; S0));
E2 = E2 [ f(q; a; w; e)g;

q ++;
gwhile(q < Card(C));
Return T2;

Function addSet
Input: (C; x)
Output: state number e
// C is an array of elements if the same type as x.

n =Card(C);
if 9p < n s.t. C[p] = x

e = p;
else

C[e = n ++] = x;
Return e;

Figure 30: Algorithm to build the unambiguous transducer representing a
function
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the unambiguous transducer just built represents the same transduction or
whether it is strictly included in the original one.

0 1
b/z

a/xx
3

b/z

2

a/x

a/ε

Figure 31: Non functional transducer (Blattner and Head, 1977)

An algorithm that, given any transducer, decides whether the transduc-
tion is functional is given on Figure 32. This algorithm works in two steps.
Given an input transducer that we denote T2, the �rst step consists of build-
ing the unambiguous transducer T1 through the algorithm of Figure 30. The
second step consists of comparing the unambiguous transducer T1 with the
original transducer T2. The equivalence of the two transducers is equivalent
to the functionality of the original transducer. If both transducers are equiv-
alent and since the unambiguous transducer is guaranteed to be functional
then the original transducer is also functional. If both transducers are not
equivalent and since T1 is such that Dom(T1)=Dom(T2) and jT1j(x) � jT2j(x)
then there is one x 2 Dom(T1) such that jT1j(x) is strictly included into
jT2j(x) and therefore jjT2j(x)j > 1. However, since it is not, in general, decid-
able whether two transducers are equivalent, the key is to be able to answer
this question in this particular case.

The comparison between the unambiguous transducer T1 and the original
transducer T2 is done by taking T1 as a model and by checking that T2 is com-
patible with T1. This is done by building a third transducer T3 whose states
are labeled by triples (x1; x2;�u) or (x1; x2; OUT) in which x1 is a state of
the unambiguous transducer T1, x2 is a state of T2 and �u indicates an emis-
sion delay between T1 and T2. More precisely, the triple (x1; x2; t) indicates
that we follow a path (i; �; �; x1) 2 Ê in T and a path (i2; �; � 0; x2) 2 Ê2

in T2 such that �0 = � � u if t = +u or � = �0 � u if t = �u. In addition
the last term of the triple can be equal to a special value OUT which in-
dicates that the output of the paths (i; �; �; x1) 2 Ê and (i2; �; � 0; x2) 2 Ê2
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Function IS FUNCTION
Input: FST T2 = (Q2; i2; F2; E2

Output: boolean result

T1 = (Q; i; F;E) = UNAMBIGUOUS(T2 = (Q2; i2; F2; E2));
T3 = (�1;�2; Q3; i3; F3; E3);
Q3 = F3 = E3 = ;;i3 = q = 0;
C[0] = (i1; i2; �);
result=YES;
dof

Q3 = Q3 [ fqg;
(x1; x2; u) = C[q];
if (x1 2 F and x2 2 F2 and u 6= �)

result=NO;BREAK;
if (u 6= OUT)

foreach (x1; a; w; y1) 2 E1

foreach (x2; a; w0; y2) 2 E2

if (u > 0)
v1 = w; v2 = w0 � u;

else
v1 = w � u; v2 = w0;

if (jv1j > jv2j)
if v�12 � v1 6= ;

v = �v�12 � v1;
else

v = OUT;
else if (jv1j � jv2j)

if v�11 � v2 6= ;
v = +v�11 � v2;

else
v = OUT;

if 9p; l s.t. q 2 d̂3(p; l) and s.t. C[p] = (y1; y2; v0) with v0 6= v
result=NO;BREAK;

e =addSet(C; (y1; y2; v));
E3 = E3 [ f(q; a; w; e)g;

else if (u == OUT)
foreach (x1; a; w; y1) 2 E1

foreach (x2; a; w0; y2) 2 E2

e =addSet(C; (y1; y2; OUT));
E3 = E3 [ f(q; a; w; e)g;

q ++;
gwhile(q < Card(C));
Return result;
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are incompatible, that is � is not a pre�x of �0 and �0 is not a pre�x of �.
This comparison indicates that the original transducer is not equivalent to
the unambiguous one in two situations: (1) if both states x1 and x2 are �nal
and if t is di�erent from � (this shows that a successful path from T1 and
a path from T2 have the same input string but di�erent outputs) and (2) if
there is a path ((x1; x2; t); !; !0; (x1; x2; t0)) 2 Ê3 with t 6= t0 (this shows that
there is a loop that adds some delay between the outputs of T1 and T2 and
that therefore, this delay can grow unbounded; this also shows that there
exists two paths with similar inputs but with di�erent outputs).

Let us illustrate this algorithm on two simple examples.
First consider the transducer Ta!(bjc) of Figure 24 which is obviously not

functional. The unambiguous transducer is simply the following two-state
transducer T1 = (�1;�2; f0; 1g; 0; f1g; f(0; a; b; 1)g). When comparing T1
and Ta!(bjc) the �rst state of T3 is labeled (0; 0; �). From this state there is
the transition

((0; 0; �); a; b; (1; 1; �)) 2 E3

but also the transition

((0; 0; �); a; b; (1; 1; OUT)) 2 E3

which indicates that the outputs are incompatible (b and c). When the
programs inspects the state labeled (1; 1 OUT), it notices that 1 is �nal, both
in Ta!(bjc) and in T1 and that therefore the two transducers are not equivalent
which, in turn, shows that Ta!(bjc) is not functional.

