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Abstract

The Available Bit Rate (ABR) flow control specification for ATM networks has recently been
completed by the ATM Forum. However, the excessive complexity of the specified scheme and
the uncertainty about its performance make it costly and risky to implement ABR flow control
in hardware. This paper presents a software approach for implementing ABR flow control in
source/destination systems to reduce hardware complexity and allow flexibility and upgradability
in implementing ABR flow control. The proposed approach is currently being implemented
in DART – an ATM network interface control chip under development by Mitsubishi Electric
Corporation.
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1 Introduction

The Available Bit Rate (ABR) is an important service category de�ned by the ATM Forum
to provide e�cient support for bursty data tra�c in ATM networks [1]. Together with the
Constant Bit Rate (CBR) and Variable Bit Rate (VBR) services which are used to support
continuous bit stream tra�c, ABR is a key element to enable ATM to become a truly integrated
network capable of providing services that are currently provided by circuit switched and packet
switched networks.

The main objective of the ABR service is to make e�cient use of bandwidth left-over by
CBR/VBR tra�c. To achieve this goal, the amount of ABR tra�c that a source system
can inject into a network must be controlled according to the current network load condition.
Speci�cally, when a network is lightly loaded, a source should be allowed to send a large amount
of data quickly over the network, while as the tra�c load increases, a source's transmission rate
must be throttled down to avoid network congestion.

One such ABR 
ow control mechanism has recently been de�ned by the ATM Forum based
on a rate control scheme. To detect network congestion, a source periodically sends Resource
Management (RM) cells along with data cells. These RM cells are turned around at their
destination. Switches within a network record their congestion information in the passing RM
cells. When a source receives return RM cells, it adjusts its transmission rate according to the
network congestion information carried in the RM cells. A more detailed description of the
ATM Forum's rate-based ABR 
ow control mechanism is given in Section 2.

Implementation of a rate-based ABR 
ow control mechanism imposes a great challenge
to source/destination systems for two reasons. First, the mechanism as de�ned by the ATM
Forum uses a set of rather complicated rules and a large number of ABR parameters/variables
to handle RM cells and adjust transmission rates. This makes it quite expensive to implement
ABR 
ow control fully in hardware. Secondly, the ABR mechanism as de�ned by the ATM
Forum is not well tested. There are known problems that are left for vendors to solve and
there have not been enough analysis and simulations showing the performance of the speci�ed
mechanism. It is also not clear if currently de�ned point-to-point ABR 
ow control framework is
suitable for point-to-multipoint 
ow control. It is thus highly desirable to implement ABR 
ow
control in a 
exible and upgradable way such that one can easily adjust the ABR mechanism
to get better performance and/or follow possible changes in the ABR speci�cation.

Though it is obvious to use software to provide the required 
exibility, it is not clear how
to best partition functions between hardware and software and where and how the software
processing is performed (e.g., by using an embedded processor core on chip, a local processor on
board, or a host processor in an end system). This paper presents an approach for implementing

exible ABR 
ow control in software that requires minimum hardware support, in contrast to
the hardware complexity of an embedded microprocessor core on chip. By doing a careful
partitioning of ABR processing functions and using a novel interface between hardware and
software, the same minimal hardware can be used to support ABR processing either by a host
processor in an end system or a local processor on board. This gives people the freedom of
designing a system most suited for their target applications. For example, a very low cost
end system can be implemented by having a host processor do the ABR processing with a
reasonably low overhead. We have measured the host overhead for such an approach to be less
than 15% on a 100 MHz Pentium machine running Windows NT. On the other hand, a fast
and powerful local processor can be used for a high-end network interface card or a network
switching node implementing virtual source/destination to get a better performance.

Speci�cally, the approach proposed in this paper uses hardware to implement per cell based
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Figure 1: Framework of ABR 
ow control.

