
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Adding a Collaborative Agent to Graphical
User Interfaces

Charles Rich, Candace L. Sidner

TR96-11 May 1996

Abstract

We have implemented a collaborative agent toolkit called Collagen and used it to build a software
agent that collaborates with the user of a direct-manipulation graphical interface by following the
rules and conventions of human discourse. One of the main results is an interaction history that
is segmented according to the structure of the agentś and useŕs goals, without requiring the agent
to understand natural language. Superseded by TR97-21.

Ninth ACM Symposium on User Interface Software and Technology, Seattle, WA, November,
1997, pp. 21-30.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Adding a Collaborative Agent

to Graphical User Interfaces

Charles Rich Candace L. Sidner�

TR-96-11 May 1996

Abstract

We have implemented a collaborative agent toolkit called Collagen and used it

to build a software agent that collaborates with the user of a direct-manipulation
graphical interface by following the rules and conventions of human discourse.

One of the main results is an interaction history that is segmented according
to the structure of the agent's and user's goals, without requiring the agent to
understand natural language.

To appear in Ninth Annual Symposium on User Interface Software
and Technology (UIST'96), Seattle, WA, November 1996.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1996

201 Broadway, Cambridge, Massachusetts 02139

�Lotus Development Corporation

Publication History:{

1. First printing, TR-96-11, May 1996

Adding a Collaborative Agent
to Graphical User Interfaces

Charles Rich
MERL{A Mitsubishi Electric

Research Laboratory
201 Broadway

Cambridge, MA 02139 USA
+1-617-621-7507
rich@merl.com

Candace L. Sidner
Lotus Development Corporation

55 Cambridge Parkway
Cambridge, MA 02142 USA

+1-617-693-7737
csidner@lotus.com

ABSTRACT
We have implemented a collaborative agent toolkit called
Collagen and used it to build a software agent that col-
laborates with the user of a direct-manipulation graph-
ical interface by following the rules and conventions of
human discourse. One of the main results is an inter-
action history that is segmented according to the struc-
ture of the agent's and user's goals, without requiring
the agent to understand natural language.

KEYWORDS: Agent, collaboration, discourse, window
sharing, direct manipulation, SharedPlan

1 INTRODUCTION
Current interactive systems can be di�cult to use: the
order in which things must be done is often inexible,
it's hard to recover from mistakes, and each system has
its own interaction conventions. Although many fac-
tors contribute to these di�culties, we believe that the
essence of the problem is not in the user interface as
viewed over a single interaction, but rather in the lack
of support for the user's problem solving process, espe-
cially over extended periods of time. The overall goal
of this research is to therefore to support this process
by applying principles of human collaboration and dis-
course.

One of our underlying assumptions is that a human-
computer interface that embodies human discourse rules
and conventions will be easier for people to learn and
use than one that does not. We are encouraged in this
assumption by the success of direct-manipulation graph-
ical user interfaces, which we take to be due in large part
to users' preexisting familiarity with the manipulation
of real objects.

We are presently working toward our goal within the
\software agent" paradigm, speci�cally, by adding a col-
laborative software agent to graphical user interfaces.

observe

Agent

communicate

interact interact

observe

Application

User

Figure 1: Collaborative interface agent paradigm.

Software agents are currently a new research area with-
out precise de�nition. Roughly speaking, a software
agent is an autonomous software process which inter-
acts with humans as well as with elements of its software
environment, such as the operating system, application
programs, and other agents.

The crux of this paper is the automatically segmented
history of an interaction between a user and a software
agent shown in Figure 5 and its discussion in Section 7.
The sections leading up to Section 7 cover the motiva-
tion, methodology, and theoretical background of the
work. The sections following Section 7 describe the un-
derlying representations and algorithms. All of the ex-
amples in the paper are from a system implemented in
Common Lisp and running in real time (a few seconds
per interaction).

2 COLLABORATIVE INTERFACE AGENT
Our version of the software agent paradigm, which we
term a collaborative interface agent (see Figure 1), mim-
ics the relationships that hold when two humans collab-
orate on a task involving a shared artifact, such as two
mechanics working on a car engine together or two com-
puter users working on a spreadsheet together. This im-
plies, as shown in the �gure, that the software agent is
able to communicate with and observe the actions of the
human user and must itself be able to interact with the

1

application program being used to perform the shared
task. Furthermore, the agent interacts with shared ap-
plication through the same graphical interface used by
the human in a way that can be observed by the human
user. This approach facilitates the reuse of existing ap-
plications and supports collaboration by making it easy
for the user to know what the agent is doing.

Most current work on similar software agents is very
application-speci�c. Our goal has been to develop a
general-purpose collection of algorithms, data struc-
tures, and speci�cations (i.e., a toolkit) that applica-
tion programmers can easily use to add a collaborative
agent to any application program. The key components
of this toolkit called Collagen1 (for Collaborative agent)
concern:

� grouping the steps of an interaction into segments
based on their purposes,

� modelling how the purposes of segments relate to each
other and to the overall goals of the collaboration, and

� communication between the user and the agent about
mutual beliefs and the division of labor.