Consider now the second example, the transducer T!1 of Figure 31. This
transducer is not functional since, for instance, jT!1j(baab) = fzxxz; zxzg.
The �rst step builds the unambiguous transducer T!2 of Figure 33. The
comparison between T!1 and T!2 is illustrated by the transducer T!3 of Fig-
ure 34. The �rst state built is labeled, as for the �rst example, (0; 0; �).
Since both from state 0 of T!2 and from the state 0 of T!1 the only possible
transition is (0; b; z; 1), the only transition from the initial state of T!3 is
the edge ((0; 0; �); b; z; (1; 1; �)) in which the epsilon of (1; 1; �), indicates that
the outputs are identical up to this point. From the state labeled (1; 1; �)
the situation is di�erent: the input label a corresponds to two transitions
in T!2 and to two transitions in T!1, both labeled a=xx and a=x. This sit-
uation leads to four di�erent transitions in the new construction T!3, two
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of them ((1; 1; �); a; xx; (4; 1; �)) and ((1; 1; �); a; x; (2; 2; �)) indicate that the
outputs are identical whereas the other two, ((1; 1; �); a; xx; (4; 2;�x)) and
((1; 1; �); a; x; (2; 1; x)) indicate a delay between the emissions of T!1 and the
emissions of T!2. For instance, ((1; 1; �); a; xx; (4; 2;�x)) indicates that there
is an input string leading to 4 in T!2 and to 2 in T!1 such that the emis-
sions of T!1 have a delay of x compared to the emissions of T!2. The other
states of T!3 are built in a similar way. The program stops when the tran-
sition ((2; 1; x); a; �; (1; 1; xxx)) is built. T3 contains a path from (1; 1; �) to
(1; 1; xxx) which shows that a delay is growing within this loop and that,
therefore, the loops from 1 to 1 in T!2 and from 1 to 1 in T!1 generate
di�erent outputs.

Note that it is not necessary, when applying this algorithm to build the
set of transitions E3 but only the states.

(0,Ø) (1,Ø)
b/z

(2,Ø)a/x

(3,Ø)

b/z

(1,{2})

a/xx

a/e

b/z

Figure 33: T!2: example of application of the UNAMBIGUOUS algorithm

Let us now consider again the pre�xation problem of section 3.4.2. Recall
that the �nal transducer is built through a sequence of transducer intersec-
tions. From the point of view of the linguist that has to state the rules, such
a system is usually fairly di�cult to design and rules are commonly forgot-
ten during the development stage. But because this kind of incompleteness
is sometime di�cult to observe, it can stay hidden in the system for a long
time since and elude testing. However, if one expects the �nal transduction
to be functional, as should be the case here, then an incompleteness results
in the non-functionality of the �nal transduction and this can be detected.
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(0,0,ε) (1,1,ε)b/z

(4,2,-x)
a/xx

(4,1,ε)a/xx

(2,1,x)

a/x

(2,2,ε)

a/x

(3,3,ε)b/z

(1,1,xxx)
a/ε

(1,2,xx)

a/ε

Figure 34: T!3 Example of the IS FUNCTION algorithm

Suppose for instance that an incomplete system results in the transducer TCO
of Figure 356

The �rst step needed to decide whether TCO of Figure 35 is a function
consists of building an unambiguous transducer T 0

CO such that Dom(jT 0
COj) =

Dom(TCO), jT 0
COj(x) � jTCOj(x) for each x 2 ��. This transducer is built,

as described before, through the algorithm UNAMBIGUOUS, and its com-
pilation is illustrated on Figure 36. The comparison between T 0

CO and TCO is
illustrated on Figure 37. During this comparison, when the program reaches
the state labeled (3; 5;00+00) and follows the transitions (3; e; e; 4) of T 0

CO and
(3; e; e; 4) of TCO, v1 = +e, v2 = e and hence v = OUT which leads to the
state (4; 4; OUT). Since 4 is �nal and since the state is marked OUT, the
program halts and returns the answer NO for \non-functional". This discus-
sion illustrates how formal decidability properties of �nite-state transduction
have an impact on practical debugging situations.

An interesting consequence of the fact that the functionality of a trans-
duction is decidable is that the equivalence between two rational functions
is decidable whereas the equivalence between two rational transductions is
undecidable. If f1 and f2 are two rational functions represented respectively
by T1 and T2 then f1 and f2 are equal if and only if they have the same
domain (equivalence between two automata) and if jT1 [ T2j is functional7.

6To simplify the exposition, the letter a stands for any letter di�erent from o whereas
A stands for the whole alphabet. Furthermore, a=a stands for all the transitions whose
input is a letter di�erent from o and whose output is identical to the input. Similarly,
A=A stands for all the transition whose output is identical to the input.

7The union of two transducers is de�ned as the union of their underlying automata.
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0 1
C/c

2
O/o

3+/ε

5
+/-

4

a/a

o/o

A/A

o/o

Figure 35: Incorrect transducer T2 for the \CO" pre�xation

(0,Ø) (1,Ø)
C/c

(2,Ø)
O/o

(3,Ø)
+/ε

(5,{3})

+/-

(4,Ø)
a/a

o/o

A/A

Figure 36: T 0
2 =UNAMBIGUOUS(T2) representing a function

(0,0,ε) (1,1,ε)C/c (2,2,ε)O/o

(3,3,ε)
+/ε

(3,5,+)

+/-

(4,4,ε)a/a

o/o

A/A

Figure 37: Deciding whether T2 is functional.
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3.7 Applying a transducer

We now turn our attention to the application of a transducer to a given input.
This fundamental operation is more complex than it �rst appears.

For example, consider the following mapping of words to their phonetic
transcriptions:8

ought o1t
our our
oubliette o2blEet
ouabain wa1bain

This table can be seen as a mapping from the orthographic forms to their
phonetic transcriptions. This transcription is represented by the �nite-state
transducer shown in Figure 38.