ABR functions and provides an interface to allow an external processor to perform per RM cell
based processing in software. The hardware/software interface is designed in such a way that all
communication between the hardware and software is realized via access to an external mem-
ory, and thus the same interface allows either a host processor or a local processor to perform
the ABR processing. Since the per cell based processing, which is time critical and intensive,
is performed in hardware, the approach does not degrade ABR 
ow control performance sig-
ni�cantly. Furthermore, this approach incurs only small processing overhead on the external
processor, making it feasible to perform such processing on the host processor to realize low
cost endstations. At the same time, since important functions such as rate adjustment and RM
cell handling are implemented in software, the approach allows a great amount of freedom to
modify the ABR functionality via changes in software.

The contribution of this paper is twofold: an elucidation of problem areas in the ATM
Forum ABR speci�cation to justify the necessity of 
exible ABR 
ow control and a novel
partitioning of functionality between hardware and software to allow low cost, yet very 
exible
implementations. The paper also describes one such implementation in the DART chip, one of
the �rst generation ATM network interface chips to implement ATM Forum's ABR 
ow control
speci�cation.

This paper is organized as follows. Section 2 gives a detailed description of the ABR 
ow
control scheme as de�ned by the ATM Forum and discusses its problem areas. The proposed
software approach and its implementation in the DART ATM network interface chip are de-
scribed in Sections 3 and Section 4, respectively. The paper concludes with Section 5.

2 Rate-Based ABR Flow Control

We give a description of the ATM Forum's rate-based ABR 
ow control mechanism and its
problem areas in this section. Readers are referred to [1] for a complete speci�cation.

Figure 1 shows a framework under which the ATM Forum's ABR 
ow control mechanism is
speci�ed. A source end system sets up an ABR connection to a destination end system through
one or more subnetworks. Virtual source/destination systems can be used to connect subnet-
works. An ABR 
ow control loop is formed between each adjacent pair of source/destination
systems by having a source system generating forward RM cells and a destination system turn-
ing around received RM cells. Switches within a subnetwork may convey their congestion
information to a source system via writing �elds in passing RM cells and/or generating RM
cells by themselves. The major functions that a source/destination system needs to perform,
and their potential problems are described in the following subsections.
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2.1 RM cell handling

Resource Management (RM) cells are generated by a source system to detect network congestion
so it can adjust its transmission rate accordingly. The way in which RM cells are generated
has a big impact on the ABR performance. On one hand, generating too few RM cells reduces
a source's responsiveness to network load changes, which may cause bandwidth waste and/or
bu�er over
ow at switches. On the other hand, generating too many RM cells increases the
overhead of doing ABR 
ow control. Uncontrolled RM cells may cause network congestion
by themselves and reduces network throughput. The ATM Forum adopted a set of rather
sophisticated rules for the generation of forward RM cells (i.e., in the direction from a source
to a destination):

� Forward RM cells of a connection are generated using the assigned bandwidth to avoid
interfering with other connections. This is called in-rate generation of forward RM cells.
A connection is allowed to generated out-of-rate RM cells, i.e., with a cell's Cell Loss
Priority (CLP) bit set to 1 and without consuming a connection's bandwidth, at a rate
no more than 10 cells/section to allow rate ramp-up from zero.

� One RM cell shall be sent for every Nrm cells sent for a connection to keep a proper
proportion of RM cells within a cell stream to ensure the responsiveness and limit the
overhead of ABR 
ow control. Nrm is an ABR parameter with a default value of 32.

� For connections sending cells at extremely low rates, one in-rate forward RM cell can be
sent in every Trm seconds, where Trm is an ABR parameter with a default value of 100
milliseconds.

� To avoid forward RM cells blocking data cells and backward RM cells, no more than one
forward RM cell shall be sent in every two cells sent in the presence of data or backward
RM cells.

The above rules try to strike a compromise between responsiveness and overhead of ABR

ow control. But there are still problems. For example, a connection sending at a low rate
(possibly due to a previous network congestion) may have to wait for 100 milliseconds to send
a forward RM cell, and then wait for the return of the cell to get a chance to ramp-up its rate.
This response speed may not be satisfactory for many LAN applications. On the other hand,
a large number of connections sending RM cells at a 10 cells/second rate may also cause a
problem to a network.