It is possible to achieve substantial application indepen-
dence in these areas based on the results of more than
two decades of research on collaborative discourse in
which the computational structures we use have been
validated across a range of human tasks. By adding
application-speci�c knowledge and rules to these generic
underlying discourse structures, we can implement col-
laborative agents for particular applications that help
users by suggesting what to do next, summarizing the
current state of the problem solving process, and per-
forming delegated tasks.

3 METHODOLOGY
Our basic methodology has been to choose a speci�c
application program to serve as a test for our approach.
We wanted this application program to be more complex
than the typical research toy, but less complex than a
full commercial program. We also wanted the appli-
cation interface to be a good example of the current
state of the art, i.e., a pure direct-manipulation inter-
face where all of the underlying state of the application
is graphically visible and modi�able. The next section
describes the air travel planning application we imple-
mented to serve this purpose.

To our test application, we then added a collaborative
interface agent as shown in Figure 1, being very careful
to keep the application-speci�c parts of the agent sepa-
rate from the generic parts. This paper is a �rst report
on the implementation and behavior of this collabora-
tive agent.

After some additional work described in the conclusion,
we plan a pilot user study, in which the performance of
users solving problems using the test application alone is
compared with their performance with the collaborative

1Collagen is a �brous protein that occurs in vertebrates as the

chief constituent of connective tissue.

agent added. We plan to examine such factors as the
ease with which users accomplish the given tasks, the
speed of solution, and their overall satisfaction.

Finally, a key aspect of our approach is that we are not
using natural language understanding technology. This
is important for both practical and theoretical reasons.
As a practical matter, natural language understanding
even in this limited setting is a very di�cult problem
in its own right, which we would like to sidestep for the
moment. From a theoretical point of view, we want to
emphasize that discourse theory addresses the content
of collaborative communication at a very fundamental
level, regardless of what language is used.

As the internal semantic (i.e., content) representation
of the communication between the user and agent, we
use an arti�cial language developed by Sidner [17], and
translate messages from this internal representation into
English sentences for the user to read using simple string
templates (see Section 8).

4 TEST APPLICATION
Figure 2 shows the interface to the air travel planning
system we implemented using the Garnet [15] graph-
ics package. (For the discussion in this section, please
ignore the two overlapping windows in the upper-right
and lower-left corners.) The test application provides
a direct-manipulation interface to an airline schedule
database and a simple constraint checker. By pressing
buttons, moving sliders, and so on, the user can specify
and modify the geographical, temporal, and other con-
straints on a planned trip. The user can also retrieve
and display possible itineraries satisfying the given con-
straints.

A typical problem to be solved using this application is
the following:

You are a Boston-based sales representative plan-
ning a trip to visit customers in Dallas, Denver, and
San Francisco next week. You would prefer to leave
on Wednesday morning, but can leave on Tuesday
night if necessary. Your customer in Denver is only
available between 11 a.m. and 3 p.m. on Thursday.
You would prefer to y as much as possible on Amer-
ican Airlines, as you have almost enough frequent-
ier miles to qualify for a free trip this summer. You
absolutely must be home by 5 p.m. on Friday in or-
der to attend your son's piano recital.

In order to get some initial intuitions about the problem-
solving process in this domain, we asked seven visitors
and sta� members at our laboratory to solve this and
similar problems using the test application and recorded
their behavior via informal notes and the logging facili-
ties we built into the system. A typical problem-solving
session lasted about 15 minutes and entailed about 150
user actions (mouse clicks).

In a typical session, the user begins by clicking on the
route map to specify the origin, order of layover cities,

2

 Application

American (AA)

Continental (CO)

Delta (DL)

Eastern (EA)

Lufthansa (LH)

Midway (ML)

Trans World (TW)

United (UA)

USAir (US)

Nonstop Only

BOS DFW DEN SFO BOS

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

No itineraries

Save:

Restore: Initial

Undo

Done

Itineraries

0

Display?

ESTCSTMSTPST

Boston
(BOS)

Baltimore
(BWI)

Atlanta
(ATL)

Philadelphia (PHL)Pittsburgh
(PIT)

Dallas
(DFW)

Denver
(DEN)

San Francisco
(SFO)

Oakland
(OAK)

Agent

How will a trip on Boston to Dallas to Denver
to San Francisco to Boston be scheduled?

User

Ok

No

Propose scheduling a trip on Boston to Dallas to Denver to San Francisco to Boston via ___.

Where are we?

Figure 2: Test application with overlapping home windows.

and �nal destination for the trip. Next, users typically
manipulate some of the small rectangles labelled with
city names. These city \interval" bars (see Figure 6)
can be inserted into the horizontal slider area below the
map and moved and stretched to specify latest arrival
and earliest deparature times at each city. Users can
also restrict the airlines used by setting the buttons to
the left of the route map.

Whenever the user enters or changes a constraint, the
number of possible itineraries is automatically recom-
puted from the data base of all ights and displayed in
the box labelled Itineraries. By pressing the Display?
button in that box, the user can view all the possible
itineraries laid out along the same timeline as the inter-
val bars in the large scrollable area at the bottom of the
screen (see Figure 6).