1 2
u/ε

6 7
u/u

8 9
u/ε

16 17
u/ε

3
g/t

5

r/r

10b/b

18
a/a1

4
h/ε

11l/l

19
b/b

t/ε

12
i/E

20a/a

13
e/e

21
i/i

14
t/t

n/n

0

o/o1

o/o

o/o2

o/w
15

t/ε e/ε

Figure 38: Transducer To representing the phonetic transcription of the words
ought, our, oubliette and ouabain

One way of computing the output of a given input consists of traversing
the transducer in all possible ways compatible with the current input symbol
until a complete path is found (performing backtracking if necessary).

For instance, given To and the input oubliette, one could go from state
0 to state 1 and output o1. Then from state 1, state 2 is reached with the

Moreover, the union of two transducers represents the union of the transductions repre-
sented by each transducer, that is jT1 [ T2j = jT1j [ jT2j.

8The phonetic symbols are adapted from the ones found in the American heritage
Dictionary. An ouabain is \A white poisonous glucoside" and an oubliette \A dungeon
with a trap door in the ceiling as its only means of entrance or exit" (The American
Heritage Dictionary).
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empty string � as output. At this point, the next letter b does not match any
transition from state 2 and backtracking up to state 0 needs to be performed.

A more natural way of computing the output of a transducer for a given
input, consists of viewing the input as a �nite-state automaton. Then, the
application of the transducer to the input can be computed as a kind of
intersection between the transducer and the automaton. This kind of inter-
section is similar to the one previously described intersection of �nite-state
automata. It is computed between the �rst projection of the �nite-state
transducer and the input �nite-state automaton. However, the arcs in the
resulting �nite-state automaton are labeled with the corresponding output
label from the �nite-state transducer. For simplicity, we formally de�ne this
operation only for �nite-state transducers whose input labels are non-empty
letters.

De�nition
[Intersection of a FST and a FSA] Given a �nite-state transducer T1 =

(�;�1; Q1; i1; F1; E1) where E1 � Q1 � �1 � ��
2 � Q1, and a �nite-

state automaton A2 = (�; Q2; i2; F2; E2), where E2 � Q2 � �1 � Q2,
the intersection of T1 with A2 is de�ned as the �nite-state automaton
A = (�; Q1�Q2; (i1; i2); F1�F2; E) with E � (Q1�Q2)���

2�(Q1�Q2)
s.t.:

E =
[

(q1;a;b;r1)2E1;(q2;a;r2)2E2

((q1; q2); b; (r1; r2)) (57)

For instance, the �nite-state automaton for oubliette is shown in Fig-
ure 39. The intersection of the �nite-state transducer To of Figure 38 with
the automaton for oubliette of Figure 39 is shown in Figure 40.

Once the intersection has been applied, it is necessary to prune the re-
sulting automaton. Therefore, this operation amounts to the same compu-
tational complexity as backtracking.

However, this operation can be performed more e�ciently for determinis-
tic transducers where at each point there is at most one transition compatible
with the input. For this case, no backtracking is necessary and the intersec-
tion simply consists of following a single path in the �nite-state transducer.
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Moreover, in some cases, �nite-transducers can be turned into an equivalent
deterministic transducer as it is the case for the one in Figure 38.

Deterministic �nite-state transducers are described in more details in the
following section.

0 1
o

2
u

3
b

4
l

5
i

6
e

7
t

8
t

9
e

Figure 39: Automaton Aoubliette representing the string oubliette
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(6,1)
o

(8,1)
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(16,1)

w

(2,2)
ε

(7,2)
u

(9,2)
ε

(10,3)
b

(11,4)
l

(12,5)
E

(13,6)
e

(14,7)
t

(15,8)
ε

(5,9)
ε

(17,2)
ε

Figure 40: Applying To on Aoubliette representing the string oubliette

3.8 Determinization

Transducers, such as the transducer T3 of Figure 12, are easy to implement
since, for each state, there is at most one outgoing transition whose input
label corresponds to a given input symbol. Suppose, for instance, that T3
should be applied to the input string 11. The output can be computed as
follows: one starts at the initial state 0 and since there is only one transition.
Starting at 0, whose input label is 1, namely (0; 1; 0; 1), the �rst letter of the
output string should be 0 and one should move to state 1. At this point,
the remaining input string is the one letter word 1 which can only lead to
state 0 with the output letter 1. The input string is then empty and since
the current state, i.e. 0, is �nal, the output string is the concatenation of all
the output symbols, that is 01 which shows that jT3j(11) = 01.
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More formally, this type of transducer is called subsequential (Sch}utzenberger,
1977) and is de�ned as follows:

De�nition
A subsequential transducer T is an eight-tuple (�1;�2; Q; i; F;
; �; �) in which

� �1, �2, Q, i and F are de�ned as for transducers.

� 
 is the deterministic state transition function that maps Q��1 to Q.
One writes q 
 a = q0.

� � is the deterministic emission function that maps Q� �1 to ��
2. One

writes q � a = w.

� � is the �nal emission function that maps F to ��. One writes �(q) = w.

The denomination of subsequential transducers stems from the fact that
they de�ne a subclass of �nite-state transducers9. If T = (�1;�2; Q; i; F;E)
is a transducer such that E � Q � �1 � ��

2 � Q and such that, for all
q 2 Q, for all x 2 �1 there is at most one w 2 ��

2 and one q0 2 Q such that
(q; x;w; q0) 2 E, then one can de�ne the partial mapping 
 by q 
 a = q0

if 9(q; a; w; q0) 2 E, the partial mapping � by q 
 q = w if 9(q; a; w; q0) 2 E
and the �nal output function by �(q) = � for q 2 F .