Just like the generation of forward RM cells at a source, a destination must also be very
careful in turning around RM cells. The ATM Forum uses the following rules for sending
backward RM cells (i.e., in the direction from a destination to a source).

� RM cells shall be turned around using the bandwidth assigned to the backward direction
of the connection. Only if a second RM cell is received before the �rst RM cell is turned
around, can the �rst RM cell be sent back to its source out-of-rate, i.e., with it CLP bit
set to 1 and not using the backward bandwidth. It is also allowed for the �rst RM cell to
be discarded.

� In case there is a con
ict with forward RM cells or data cells, a forward RM cell has a
transmission priority over a backward RM cell. After the transmission of a forward RM
cell, the �rst backward RM cell has a priority over data cells, and then data cells will have
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priority over backward RM cells until the generation of another forward RM cell. This
dynamic priority setting scheme avoids possible bandwidth starvation problem for either
backward RM cells or data cells.

One problem with the above RM cell turn around scheme is the case where forward and
backward bandwidths of a connection are not well balanced (i.e., backward bandwidth < 1=Nrm
of the forward bandwidth). In this case, a large number of RM cells are either sent back with
CLP=1 (i.e., they are dropped �rst by a network in case of congestion) or discarded by a
destination. Loss of backward RM cells can signi�cantly degrade the ABR performance. It
should be noted that unbalanced bandwidth allocation is not unusual at all. To make e�cient
use of network resources, no signi�cant bandwidth should be allocated to one direction of a
connection if most of its tra�c is 
owing in the other direction. Also for point-to-multipoint
connections, the backward bandwidth is always zero, thus all RM cells are either turned around
out-of-rate or dropped at the destination. For this reason, it is not clear if the point-to-point
ABR 
ow control framework as de�ned today can also accommodate future point-to-multipoint

ow control schemes.

2.2 Rate control and adjustment

The transmission rate of an ABR connection is controlled to be under an Available Cell Rate,
ACR. ACR is initially set to an Initial Cell Rate, ICR, and then adjusted in a range between a
Peak Cell Rate, PCR, and a Minimum Cell Rate, MCR, in a way described below. The ATM
Forum's rate-based scheme assumes a source/destination system to have a rate controller (or
tra�c shaper) capable of controlling dynamically changing rate accurately for each individual
connection. The impact of inaccurate rate control (e.g., the widely used rate group approach
implementing 8 - 16 rates) to the ABR performance is not yet clear.

The way in which ACR is adjusted has a direct impact to the ABR performance. Ideally,
ACR should be increased to PCR when a network is not congested to make the best use of
available bandwidth, and ACR should be reduced to MCR in case of congestion to avoid bu�er
over
ows in a network. However, due to delays between the occurrence of congestion and the
time when a source is noti�ed by a backward RM cell, such dramatic rate changes may generate
large oscillations of ACR. In addition, a source needs to have a self-limiting property, meaning
that it reduces its rate when not receiving backward RM cells for a long period of time. To
achieve these objectives, the ATM Forum de�ned the following rules for rate adjustment:

� When a backward RM cell is received with its CI (congestion indication) bit set to one,
the ACR shall be reduced exponentially in reacting to network congestion, and if the
backward RM cell has both CI and NI (no increase) bit set to zero, the ACR may be
increased additively (to a rate no more than PCR).