In general, users �nd that displaying more than 5 to 10
itineraries is too much information. If there are more
than this many, they typically add further constraints
or look only at the �rst few itineraries displayed. The
system does not allow display when there are zero (over-
constrained) or more than 100 (under-constrained) itin-
eraries.

The main di�culties users experienced using the test
application (or at least the ones we paid most atten-
tion to) were various forms of getting stuck and getting
lost. Users had trouble knowing what to try next when
they had over- or under-constrained their trip. They
also had trouble keeping track of which combinations of

routes and constraints they had already examined. Al-
though the test application does provide an Undo button
and a \snapshot" facility (via the Save button and Re-
store menu), these were not exible enough. For exam-
ple, the Undo button, as is typical in current interfaces,
forces you to undo actions in reverse chronological order.
Sometimes you want to undo an earlier action without
undoing the intervening actions. Similarly, sometimes
you want to restore only part of a previous state.

One of our conclusions from these sessions is that the
users can productively be viewed as \designing" itin-
eraries (sequence of ights). As is typical in design tasks,
the strategies used included information seeking (e.g., to
see what components|ights|are available with vari-
ous properties), constraint satisfaction (e.g., arrival and
departure time preferences), cost reduction (e.g., travel
time), searching, backtracking, trade-o�s, etc. All of
these showed up in simple ways using the test applica-
tion.

Another important property of these scenarios is that
the problem statements are only partially formalizable
within the system. (There may also be more than one
right answer.) To take an example from the problem
statement in this section, notice that the test application
does not provide a representation to specify in advance
(even if you could) just how much travel inconvenience
you would put up with in order to accumulate more
frequent-yer miles on American. This kind of incom-
pleteness is typical of design and many other tasks for
which people use interactive systems.

3

5 WINDOW SHARING
The �rst step in adding a collaborative interface agent to
the test application is to establish the basic communica-
tion, observation, and interaction channels required by
the paradigm shown in Figure 1. This is achieved using
a window-sharing layer implemented in the X Window
System and described in detail elsewhere [16].

A key concept in this window-sharing layer is the home
window. The user and software agent each have a small
dedicated window that is used for communication be-
tween them. The home windows start out in the corner
locations shown in Figure 2; the user may move them
to di�erent screen locations in the usual ways provided
by the window system.

Each home window contains an identifying face and has
an associated cursor. The user's cursor is his usual
mouse pointer. The agent's cursor is the pointing hand
icon shown in its home window. The agent uses this
hand to point and click on the shared application win-
dow just like the user's mouse pointer. The agent's eyes
blink periodically to indicate that its process is still run-
ning. The home windows also shrink and expand as they
are used. For example, after the user has chosen from
her communication menu in Figure 2, both home win-
dows return to their default con�gurations shown below.

User

Ok

No

Agent

Figure 3: Default home window configurations.

To support asynchronous real-time interaction, the ap-
plication and each home window is serviced by a sep-
arate process. Thus even when the agent has asked a
question, the user is free to continue clicking on the ap-
plication window instead of answering. Furthermore,
using a distributed window system like X, the agent and
user processes may run on a di�erent machine than the
application process. (Whether or not to run the agent
process in the same address space as the application
is an engineering tradeo� that depends on the applica-
tion.)

Returning now to Figure 1, let us account for how each
of the arrows is realized:

� Communication from the agent to the user is achieved
by printing English text in the agent's home window,
as illustrated in Figure 2.

� Communication from the user to the agent is achieved
by the user selecting from a menu as illustrated in Fig-
ure 2. Internally, a message in the arti�cial discourse
language is transmitted to the input bu�er of the agent
process.

� The user interacts with the application in the usual
way, modifying the state of the application with her
cursor and \querying" it with her eyes.

� The agent modi�es the state of the application with
its cursor (see discussion of UnGUI module in [16])
and queries it using the programming interface (API)
provided by the application.

� The user observes the agent's actions by watching the
agent's cursor.

� The agent observes the user's actions by virtue of a
generic layer in the application that mirrors all logical
actions into the input bu�er of the agent process.

6 COLLABORATION AND DISCOURSE
Collaboration is a process in which two or more partic-
ipants coordinate their actions toward achieving shared
goals. Most collaborations between humans involve
communication. Discourse is a technical term for an
extended communication between two or more partici-
pants in a shared context, such as a collaboration.

SharedPlans
Much is known about the structure of human collabo-
ration and discourse. In this work, we make use speci�-
cally of two interrelated theories due to Grosz and Sid-
ner [6, 7] and extensions by Grosz and Kraus [5] and
Lochbaum [12, 13]. Their theory predicts that, for suc-
cessful collaboration, the participants need to have mu-
tual beliefs2 about the goals and actions to be performed
and the capabilities, intentions, and commitments of
the participants. The formal representation of these as-
pects of the mental states of the collaborators is called
a SharedPlan.