Like for automata, and transducers, the transition and emission functions
can be extended in the following way:

� q 
 � = q, q � � = � for q 2 Q,

� q 
 (w � a) = (q 
 w)
 a for q 2 Q, w 2 ��
1 and a 2 �1,

� q � (w � a) = (q � w) � ((q 
 w) � a) for q 2 Q, w 2 ��
1 and a 2 �1,

Once this extension is de�ned, a subsequential transducer � = (�1;�2; Q; i; F;
; �; �)
de�nes a partial mapping, noted j� j, from ��

1 to ��
2 by

� j� j(w) = (i � w) � �(i
 w) if i
 w is de�ned,

9This is true modulo the �nal emission function. However, if one adds an end of input
marker $ to �1, the �nal emission function can be replaced by a simple transition whose
input label is the symbol $.
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� j� j(w) = ; otherwise.

The terminology for deterministic, sequential or subsequential transduc-
ers, has been historically confusing in the sense that same words are often
used for di�erent notions, varying with the author and with the context. The
transducers we de�ned as subsequential, are sometime called deterministic
transducers or sequential transducers. We avoid the notion of deterministic
transducers since it can be confused with transducers that, when considered
as automata whose labels are the pairs of labels of the transducers, are de-
terministic. In other words, deterministic transducers could be de�ned as
transducers such that E � Q � �1 � ��

2 � Q such that, for each q 2 Q, for
each a 2 �1 and such that w 2 ��

2, there is at most one q0 2 Q such that
(q; a; w; q0) 2 Q. With this de�nition, the transducer To of Figure 38 is a
deterministic transducer but not a subsequential transducer. The term se-
quential refers to sequential transducers, a notion that we will use here only
in the restricted context of bimachines (see the following section).

De�nition
A sequential transducer, also called generalized sequential machines (Eilen-

berg, 1974), is a six-tuple (�1;�2; Q; i;
; �) such that,

� �1 and �2 are two �nite alphabets,

� Q is a �nite set of states,

� i 2 Q is the initial states,

� 
 is the partial deterministic transition function mapping Q � �1 on
Q, noted q 
 a = q0,

� � is the partial emission function mapping Q��1 on ��
2, noted q�a = w

In other words, a sequential transducer is a subsequential transducer for
which all the states are �nal and for which �(q) = � for all q 2 Q.

Naturally, functions that can be represented by subsequential transducers
are called subsequential functions and functions that can be represented by
sequential transducer are called sequential functions (and sometimes also left
sequential functions).
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If a non-subsequential transducer represents a function which is subse-
quential then it is possible to build explicitly an equivalent subsequential
transducer. For instance, the transducer To of Figure 38 is equivalent to the
transducer �o of Figure 41 and it can be constructed from To.

3 4
h/ε

6 7
l/l

12 13
b/b

5

t/ε

8
i/E

14
a/a

9
e/e

15
i/i

10
t/t

n/n0 1
o/ε

2
u/ε

g/o1.t

b/o2.b

a/w.a1

r/our

11
t/ε

e/ε

Figure 41: Subsequential transducer �o equivalent to To

The algorithm that realizes this transformation, i.e. that, given a trans-
ducer representing a subsequential function, builds a subsequential trans-
ducer representing the same function is given in Chapter ??. However, this
poses the question of whether the transducer represents a subsequential func-
tion in the �rst place. Sometimes, the answer is known by construction. For
instance if the transducer represents a functional transduction and is acyclic,
then the transduction is subsequential. Very often, however, such informa-
tion is not known a priori. We will now describe two algorithms that answer
this question in a systematic manner.

We will illustrate these two algorithms with an example that also shows
that simple phenomena can lead to non-subsequential rational functions.
Suppose that we have a long list of frozen expressions such as:

They take this fact into account
They should keep this new problem under control
The ood problems keep the hardest-hit areas virtually out of reach to rescuers.
We would like to mark in the text the places at which one particular

expression appears. One way of marking an expression in the text would be
to attach a numerical identi�er to the verb. A sentence like

They should keep this new problem under control.

would be transformed into

They should keep-1 this new problem under control.
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whereas a sentence like

The ood problems keep the hardest-hit areas virtually out of reach
to rescuers.

would be transformed into

The ood problems keep-2 the hardest-hit areas virtually out of
reach to rescuers.

This kind of preprocessing could be used as a �rst step of a syntactic
analyzer. This would, for instance, trigger a parser speci�c to the frozen ex-
pression. To simplify the exposition, let us focus on transformations we just
illustrated, namely from sentences containing the expression keep : : : under
control to the same sentence where keep is transformed into keep-1 and from
sentences containing the expression keep : : : out of reach to the same sentence
where keep is transformed into keep-2. This simple task can be modeled by
the transducer Tkeep of Figure 42. For sake of simplicity, we reduce the in-
put alphabet �1 to fa; keep; under ; control ; out ; of ; reachg and the output al-
phabet �2 to fa; keep � 1 ; keep � 2 ; under ; control ; out ; of ; reachg, with the
convention that the symbol a will represent any word di�erent from keep,
keep-1, keep-2, under, control, out, of, reach. As an example, the transducer
Tkeep performs the following mappings:

a keep under control ! a keep-1 under control
a a keep a a a under control ! a a keep-1 a a a under control
a keep a out of reach ! a keep-2 a out of reach

We will now see that the transduction jTkeepj is not subsequential; that
is, there is no subsequential transducer representing it. But �rst, we have
to make sure that the transduction is functional. This is done as described
in the previous section by �rst computing the unambiguous transducer of
Figure 43. Since this transducer is equal to the original transducer we know
that (1) the transduction is functional and that (2) the original transducer
Tkeep is unambiguous. We will now see two di�erent algorithms that decide
whether a function is subsequential.