One problem with this type of binary rate adjustment is the slow response to network
load changes. It may take a while for a source to settle down on an ideal ACR, caus-
ing either underutilization of network bandwidth or large queue build-up at congested
switches. Another well-known problem is the unfairness in bandwidth allocation among
ABR connections caused by a \beat-down" phenomenon. Speci�cally, a connection which
goes through a large number of switches is more likely to receive an backward RM cell
with the CI bit set than connections over a smaller number of switches, thus it tends to
have an ACR smaller than that of other connections.
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� To improve a source's responsiveness to network load changes and deal with the \beat-
down" problem, an ER (explicit rate) �eld is included in RM cells which can be used by a
switch or a destination system to directly set the transmission rate of a source to a desired
value. When a source receives a backward RM cell, it sets its ACR to the minimum of
that calculated from the CI/NI bits and the value contained in the ER �eld (and no
less than MCR as always). The explicit rate approach is expected to improve a source's
responsiveness and solve the beat-down problem as long as switches have the ability of
setting the ER �elds correctly, which by itself is a challenging problem that has been left
to switch vendors to deal with.

� Besides reacting to feedback from a network, a source must also adjust its transmission
rate occasionally when it is not receiving feedback. This self-limiting feature is imple-
mented with following two rules:

{ a connection which has been idle for a certain period of time, measured as the
time interval between sending two consecutive forward RM cells exceeding a pre-
speci�ed value (0.5 second by default), should reduce its ACR to ICR to protect
a network from a situation where a large number of idle connections burst at high
rates simultaneously, and

{ a connection should reduce its ACR exponentially when it believes that its feed-
back loop is broken or experiencing extremely long delays (i.e., when the number of
outstanding RM cells reaches a pre-speci�ed threshold).

The ATM Forum also provides a number of \use-it-or-lose-it" rules to reduce a connec-
tion's ACR to a value which approximates the actual cell transmission rate. This is to
protect a network from being congested by simultaneous bursts of a large number of con-
nections previously sending at low rates but retaining large values of ACR. However, a
side e�ect of using a \use-it-or-lose-it" rule is that it may severely hinder the performance
of request-response type applications. Speci�cally, applications sending short bursts of
data may not be able to get enough bandwidth even if the network is lightly loaded. Due
to this, the ATM Forum decided to leave it to vendors' latitude to decide whether or not
to implement one of the recommended \use-it-or-lose-it" rules (or implement a rule of
their own).

In summary, the ATM Forum has carefully speci�ed a set of rules for source/destination
systems to follow. These rules are expected to work well in most situations. However, it is
di�cult to predict real world performance due to many open issues as discussed above and a lack
of theoretical analysis and simulations of the speci�ed scheme. Some �xes and/or enhancements
to the scheme might be needed as people gain more experience with ABR 
ow control. Support
for multicast ABR 
ow control may also introduce some adjustments to the current ABR 
ow
control framework. It is thus very important for vendors to be prepared for these changes when
implementing their ATM products with ABR 
ow control.

3 Software ABR Flow Control

There is a spectrum of ways to partition the functionality of ABR 
ow control between hardware
and software to maintain 
exibility. This section describes a particular partitioning and inter-
facing between hardware and software that maintains 
exibility and performance but requires
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Figure 2: ABR 
ow control functional blocks.
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Figure 3: Partition of ABR 
ow control functions.

minimum hardware support. The approach allows a very low cost end system implementation
by shifting most of the ABR processing to a host processor. It also allows a dedicated processor
for high performance without requiring additional hardware on chip. The proposed approach
can be used either in an end system (i.e., a network interface card) or in a switching node
implementing a virtual source/destination as shown in Figure 1.

Figure 2 shows functional blocks required to implement ABR 
ow control and interfaces
between the blocks. On the transmission side, a tra�c shaper assigns transmission slots to
connections in such a way that their transmission rates are controlled under the speci�ed values
(i.e., ACR). When a connection is selected for sending a cell, a Cell Type Decider decides
whether to send a data cell, a forward RM cell, or a backward RM cell, according to the RM
cell handling rules described in Section 2.1. In certain cases, e.g., on sending a forward RM
cell, the Rate Adjustor is noti�ed to perform possible rate adjustments. The transmitter then
assembles a cell and sends it out to the network. On the receiving side, received RM cells are
forwarded to an RM Cell Processor. For a forward RM cell, the RM Cell Processor modi�es the
cell (e.g., the direction and CI bits), stores it temporarily, and noti�es the Cell Type Decider to
send the cell back to its source at an appropriate time and in an appropriate way. On receiving
a backward RM cell, the RM Cell Processor retrieves feedback information from the cell and
forwards the information to a Rate Adjustor which calculates a new ACR for the connection.