As an example of a SharedPlan in the air travel domain,
consider the collaborative scheduling of a trip wherein
participant A (e.g., the user) knows the constraints on
travel and participant B (e.g., the software agent) has
access to a database of all possible ights. To success-
fully complete the collaboration, A and B must mutually
believe that they:

� have a common goal (to �nd an itinerary that satis�es
the constraints);

� have agreed on a sequence of actions (a recipe) to ac-
complish the common goal (e.g., choose a route, spec-
ify some constraints on each leg, search for itineraries
satisfying the constraints);

� are each capable of performing their assigned actions
(e.g., A can specify constraints, B can search the
database);

� intend to do their assigned actions; and
� are committed to the overall success of the collabora-
tion (not just the successful completion of their own
parts).

In Collagen, we have implemented data structures and
algorithms, described in more detail below, for repre-
senting and manipulating goals, actions, recipes, and
SharedPlans.

2A and B mutually believe p i� A believes p, B believes p,

A believes that B believes p, B believes that A believes p, A

believes that B believes that A believes p, and so on. This is a

standard philosphical concept whose in�nite formal de�nition is

not a practical problem.

4

2
6666666666666666666666664

A: \Replace the pump and belt please."2
6666664

B: \OK, I found a belt in the back."�
B: \Is that where it should be?"
A: \Yes."

B: Removes belt.
B: \It's done."

2
6666664

A: \Now remove the pump."
: : :

A: \First you have to remove the ywheel."
: : :

A: \Now take o� the base plate."
B: \Already did."

Figure 4: Segments in a human discourse.

Several important features of collaboration should be
noted here.

First, participants do not usually begin a collaboration
with all of the conditions above \in place." They typ-
ically start with only partial knowledge of the shared
environment and the other participants and use com-
munication as well as individual information gathering
to determine the appropriate recipe to use, who should
do what, and so on.

Second, notice that SharedPlans are recursive. For ex-
ample, the �rst step in the recipe mentioned above,
choosing a route, is itself a goal upon which A and B
might collaborate.

Finally, planning (coming to hold the beliefs and inten-
tions required for the collaboration) and execution (act-
ing upon the current intentions) are usually interleaved
for each participant and among participants. Unfortu-
nately, there is currently no generally accepted domain-
independent theory of how people manage this inter-
leaving. (The current best candidates for a generic the-
ory are the so-called belief/desire/intention frameworks,
such as [2].) Collagen therefore does not currently pro-
vide a generic framework for execution. Another way of
saying this is that we only provide a generic framework
for recording the order in which planning and execution
occur, but not for deciding how to interleave them.

Discourse Segments
The concept of discourse segments is at the very founda-
tion of discourse theory. A tremendous amount of anal-
ysis of discourses from a range of human interactions
has resulted in the view that discourse has a natural hi-
erarchical structure. The elements of this hierarchy are
called segments. The existence of segments can be seen
in everything from pitch patterns (in spoken discourse)
to the way that pronouns are interpreted. As we will see
in Section 7 below, automatic segmentation has there-

fore been our �rst milestone in adding discourse facilities
to human-computer interaction.

A simple example of segments in a human collabora-
tive discourse is shown in Figure 4, which is adapted
from [8]. In this discourse, participant A is instruct-
ing participant B how to repair an air compressor. The
toplevel segment and three embedded segments are in-
dicated by the brackets and indentation shown (further
subsegments are elided). In Grosz and Sidner's theory,
the segment structure of a discourse is accounted for
by assigning a purpose to each segment, such that each
segment's purpose contributes to successful collabora-
tion on the parent segment's purpose via the conditions
of the SharedPlan described above.

For example, the purpose of the toplevel segment in
Figure 4 is to replace the pump and belt, which is the
common goal of the collaboration. The purpose of the
�rst subsegment is to remove the belt, which is one of
the steps in the recipe for replacing the belt. The pur-
pose of the �rst subsubsegment is to identify a param-
eter of the removal action, i.e., the belt to be removed.
The purpose of the second subsegment is to remove the
pump, which is also one of the steps in the recipe for
the toplevel purpose.

Notice in Figure 4 that our analysis of the discourse
includes not only the participants' utterances, but also
their actions (e.g., B removes belt). This is particularly
appropriate in a context, such as collaborative interface
agents, where all actions on the shared artifact are mu-
tually observable.

7 SEGMENTED INTERACTION HISTORY
Figure 5 shows the segmented history of an interaction
between a user and our collaborative agent solving the
problem posed at the start of Section 4. The contents of
the �gure were automatically generated by the agent as
a printout of the data structures built during the inter-
action by the algorithms described in Section 9; only ex-
tra spacing and authors' comments in italics have been
added. The embedding of segments is indicated by in-
dentation. The start of each segment is indicated by
a line in brackets [: : :] containing a description of the
discourse segment purpose.

Other interactive systems also maintain histories. How-
ever, most such histories are \at" or, if they do have
structure, it is a reection of the nesting of dialog boxes,
rather than, as is the case here, the user's problem solv-
ing process.

Notice that each event in the history is either a commu-
nication, represented by an English gloss in quotes ": : : ",
or the description of an application-level manipulation
(result of a mouse click). Both the user and agent per-
form both communication and manipulation acts and
the initiative moves back and forth between the two.

The interaction begins with the user choosing one of a
set of default high-level goals. After the agent accepts
the user's proposal, the user pauses with her cursor on

5

[Scheduling a trip on Boston to Dallas to Denver to San Francisco to Boston]
1 USER: "Propose scheduling a trip."
2 AGENT: "Ok."