The �rst algorithm, given on Figure 45, computes the square of the un-
ambiguous transducer while comparing the outputs. More precisely, given
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1

a/a

2
under/under

4

a/a

5out/out

3

control/control-1

6
of/of

0

keep/keep-1

keep/keep-2

a/a

reach/reach

Figure 42: Transducer Tkeep marking two frozen expressions.

an unambiguous transducer T = (�1;�2; Q; i; F;E), it builds the transducer
T2 = (�1;�2; Q2; i2; F2; E2) on the same alphabets with Q2 � Q���

1�Q���
1

as follows: for each w 2 ��
1 such that (i; w;w1; q1) 2 Ê and (i; w;w2; q2) 2 Ê

then, if l = w1 ^ w2, v1 = l�1 � w1 and v2 = l�1 � w2 (we call v1 and v2 the
delayed outputs) then there is a path ((i; �; i; �); w; l; (q1; v1; q2; v2)) 2 Ê2 such
that v1 ^ v2 = �. A state (q1; v1; q2; v2) represents the fact that there are two
paths in T with the same input and with l � v1 and l � v2 as output.

For instance, consider Tkeep and the transducer being built in Figure 44,
there is a transition from the initial state (i; �; i; �), labeled keep=�, to the state
(1; keep-1; 2; keep-2) which results from the transitions (0; keep; keep-1; 1) and
(0; keep; keep-2; 4) of Tkeep. The longest common factor between keep-1 and

keep-2 is �. Since each path of (q; w;w0; q0) 2 Ê of T can be combined with
itself, T2 contains the paths ((q; �; q; �); w;w0; (q0; �; q0; �)): this is visible in the
example of Figure 44.

The core of the algorithm lies in the fact that if there is a path ((q1; u1; q2; u2); w;w0; (q1; u01; q2; u
0
2)

Ê2, then u1 = u01 and u2 = u02. If this is not the case then the same label w
will generate an in�nite number of states (q1; u; q2; u0). It can be proven that
such behavior appears if and only if the original transducer is subsequential
using the following property of subsequential transducers.

Theorem 4 A rational function is subsequential i� it has bounded varia-
tions.

With the following two de�nitions.

De�nition
The left distance between two strings u and v is k u; v k= juj+ jvj � 2ju^ vj.
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De�nition
A rational function had bounded variations i� for all k � 0, there exists

K � 0 s.t. 8u; v 2 dom(f), if k u; v k� k then k f(u); f(v) k� K.

For example, jTkeepj doesn't have bounded variations since

k jTkeepj(keep�a
n�under control); jTkeepj(keep�a

n�out of reach) k= (n+3)+(n+4)

.

(1,Ø)

a/a

(2,Ø)
under/under

(4,{1})

a/a

(5,Ø)out/out

(3,Ø)

control/control

(6,Ø)of/of

(0,Ø)

keep/keep-1

keep/keep-2

a/a

reach/reach

Figure 43: Unambiguous transducer representation for Tkeep.

(1,ε,1,ε)

a/a

(2,ε,2,ε)under/under

(4,ε,4,ε)

a/a

(5,ε,5,ε)out/out

(1,keep-1,2,keep-2) (1,keep-1.a,2,keep-2.a)
a/ε

(2,keep-2,1,keep-1) (2,keep-2.a,1,keep-1.a)
a/ε

(3,ε,3,ε)

control/control

(6,ε,6,ε)of/of

(0,ε,0,ε)

keep/keep-1

keep/keep-2

keep/ε

keep/ε

a/a

reach/reach

Figure 44: Square pre�x construction to test the subsequentiality of Tkeep.

The same property is also used for the second algorithm represented on
Figure 47 and illustrated on the same example Tkeep in the construction
of Figure 46. The algorithm compares all the paths that share the same
input, this is done by building a transducer called the twinning construction
(Cho�rut, 1977) whose states set is the cartesian product of the original
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Function IsSubsequential
Input: Unambiguous transducer T = (�1;�2; Q; i; F;E)
Ouput: boolean RESULT

Q2 = ;;E2 = ;;C[0] = (0; �; 0; �); RESULT=YES;
do f

Q2 = Q2 [ fqg;
(x1; u1; x2; u2) = C1[q];
foreach (x1; a; w; y1) 2 E

foreach (x2; a; w0; y2) 2 E
v = u1 � w ^ u2 � w0;
v1 = v�1 � (u1 � w);
v2 = v�1 � (u2 � w0);
e =addSet(C; (y1; v1; y2; v2));
E2 = E2 [ f(q; a; v; e)g;

if 9p < q s.t. (y1; u01; y2; u
0
2) = C[p] and w s.t. q = d̂(p;w) with u01 6= v1 or u02 6= v2

RESULT=NO;BREAK;
q ++;

gwhile(q < Card(C));

Figure 45: First Algorithm to decide whether a function is subsequential

transducer, and whose transition labels are built in the following way: if
there is a transition (x1; u; v1; y1) 2 E and a transition (x2; u; v2; y2) in the
original transducer then there is a transition ((x1; x2); u; (v1; v2); (y1; y2)) in
the twinning construction.

For instance, since there are two transitions (0; keep; keep-1; 1) and (0; keep; keep-2; 4)
in Tkeep, then one build a transition ((0; 0); keep; (keep-1; keep-2); (1; 4)) in the
construction of Figure 46.