With the ABR functional blocks identi�ed above, we decided to use a partition as shown
in Figure 3. With this partition, functions performed on a per-cell basis are implemented
in hardware and those performed on an per-RM-cell basis are implemented in software. It
also implements functions that require 
exibility the most, e.g., rate adjustment and RM cell
handling, in software.

Figure 4 shows an implementation of the above functional partition, where the software
part of ABR processing is performed by an external processor and the interface between the
processor and chip hardware is implemented by a Control Table and a Processor Requester
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Queue (PRQ) residing in an external memory, and a hardware ABR Assist on chip. Detailed
operations are described in the following subsections.

3.1 ABR request submission

Software ABR processing is initiated by the ABR assist's submission of an ABR request to
the PRQ. The processor either checks PRQ periodically and/or reads PRQ upon receiving an
interrupt from the ABR assist. There are four types of ABR requests:

� FRM TX: a request of type FRM TX is submitted to the PRQ when a forward RM cell
is sent. A FRM TX request contains a time stamp recording the time when the forward
RM cell is sent. Its main purpose is to implement the self-limiting feature as speci�ed by
the ATM Forum. Speci�cally, when a processor �nds that the di�erence between time
stamps of two consecutive RM cells is larger than a pre-speci�ed value, it reduces ACR
to ICR.

� FRM RX: a request of type FRM RX is submitted to the PRQ when a forward RM cell is
received. A FRM RX request contains the received RM cell and a bit indicating whether
or not a previously received forward RM cell has been turned around to help the processor
decide whether to turn around this RM cell in-rate or out-of-rate.

� BRM RX: a request of type BRM RX is submitted to the PRQ when a backward RM cell
is received. A BRM RX request contains the received RM cell and a tx cell count �eld
recording the total number of cells transmitted for the connection. This �eld is used by
the processor to set a limit to the total number of cells that a connection can send before
it is stopped.

� OUT LIMIT: a request of type OUT LIMIT is submitted to the PRQ when the total
number of cells that a connection has sent, tx cell count, reaches a limit tx cell limit set

MERL-TR-96-08 March 1996



8

by the processor. An OUT LIMIT request contains the current value of tx cell count.
After submission of the request for a connection, the transmission of the connection is
stopped. This mechanism is used to self-limit the transmission of a connection when a
processor fails to timely process requests in the PRQ. It can also be used to implement
credit-based 
ow control schemes such as the one speci�ed in [2].

In addition for ABR 
ow control, PRQ is also a convenient place for submitting non-ABR
requests to a processor (e.g., error handling and OAM cell processing).

3.2 Handling of RM cells

On each transmission opportunity, a hardware ABR assist determines the type of cell that a
connection should send by reading state and control �elds in the control table. An external
processor can thus control the generation and turn around of RM cells by writing the control
�elds in the control table. Detailed operations are described below.

� Generation of forward RM cells.
A hardware ABR assist controls the generation of proportional RM cells. Speci�cally, it
maintains a cell since frm �eld in the control table for each connection recording the
number of in-rate cells sent since last in-rate forward RM cell. A forward RM cell is sent
when cell since frm reaches Nrm.

Generation of non-proportional in-rate forward RM cells, e.g., those generated when ACR
is very low, is controlled by the external processor. The control table has two bits for
this purpose: frm in and frm out. To send an RM cell, the external processor sets the
frm in bit to be di�erent from frm out. The hardware ABR assist sends a forward RM
cell at the next transmission opportunity when it detects this condition. After transmis-
sion of an RM cell, the hardware ABR assist sets the frm out bit to make it equal to
frm in. The reason for using two control bits instead of a single bit is to avoid possible
race conditions in updating the same bit by the external processor and the ABR assist.