(user pauses at home)

[User identifying route of scheduling a trip as Boston to Dallas
to Denver to San Francisco to Boston]

3 AGENT: "What is route of scheduling a trip?" (Figure 7 here)
4 USER: Add Boston to the route. (implicit acceptance)
5 USER: Add Dallas to the route.
6 USER: Add Denver to the route.
7 USER: Add San Francisco to the route.
8 USER: Add Boston to the route.

[Interruption where user adding American airline] (incomplete recipe)
9 USER: Add American airline.

(user pauses at home)

[User proposing scheduling a trip on Boston to Dallas to Denver to
San Francisco to Boston via working backward]

10 AGENT: "How will a trip on Boston to Dallas to Denver to San Francisco
to Boston be scheduled?" (Figures 2, 8 here)

11 USER: "Propose scheduling a trip on Boston to Dallas to Denver to San Francisco
to Boston via working backward."

[User working on San Francisco to Boston leg]
12 USER: "Propose working on San Francisco to Boston leg."
13 USER: Add Boston final interval with arrival Sun 11:30p.
14 USER: Change Boston final interval to arrival Fri noon.
15 USER: Add San Francisco stopover with arrival Wed 1:55a departure Wed 9:55a.
16 USER: Change San Francisco stopover to arrival Thu 6:00p departure Fri 1:57a.

(user pauses at home)

[User working on Denver to San Francisco leg]
17 AGENT: "Propose working on Denver to San Francisco leg."

... (elide working on rest of legs)
(user stuck { pauses at home with zero itinerary count)

[Agent adding United airline]
36 AGENT: "Propose I add United airline."
37 USER: "Ok."
38 AGENT: Add United airline.

[User displaying and selecting itineraries]
39 USER: Display 4 itineraries.
40 USER: Select itinerary Wed AA/1099 Wed AA/313 Thu UA/343 Fri AA/928.
41 USER: Done. (only user can know when done)

Figure 5: Automatically segmented interaction history with authors’ comments added in italics.

Boston DFW DEN SFO Boston

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Boston AA Dallas A Denver U SFO AA Boston

Figure 6: Interval bars and displayed itineraries at end of session above.

6

her home page. In a face-to-face conversation, there
are many cues, such as pauses, eye contact, voice pitch,
and body position, that help signal when a speaker has
ended her \turn." In this system, we have introduced
a|we hope intuitive|arti�cial gesture for this purpose,
namely, leaving the cursor motionless in the home win-
dow for more than a second.

In response to the user's pause, the agent takes the
initiative (event 3) and proposes a subgoal which con-
tributes to the current goal by identifying an unspeci-
�ed parameter, the route. The user implicitly accepts
the agent's proposal by starting to act on this subgoal
(event 4).

The segments of the interaction history are computed in-
crementally. So, for example, if instead of adding Boston
to the route following event 3, the user had selected
\Where are we?" from her communication menu, the
following would be printed in the agent's home window:

[Scheduling a trip]
1 USER: "Propose scheduling a trip."
2 AGENT: "Ok."

[User identifying route of scheduling a trip]
3 AGENT: "What is route of scheduling a trip?"

Figure 7: Where are we?

Event 9 illustrates where the agent's current recipe
knowledge is incomplete. The user's manipulation is
analyzed as an interruption, i.e., a segment that does
not contribute to its parent, because none of the agent's
recipes for scheduling a trip have a step for specifying
airlines. Clearly, these recipes need to be improved.
However, we take the view in general that the agent's
knowledge will never be complete and it therefore must
deal gracefully with unexpected events.

The agent currently has two recipes, gleaned from our
observations of real users, for scheduling a trip on a given
route: working forward and working backward. The
working-forward recipe works on the legs of the trip in
order starting with the �rst leg; the working-backward
recipe starts with the last leg.

Figure 2 shows the moment in the interaction after the
agent's question in event 10 when the user is about to
answer by choosing what will become event 11 from the
communication menu in her home window. Unlike con-
ventional pop-up menus, the user at this point could
have just ignored the agent's question and continued
clicking on the application window instead.

Notice that the only other entry in her menu at this
point is the generic \Where are we?". The main rea-
son we believe that menus can be workable here is be-
cause the generation algorithm described in Section 9
only produces the relatively small number of communi-
cation actions that are expected in the current discourse
context.

Notice also that the user's menu choice in Figure 2 has

a blank at the end where the name of the recipe is sup-
posed to go. Once a communication choice is made,
the user is presented with another menu, such as the
one below, to choose from the allowable values for any
unspeci�ed elements.

Propose scheduling a trip on Boston to Dallas to Denver to San Francisco to Boston via ___.

working forward

working backward

Figure 8: Choosing a recipe.

Given that the user chose the working-backward recipe,
the interaction continues with the �rst step of the recipe,
namely working on the San Francisco to Boston leg.
Working on a leg means using the cursor to slide and
stretch the city interval slider bars (see Figure 6).