The core of the algorithms comes from the fact that if the transduction is
subsequential then the loops in this construction have a special property. It
can be shown (Cho�rut, 1977; Berstel, 1979) that the original transduction
is subsequential if for each loop ((q; q); u; v; (q; q)) 2 Êtwin, and if 9�; � s.t.
((i; i); �; �; (q; q)) 2 Êtwin, if u; v 6= �
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there exists  2 ��
2 s.t. (� = �� and  �v = u�) or (� = � � and  �u =

v � ). This condition is tested by the algorithm of Figure 47. In our exam-
ple, the paths ((0; 0); keep; (keep-1; keep-2); (1; 4)) and ((1; 4); a; (a; a); (1; 4))
gives an example of a loop that doesn't follow this condition and therefore
the transduction jTkeepj is not subsequential.

(1,1)

a/(a,a)

(2,2)
under/(under,under)

(4,4)

a/(a,a)

(5,5)out/(out,out)

(1,4)

a/(a,a)

(4,1)

a/(a,a)

(3,3)

control/(control,control)

(6,6)of/(of,of)

(0,0)

keep/(keep-1,keep-1)

keep/(keep-2,keep-2)

keep/(keep-1,keep-2)

keep/(keep-2,keep-1)

a/(a,a)

reach/(reach,reach)

Figure 46: Twinning for testing the subsequentiality.

3.9 Minimization

As for deterministic �nite-state automata, space e�ciency of deterministic
�nite-state transducers can be achieved by a minimization algorithm. We
refer the reader to Chapter ?? for more details on such algorithm.

3.10 Determinization and Factorization

We saw in the previous section that the transduction represented by the
transducer Tkeep of Figure 42 is not equivalent to any subsequential trans-
ducer. We will now see that it is possible to apply this transduction on any
given input in a deterministic manner by using a slightly more complex de-
vice called Bimachine. One of the reason why this device was introduced
came from the observation that a representation of a transduction by a sub-
sequential transducer privileges one reading direction, namely left to right
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Function TWINNING
Input: Unambiguous transducer T = (�1;�2; Q; i; F;E)
Output: boolean RESULT

Q2 = ;;i2 = 0;E2 = ;;C[0] = (i; i);
do f

Q2 = Q2 [ fqg;
(x1; x2) = C[q];
foreach (x1; a; w; y1) 2 E

foreach (x2; a; w0; y2) 2 E
e =addSet(C; (y1; y2));
E2 = E2 [ f(q; (w;w0); e)g;

q ++;
gwhile(q < Card(C));
RESULT=YES;
foreach q � jCj

foreach loop (q; u1; (v1; v01); q1) : : : (qn�1; un; (vn; v
0n); q) s.t. qi 6= q for i = 1; n � 1

foreach path (i2; �1; (�1; �01); p1) : : : (pm�1; �m; (�m; �0m); q) s.t. pi 6= q for i = 1;m� 1
� = �1 � : : : � �m; � = �1 � : : : � �m; �0 = �01 � : : : � �

0
m;

u = u1 � : : : � un; v = v1 � : : : � vn; v0 = v01 � : : : � v
0
n;

if v 6= � or v0 6= �
! = � ^ �0;
if ! = �

 = !�1 � �0;
if  � v0 6= v � 

RESULT=NO;BREAK;
else if ! = �

 = !�1 � �;
if  � v 6= v0 � 

RESULT=NO;BREAK;
else

RESULT=NO;BREAK;
Return RESULT;

Figure 47: Twinning Algorithm to decide whether a function is subsequential
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reading of the input string, whereas there is no a priori reason to do so in
the most general case.

We will now consider again the transduction jTkeepj and show how that
although it is not subsequential, it can be represented by a deterministic
device called bimachine.

De�nition
A bimachine B is a 5-tuple (�1;�2; A1; A2; �) in which

� �1 is the input alphabet,

� �2 is the output alphabet,

� A1 = (�1; Q1; i1; F1; d1) is a deterministic �nite-state automaton for
which F1 = ;,

� A2 = (�1; Q2; i2; F2; d2) is a deterministic �nite-state automaton for
which F2 = ;,

� � is the emission partial mapping function from Q1��1 �Q2 into ��
2,

As for automata and transducers, the emission function � can be extended
to strings into �̂ in the following way. �̂ is the least function such that:

� �̂(q1; �; q2) = � for q1 2 Q1, q2 2 Q2,

� ifw 2 ��
1, a 2 �1, q1 2 Q1, q2 2 Q2 then �̂(q1; w�a; q2) = �̂(q1; w; d2(q2; a))�

�(d̂1(q1; w); a; q2) in which we assume that if any of the expression is
the empty set then the result is the empty set.

Once this extension is de�ned, a bimachine B de�nes a function that we
denote jBj de�ned by jBj(w) = �̂(i1; w; i2) for any w in ��

1.
We will now give the example of the bimachine Bkeep equivalent to Tkeep,

i.e. such that jBkeepj = jTkeepj; we will then show how to compute the output
of any given string, how this bimachine is equivalent to the decomposition of
two special transducers and �nally we will say how this device can be built
from any transducer representation.
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The bimachine Bkeep = (�1;�2; A1;keep; A2;keep; �) is represented by the
two automata A1;keep and A2;keep of Figure 48 and Figure 49 respectively and
by the emission function �:

�(0; a; 0) = a
�(0; keep; 2) = keep-1
�(0; a; 3) = a
�(0; keep; 6) = keep-2
�(1; under; 1) = under
�(1; a; 2) = a
�(1; out; 5) = out
�(1; a; 6) = a
�(2; control; 0) = control
�(4; of; 4) = of
�(5; reach; 0) = reach
Alternatively, the emission function � can de�ned by the matrix of Fig-

ure 50 for which: �(q1; a; q2) = w if and only if there is a pair (a;w) in the
matrix at the row q1 and at the column q2.