Out-of-rate RM cells, e.g., those generated when ACR of a connection is zero, can be
generated by having the external processor inject them into a network as raw cells.

Since the frequency of proportional RM cell generation is controlled by the Nrm �eld
in the control table and the generation of non-proportional forward RM cells is entirely
controlled by an external processor, a wide range of forward RM cell generation schemes
can be implemented without requiring changes to the hardware.

� Turn around of backward RM cells.
After processing a received forward RM cell, the external processor turns it around back
to its source as a backward RM cell. This is implemented by using a pair of control bits
brm in and brm out in the control table in a way similar to that used for the generation
of non-proportional in-rate forward RM cells. Speci�cally, to turn around an RM cell,
an external processor sets the brm in bit to be di�erent from brm out, and after the
transmission of the backward RM cell, the hardware ABR assist sets the brm out bit to
make it equal to brm in.

Besides brm in 6= brm out, a hardware ABR assist also checks the following conditions
in making a decision on sending a backward RM cell.

1. Since the forward RM cells have a priority over backward RM cells, no backward
RM cell is sent if the conditions for sending a forward RM cell is satis�ed.
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2. A control bit, frm after brm, is used to determine if a backward RM cell should
be sent in the presence of data cells. The bit is set after the transmission of an
in-rate forward RM cell and reset after the transmission of a backward RM cell. It is
used to implement the dynamic backward RM cell transmission priority as described
in Section 2.1. Speci�cally, if frm after brm = 1, a backward RM cell is sent.
Otherwise, a backward RM cell is sent only in the absence of data cells.

3. To give an external processor some control over the transmission priority of a back-
ward RM cell, a brm pri bit is used in the control table to allow an external processor
to assign a backward RM cell a higher priority over data cells. The hardware ABR
assist resets the brm pri bit after the transmission of the backward RM cell.

Like sending out-of-rate forward RM cells, backward RM cells can be turned around
out-of-rate by an external processor by injecting them into a network as raw cells.

3.3 Rate adjustments

An external processor changes the transmission rate of a connection by writing a rate �eld in
the control table. The rate �eld, storing a value of 1/ACR, is read by a hardware tra�c shaper
to schedule the transmission time for a next cell after the transmission of the current cell. There
are three cases when an external processor may need to change the transmission rate for an
ABR connection.

� On receiving a BRM RX request, the processor reads the received backward RM cell from
the PRQ, adjusts ACR according to rules speci�ed by the ATM Forum as described in
Section 2.2.

� On receiving a FRM TX request, the processor checks if a connection should self-limit
itself as described in Section 2.2.

� On receiving an OUT LIMIT request, the processor marks the connection as in a STOPPED
state. The connection should be re-activated whenever its total number of cells sent falls
below a cell transmission limit set for the connection.

To summarize, the above described software scheme realizes a very 
exible ABR 
ow control
implementation at source/destination systems. Changes in the rate adjustment algorithm, RM
cell handling rules and RM cell formats can be easily accommodated via software changes only.
It also allows a very 
exible con�guration of a source/destination system. One may use a dedi-
cated processor for fast ABR processing or minimize the cost of the ABR processing by sharing
the processor with other applications, such as using a host processor at a source/destination end
system. This later con�guration is implemented in Mitsubishi Electric's DART ATM network
interface control chip and is described in the next section.

4 ABR Flow Control in DART Chip

DART is an ATM network interface control chip currently under development by the Mitsubishi
Electric Corporation. It integrates ATM adaptation layer processing (AAL5 and AAL0) and
a PCI bus interface into a single chip for full duplex 155Mbps transmission. The design in-
corporates advanced features to support high performance (high bandwidth and low latency
applications) and 
exible 
ow control via software. The device meets the latest ATM standards.
Its major features include
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1. First commercially available NIC chip allowing direct, protected access from application
to network, bypassing OS, to

� eliminate OS overhead in data transfer for high bandwidth

� support small messages and low latency communication

� allows application-speci�c protocols

2. Software ABR 
ow control supports ATM 
ow control standards such as the ATM Forum
rate-based scheme and the Credit Consortium credit-based scheme with 
exibility to
follow standard evolution and implement proprietary schemes.