Events 17 and 36 are two examples of the agent's re-
sponse to a situation in which it appears the user does
not know what to do next. The agent's response in
event 17 results from an application-independent strat-
egy, namely, to propose the next step in the current
recipe.

The agent's response in event 36 is application-speci�c.
As mentioned in Section 4, one of the main ways that
users get stuck is by over-constraining their itinerary
causing the itinerary count to become zero. The agent's
response here is to suggest reducing constraints by add-
ing United to the set of allowable airlines. The agent did
not choose this particular constraint change at random|
it used its ability to access the test application's API to
�nd a constraint change that would in fact increase the
number of itineraries. This is a good example of where
the capabilities of one collaborator are usefully di�erent
from those of another.

The interaction ends with the user displaying the four
possible itineraries in the scrolling window (see Figure
6) and selecting one. Notice that the last event is tech-
nically a manipulation rather than a communication,
because there is a special \Done" button on the appli-
cation interface.

This interaction history is an important �rst milestone
in our overall research program. The underlying data
structures (described in Section 9 below) will support
many additional collaborative capabilities. As just one
example, we are working on a better \undo" facility that
works at the level of segments.

8 ARTIFICIAL DISCOURSE LANGUAGE
The most fundamental concept in Collagen's internal
representation is an act. An act is formed by applying a
constructor function (act type) to the required parame-
ters. The �rst two parameters of every act type are the
time the act is performed and which participant (or set
of participants) performs the act. Many act types, such
as scheduling a trip, are abstract; they are essentially
goals which may be achieved in several alternative ways
(i.e., via di�erent recipes).

7

A basic act is an act that is directly executable and not
further decomposable. For example, the direct manipu-
lations on the test application are basic acts.

Sidner's arti�cial discourse language [17] de�nes a collec-
tion of constructors for basic communication acts, such
as proposing, retracting, accepting, and rejecting pro-
posals. This section provides a rough sketch of the lan-
guage and our use of it. As a syntactic convention below,
application-independent parts of the language are writ-
ten in capitals, terms speci�c to the test application are
in lower case, and variables are in italics.

Our current implementation includes only two basic
communication act types: PFA (propose for accept) and
AP (accept proposal). An area of future work is to im-
plement Sidner's other act types, such as retracting, re-
jecting, and counter-proposing, which are required to
support collaborative negotiation.

PFA(t,participant1, belief,participant2)

The semantics of PFA are roughly: at time t, participant1
believes belief, communicates his belief to participant2,
and intends for participant2 to believe it also. If partic-
ipant2 responds with an AP act, e.g., \Ok", then belief is
mutually believed.

Sidner's language at this level is very general|the pro-
posed beliefmay be anything. For communicating about
collaborative activities, we introduce two application-
independent operators for forming beliefs about acts:
SHOULD(act) and RECIPE(act,recipe).

Below are examples of how this language represents
some of the communication acts in Figure 5. In each
example, we show the internal representation of the act
followed by the English gloss that was automatically
produced. Glosses are produced by a straightforward
recursive substitution process using a set of string tem-
plates associated with each act type.

PFA(36,agent,SHOULD(add-airline(t,agent,ua)),user))
36 AGENT: "Propose I add United airline."

Notice below that a present participle template is used
when the participant performing an act is unspeci�ed.

PFA(1,user,SHOULD(schedule(t,who,route)),agent)
1 USER: "Propose a trip be scheduled."

Questions arise out of the embedding of PFA acts as
shown below (route is a constructor for route expres-
sions).

PFA(11,agent,
SHOULD(PFA(t1,user,

RECIPE(schedule(t2,who,
route(bos,dfw,den,sfo,bos)),
recipe), agent)),

user)

11 AGENT: "How will a trip on Boston to Dallas to
Denver to San Francisco to Boston be scheduled?"

PFA(12,user,RECIPE(schedule(t,who,route(: : :)),
working-backward),agent)

12 USER: "Propose scheduling a trip on : : :

via working backward."

There is presently no way for users to construct an arbi-
trary communication; they can only choose from a menu
of communication acts generated by the algorithm de-
scribed in the next section. We are interested in seeing
how far we can push this approach. However, should we
decide to do so, it would be straightforward to provide
an interface, such as a syntax-directed editor, for con-
structing arbitrary messages in the arti�cial language.

9 DISCOURSE PROCESSING IN COLLAGEN
This section provides an overview of the generic dis-
course processing algorithms and data structures that
underlie the collaborative agent. Since the goal of this
work is to use well-established human discourse algo-
rithms, readers are referred to the referenced literature
for more details.

Discourse processing in Grosz and Sidner's framework
[6, 7] has three interacting components:

� The linguistic structure of a discourse includes the
grouping of utterances into segments, as well as the
use of anaphora, tense, and cue words. We use the
arti�cial language above to represent this kind of lin-
guistic information.

� The attentional state of a discourse captures the shift-
ing focus of attention of the participants. We rep-
resent attentional state as a focus stack of discourse
segments.

� The intentional structure of a discourse corresponds to
the current partial status of the participants' Shared-
Plans. We represent this information as a recipe tree,
which is a reimplementation of Lochbaum's rgraph
structure [12]. Each node of a recipe tree is a common
goal; the children of the node are acts that contribute
to it.