0

a

1
keep

a
2under

4
out

3

control

5
of

reach

Figure 48: Automaton A1;keep of the bimachine Bkeep

0

1control

3
a

4

reach

2
under

a

keep a

5
of

6
out

keepa

Figure 49: Automaton A2;keep of the bimachine Bkeep
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0 1 2 3 4 5 6
0 (a,a) (keep,keep-1) (a,a) (keep,keep-2)
1 (under,under) (a,a) (out,out) (a,a)
2 (control,control)
3
4 (of,of)
5 (reach,reach)

Figure 50: Matrix representing the emission function � of Bkeep

Let us now see how to compute the output of the following string with
the bimachine Bkeep.

s = a keep a a under control

One way would be to compute �̂(0; s; 0) from the de�nition of �̂.

�̂(0; a � keep � a � a � under � control; 0)

= �̂(0; a � keep � a � a � under; d2(0; control)) � �(d̂1(0; a � keep � a � a � under); control; 0)

= �̂(0; a � keep � a � a � under; 1) � �(2; control; 0)

= �̂(0; a � keep � a � a � under; 1) � control

= �̂(0; a � keep � a � a; d2(1; under)) � �(d̂1(0; a � keep � a � a); under; 1) � control

= �̂(0; a � keep � a � a; 2) � �(1; under; 1) � control

= �̂(0; a � keep � a � a; 2) � under � control

= �̂(0; a � keep � a; d2(2; a)) � �(d̂1(0; a � keep � a); a; 2) � under � control

= �̂(0; a � keep � a; 2) � �(1; a; 2) � under � control

= �̂(0; a � keep � a; 2) � �a � under � control

= �̂(0; a � keep; 2) � a � a � under � control

= �̂(0; a; d2(2; keep))�(d̂1(0; a); keep; 2) � a � a � under � control

= �̂(0; a; 3)�(0; keep; 2)a � a � under � control

= �̂(0; a; 3) � keep-1 � a � a � under � control

= a � keep-1 � a � a � under � control

Which translates into:
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jBj(s) = �̂(0; s; 0) = a � keep-1 � a � a � under � control

There is however a more e�ective process for computing the output of a
given string, it works in two steps, �rst it goes through the �rst automaton A1

with the string while remembering the sequence of states visited and then it
goes through the second automaton while reading the input string backward
and the knowledge of the current state of A2 together with the information
about the states stored in the �rst pass makes it possible to look up to correct
output symbol in the matrix representing �.

Let us illustrate this on the same input string s = a keep a a under control.
Given this input string, the only path through the automaton A1 is the se-
quence of states 0011123. We then read the input string backward through
A2. The �rst symbol is therefore control while the current state of A2 is the
initial state 0. Since the state q1 of A1 stored during the �rst pass is 2, one
looks up the matrix at row 2 and column 0 for the string control. The matrix
gives us the output symbol control. The input symbol control makes us move
from the initial state to the state 1 of A2 and, at this point, the current
symbol is under while the state of A1 is 1. We then look up the matrix at the
position (1; 1) with the word under and �nd the output under. The next two
symbols, namely a and a are processed the same way and they both produce
the letter a as output. The next input symbol is now keep, the current state
of A2 is 2 and the corresponding state of A1 is 0; therefore, looking up the
matrix at position (0; 1) with keep shows that the output symbol is, without
ambiguities, keep-1. The last input symbol a is processed in the same way
to produce the output a. Finally, each output is concatenated into a string,
which we reverse, to produce the �nal output string:

a keep-1 a a under control.

which is the expected result.
The process we just illustrated on one example is exactly equivalent to

applying successively two subsequential transducers. If we consider the same
example, the �rst pass is equivalent to applying the subsequential transducer
�left;keep of Figure 51. This transducer is simply the automaton A1 to which
output labels have been added. For each transition of the automaton starting
from state q and labeled with the word w, the corresponding transition in
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the transducer has w as input label and (w; q) as output label. Therefore,
applying the transducer �left;keep consists of marking each label of the input
string with the state reached in the automaton for this symbol. For instance,
the output of a keep a a under control is the sequence (a,0) (keep,0) (a,1)
(a,1) (under,1) (control,2).

0

a/(a,0)

1
keep/(keep,0)

a/(a,1)
2under/(under,1)

4

out/(out,1)
3

control/(control,2)

5
of/(of,4)

reach/(reach,5)

Figure 51: Sequential transducer �left;keep equivalent to the �rst pass of the
bimachine Bkeep

In a similar way, performing the second pass of the bimachine is equivalent
to applying a second transducer, �right;keep of Figure 52 here, to the reversed
output of the previous transducer. Hence, the sequence (control,2) (under,1)
(a,1) (a,1) (keep,0) (a,0) is processed through �right;keep to produce the output
control under a a keep-1 a which is also reversed into the �nal bimachine
output, namely a keep-1 a a under control.

0

1(control,2)/control

3
(a,0)/a

4

(reach,5)/reach

2
(under,1)/under

(a,1)/a

(keep,0/keep (a,0/a

5
(of,4)/of

6
(out,1)/out

(keep,0)/keep(a,1)/a

Figure 52: Sequential transducer �right;keep equivalent to the second pass of
the bimachine Bkeep

The algorithm of Figure 53 gives the explicit process for transforming the
bimachine into a right sequential transducer and a left sequential transducer.

Until now, we showed how an input string can be processed through a
bimachine and how a bimachine can be transformed into two transducers but
the obvious remaining question is: how did we build the bimachine in the
�rst place? We now assume that we have a transduction represented by a
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Function BiTransform
Input: B = (A1; A2; �) in which A1 = (�1; Q1; i1; F1; d1), A2 = (�1; Q2; i2; F2; d2)
Output: T1 = (�1; (�1 �Q1); Q1; i1;
1; �1), T2 = ((�1 �Q1);�2; Q2; i2;
2; �2),

foreach q1 2 Q1 and a 2 �1 s.t. d1(q1; a) 6= ;
q1 
1 q = q2;
q1 �1 a = (q1; a);

foreach a 2 �1, q1 2 Q1, q2 2 Q2 s.t. �(q1; a; q2) 6= ;
q2 
2 (a; q1) = d2(q2; a)
q2 �2 (a; q1) = �(q1; a; q2)

Return T1; T2;

Figure 53: Transforming a Bimachine into a left and a right sequential trans-
ducer

transducer and we would like to give a bimachine representation. We just
showed that a bimachine is equivalent to the composition of two sequential
machines. This implies in particular that the transduction represented by
the bimachine is functional; therefore, in order to be able to build a bima-
chine from the transducer we should �rst check whether the transduction
is functional. Moreover, it turns out that this condition is su�cient, i.e. if
the transduction is functional we are assured that we can build a bimachine
representing it. Checking the functionality of the transduction is done, as
described in section 3.6, by building an unambiguous transducer. Taking
Tkeep as example, this leads to the construction of Figure 43 which in this
case is equal to the initial transducer. In general, the resulting unambigu-
ous transducer has to be compared to the initial one to decide whether the
transduction is functional, this is done through the algorithm of Figure 32
(Section 3.6). Once this is done, the unambiguous transducer can be trans-
formed into a bimachine through the algorithm of Figure 54. This algorithm
is very simple. If A is the automaton representing the domain of T obtained
by removing the output labels, then A1 is the determinization of A from left
to right whereas A2 is the determinization of A from right to left. The emis-
sion function is de�ned such that if (q1; a; w; q

0) is a transition of T such that
q1 is in a subset S1 of A1 and q2 is in a subset S2 of A2 then �(S1; a; S2) = w.
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Function BuildBiMachine
Input: T = (�1;�2; Q; i; F;E) with T unambiguous
Output: B = (A1 = (�1; QA1

; iA1
; FA1

; dA1
); A2 = (�2; QA2

; iA2
; FA2

; dA2
); �)

Step 1. Compute A1:
QA1

= ;;q = 0;iA1
= 0;FA1

= ;;C1[0] = fig;
do f

QA1
= QA1

[ fqg;
S = C1[q];
foreach a 2 �1 s.t. 9q0 2 S and (q0; a; w; q00) 2 E

S 0 = ;;
foreach (q0; a; w; q00) 2 E s.t. q0 2 S, w 2 ��

2 and q00 2 Q
S0 = S 0 [ fq00g;

e =addSet(C1; S
0);

dA1
(q; a) = e;

q ++;
gwhile(q < Card(C));

Step 2. Compute A2:
QA2

= ;;q = 0;iA2
= 0;FA2

= ;;C2[0] = fig;
do f

QA2
= QA2

[ fqg;
S = C2[q];
foreach a 2 �1 s.t. 9q0 2 S and (q00; a; w; q0) 2 E

S 0 = ;;
foreach (q00; a; w; q0) 2 E s.t. q0 2 S, w 2 ��

2 and q00 2 Q
S0 = S 0 [ fq00g;

e =addSet(C2; S
0);

dA2
(q; a) = e;

q ++;
gwhile(q < Card(C));

Step 3. Compute �:
foreach q1 2 QA1

, q2 2 QA2
, a 2 �1

�(q1; a; q2) = ;;
foreach q1 2 QA1

, q2 2 QA2
, a 2 �1

if 9q 2 C1[q1], q0 2 C2[q2] and (q; a; w; q0) 2 E
�(q1; a; q2) = w;

Return B

Figure 54: Algorithm for building a bimachine from an unambiguous repre-
sentation
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4 Bibliographical Notes

The theoretical aspects of �nite-state automata and �nite-state transduc-
ers have been extensively studied and their theory has been documented
by, among many others, Eilenberg (1974), Eilenberg (1976), Berstel (1979),
Perrin (1990), Salomaa and Soittola (1978) and Salomaa (1973).

Perrin (1990) includes a discussion on the arithmetic automata and trans-
ducers, presented in this introduction.

Roche (1992) gives more details on the use of negative constraints gram-
mar.

The discussion of Section 3.4 is inspired by the work from Karttunen,
Kaplan, and Zaenen (1992) and Kaplan and Kay (1994).

The main result of Section 3.5 was proved by Sch}utzenberger (1976).
The fact that functions can be represented by unambiguous transducers has
been proved by Eilenberg (1974). We give here an algorithmic view point
on the already constructive proof of Eilenberg. The �rst proof that the
question whether a transducer represents a function is decidable was given
in Sch}utzenberger (1976). Blattner and Head (1977) also gives a proof of
the same property and concludes that it is di�cult to �nd a more e�ective
proof, such as the one available for the decidability of the sequentiality. We
took a more algorithmic view point and give an algorithm that is practical
in non-trivial cases.

The determinization of �nite-state transducers is described by Mohri
(1994b) and in Chapter ??. The minization of �nite-state transducers is
described by Reutenauer (1991) and Mohri (1994a).

The notion of bimachine has been introduced by Sch}utzenberger (1961).
The decidability of the sequentiality of �nite-state transducers has been
proved by Cho�rut (1977).
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