As can be seen in Figure 9, the agent currently uses only
one focus stack and recipe tree, which represents mutu-
ally believed information. When we start to work on
negotiation, we will need to distinguish between mutual
beliefs and the individual beliefs of the agent and user.

Our key discourse processing algorithm, discourse inter-
pretation, is a reimplementation of Lochbaum's rgraph
augmentation algorithm [12]. The discourse generation
algorithm is essentially the inverse of the interpretation
algorithm.

Discourse Intepretation
The input to discourse interpretation is a (basic) manip-
ulation or communication act that has been observed or
received by the agent, i.e., queued in its input bu�er.
The main job of the algorithm is to see if the current
act can be viewed as contributing to the current dis-
course purpose, i.e., the purpose of the top segment on
the focus stack. This breaks down into �ve main cases.

8

Agent
Input
Buffer

Discourse
Interpretation

Discourse
Generation

Focus Stack

segment

segment

Recipe Tree

communication

Agenda

user

agent

continue?
pop?
push?

basic

act

can’t explain

contributes?

decision

menu

Recipe Library

Figure 9: Discourse processing algorithms and data structures in Collagen.

The current act either:

� directly achieves the current purpose,
� is one of the steps in a recipe for the current purpose
(this may involve retrieval from the recipe library),

� identi�es the recipe to be used to achieve the current
purpose,

� identi�es who should perform the current purpose or
a step in the current recipe, or

� identi�es an unspeci�ed parameter of the current pur-
pose or a step in the current recipe.

If one of these cases obtains, the current act is added to
the recipe tree and the current segment. Furthermore,
if this act completes the achievement of the current dis-
course segment purpose, the focus stack is popped. The
last three cases above are instances of a larger class of
explanations that Lochbaum [13] calls \knowledge pre-
conditions."

If the current act is a communication of the form

PFA(: : : , : : : , SHOULD(: : :), : : :)

it is interpreted as initiating a new segment which is
pushed onto the focus stack regardless of whether the
proposed act contributes to the current purpose. This is
part of the modelling of interruptions, i.e., subsegments
whose purpose does not contribute to the purpose of the
parent segment.

Finally, acts that cannot be understood in any of the
ways described above are turned over to a rudimentary
exception-handling mechanism, which at the moment
uses some heuristics to try to distinguish between in-
terruptions and abandonments of the current purpose.
Further research is needed in this area.

It is tempting to think of discourse interpretation as
plan recognition, which is known to be exponential in
the worst case [10]. However, this misses a key prop-
erty of normal human discourse, namely that speakers
work very hard (even to the extent of providing redun-
dant information [20]) to make sure that their conver-
sational partners understand their intentions without a
large cognitive search. Notice that the only search in-
volved in the algorithm above is through the steps of

the current recipe or all known recipes for the current
discourse purpose (and this is not done recursively).

Discourse Generation
The discourse generation algorithm looks at the cur-
rent focus stack and recipe tree and produces a priori-
tized agenda of (possibly partially speci�ed) acts which
would contribute to the current discourse segment pur-
pose. The communication acts in this agenda which
could be performed by the user are used to construct
user communication menus like the one shown in Fig-
ure 2. The agent also uses this agenda as input to its
decision about what to do next. For example, it may
propose that the user perform a high priority act on the
agenda.

Prioritites are assigned to acts in the agenda based on
some simple application-independent heuristics. For ex-
ample, the highest priority is assigned to unexecuted
steps of a recipe, all of whose parameters have been
speci�ed and all of whose predecessors in the recipe have
been executed.

10 RELATED WORK
This work lies at the intersection of many threads of re-
lated research in user interface, linguistics, and arti�cial
intelligence. It is unique, however, in its combination of
goals and techniques.

Our concept of an interface agent is closest to the work
of Maes [14], although she uses the term \collaborative"
to refer to the sharing of information between multiple
software agents. Cohen [4] has also developed interface
agents without collaborative discourse modelling. Ter-
veen [19] has explored providing intelligent assistance
through collaborative graphical manipulation without
explicit invoking the agent paradigm.

Cohen [3] and Jacob [9], among others, have explored
discourse-related extensions to direct manipulation that
incorporate anaphora and make previous context di-
rectly available. However, most work (e.g., [11, 21]) on
applying human discourse principles to human-computer
interaction have assumed that natural language under-
standing will be applied to the user's utterances.

9

The two systems we know of that are overall closest
in spirit to our own are Stein et al.'s MERIT [18] and
Ahn et al.'s DenK [1]. MERIT uses a di�erent discourse
theory and compiles it into a �nite-state machine rep-
resentation, which is less exible and extensible. DenK
has the goal of providing a discourse-based agent, but
has not yet modelled collaboration.

11 CONCLUSION
We view the current state of this research as providing
a new conceptual platform upon which we and others
can now build higher. Our short-term implementation
goals include:

� history-based transformations, such as undoing, re-
turning to, or replaying segments,

� adding communication acts to support negotiation,
� and additional application-speci�c recipes.

With these and a few other improvements in place, we
plan to begin initial user testing.

In the longer term, some of the directions we hope to
see explored include:

� agents that operate remotely in space and time (e.g.,
on the Internet), which will entail relaxing the require-
ment for complete mutual observability and increas-
ing the level of discussion between the agent and user
about future actions, and

� generalizing Collagen to support multiple human and
software agents (the underlying window sharing layer
and the SharedPlan formalism have already been gen-
eralized in this way).

� communicating with the software agent in spoken lan-
guage, taking advantage of the discourse generation
algorithm to reduce the search space for speech recog-
nition,

Most current user interface design uses the familiar tools
of menus, buttons, dialogue boxes, and so on, to im-
plement the following \collaborative" principle: tell the
user something simple and constrain her options to re-
spond. As we have illustrated in this paper, true collab-
oration is a much richer process. The discourse capabil-
ities of our software agent provide this kind of richness
by structuring the interaction and its history and let-
ting users make their purposes more explicit. We hope
this work will inspire new e�orts in user interface design,
with or without software agents.

REFERENCES
1. R. Ahn et al. The DenK-architecture: A fundamental

approach to user-interfaces. Arti�cial Intelligence Re-
view, 8:431{445, 1994-5.

2. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans
and resource-bounded practical reasoning. Computa-
tional Intelligence, 4(4):349{355, November 1988.

3. P. Cohen. The role of natural language in a multimodal
interface. In Proc. ACM Symposium on User Interface
Software and Technology, pages 143{149, Monterey, CA,
November 1992.

4. P. Cohen et al. An open agent architecture. In O. Et-
zioni, editor, Software Agents, Papers from the 1994

Spring Symposium, SS-94-03, pages 1{8. AAAI Press,
Menlo Park, CA, March 1994.

5. B. J. Grosz and S. Kraus. Collaborative plans for com-
plex group action. Arti�cial Intelligence, 1996. In pub-
lication.

6. B. J. Grosz and C. L. Sidner. Attention, intentions, and
the structure of discourse. Computational Linguistics,
12(3):175{204, 1986.

7. B. J. Grosz and C. L. Sidner. Plans for discourse. In
P. R. Cohen, J. L. Morgan, and M. E. Pollack, editors,
Intentions and Communication, chapter 20, pages 417{
444. MIT Press, Cambridge, MA, 1990.

8. B. J. Grosz [Deutsch]. The structure of task-oriented
dialogs. In IEEE Symp. on Speech Recognition: Con-
tributed Papers, pages 250{253, Pittsburgh, PA, 1974.

9. R. J. K. Jacob. Natural dialogue in modes other
than natural language. In R.-J. Beun, M. Baker, and
M. Reiner, editors, Dialogue and Instruction, pages
289{301. Springer-Verlag, Berlin, 1995.

10. H. Kautz. A circumscriptive theory of plan recognition.
In P. R. Cohen, J. L. Morgan, and M. E. Pollack, ed-
itors, Intentions and Communication, chapter 6, pages
105{133. MIT Press, Cambridge, MA, 1990.

11. L. Lambert and S. Carberry. A tripartite plan-based
model of dialogue. In Proc. 29th Annual Meeting of the
ACL, Cambridge, MA, 1991.

12. K. E. Lochbaum. Using collaborative plans to model
the intentional structure of discourse. Technical Report
TR-25-94, Harvard Univ., Ctr. for Res. in Computing
Tech., 1994. PhD thesis.

13. K. E. Lochbaum. The use of knowledge preconditions in
language processing. In Proc. 14th Int. Joint Conf. Arti-
�cial Intelligence, pages 1260{1266, Montreal, Canada,
August 1995.

14. P. Maes. Agents that reduce work and information over-
load. Comm. ACM, 37(17):30{40, July 1994. Special
Issue on Intelligent Agents.

15. B. Meyers et al. Garnet: Comprehensive support
for graphical, highly-interactive user interfaces. IEEE
Computer, 23(11):71{85, November 1990.

16. C. Rich. Window sharing with collaborative interface
agents. ACM SIGCHI Bulletin, 28(1):70{78, January
1996. Also published as MERL Technical Report 95-12.

17. C. L. Sidner. An arti�cial discourse language for col-
laborative negotiation. In Proc. 12th National Conf. on
Arti�cial Intelligence, Seattle, WA, August 1994.

18. A. Stein and E. Maier. Structuring collaborative
information-seeking dialogues. Knowledge-Based Sys-
tems, 8(2-3):82{93, April 1995.

19. G. Terveen, D. Wroblewski, and S. Tighe. Intelligent
assistance through collaborative manipulation. In Proc.
12th Int. Joint Conf. Arti�cial Intelligence, pages 9{14,
Sydney, Australia, August 1991.

20. M. A. Walker. Redundancy in collaborative dialogue.
In 14th Int. Conf. on Computational Linguistics, 1992.

21. N. Yanklovich. Talking vs. taking: Speech access to
remote computers. In Proc. ACM SIGCHI Conference
on Human Factors in Computing Systems, pages 275{
276, Boston, MA, April 1994.

10

	Title Page
	Title Page
	page 2

	Adding a Collaborative Agent to Graphical User Interfaces
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