3. Full-featured transmit unit performing per-connection tra�c shaping capable of any trans-
mission rate for up to 32K connections. Four transmission priority levels supporting
multiple tra�c classes (CBR, rt-VBR, nrt-VBR, ABR, UBR).

4. Optional processing of messages between the network and application intended for low
level processing of AAL0 and AAL5 frames. Possible uses include remote operations
for low latency communication (e.g. read and write of memory in other computers),
cyclic communication in real-time systems, �ltering of unwanted messages, and fast/cheap
demultiplexing.

Figure 5 shows the internal structure of the DART chip and one possible end system con-
�guration. We will describe the tra�c shaper, ABR assist and host ABR processing in this
section. Readers are referred to [3, 4] for details of other functional blocks.

4.1 Tra�c Shaper

To support accurate rate control for a large number of connections with a wide range of rate
values, the DART chip uses an enhanced timing chain approach for tra�c shaping as shown in
Figure 6. Each component of the shaper is explained below.
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Figure 6: Tra�c shaper.

� Timing chain.
A timing chain is an array of slots residing in a local memory. Each slot is a 32-bit
entry representing one cell transmission time over the output link. Each timing chain slot
can store one connection ID or a linked list of connection IDs with links stored in the
control table. A current time pointer on the chip points to a slot representing the current
time and moves forward one slot per cell time. A sche time pointer points to a slot from
where connection IDs are being dequeued from the timing chain. The sche time pointer
moves forward one slot after it dequeues all connection IDs in a slot until it catches up
with the current time pointer. To rate control a connection with a cell rate R, after the
transmission of a cell, the connection ID is re-scheduled into a slot which is 1/R slots
away from the slot pointed to by the current time pointer.

� Shaper FIFO queue.
The shaper FIFO queue is used to store connection IDs dequeued from the timing chain or
pointers of raw cells to be transmitted. To implement multiple transmission priorities, the
shaper FIFO is composed of four priority FIFO queues. Connection IDs or cell pointers
are queued at a priority FIFO queue corresponding to their assigned priority levels. Items
stored in priority FIFO queues are read out by an ABR assist in the order of their priority
levels.

� resche in register.
A resche in register is used to reschedule a connection into the timing chain after the
transmission of a cell. The resche in register holds a connection ID and a value dt indi-
cating that the connection should be scheduled dt slots away from the current time pointer
in the timing chain. Di�erent type of tra�c shaping algorithms, e.g., leaky bucket tra�c
shaping for VBR connections, can be implement by using di�erent ways of calculating dt.

� Delay queue.
Due to the limited length of a timing chain, a connection may not be able to be scheduled
in the timing chain if dt is too large. A delay queue is used to store such connection IDs.
The delay queue is implemented as a linked list of connection IDs. The head of the linked
list is dequeued periodically to see if it can be scheduled into the timing chain. If it still
does not �t, it is queued back at the end of the linked list. This mechanism makes the
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shaper capable of supporting a connection with an arbitrary low transmission rate.

� sche in chip and sche in host.
The sche in chip register is used by the chip to initiate scheduling of a connection (i.e.,
when the connection is not already scheduled in the timing chain) by writing the connec-
tion ID into the register. Items written into the sche in chip register are directly moved
to the shaper FIFO queue.

The sche in host register is used by the host to initiate scheduling of a connection. It also
accepts a cell pointer. It provides a means for a host to re-activate a stopped connection
and send out-of-rate raw cells.

4.2 ABR assist and host ABR processing

The DART chip allows a low-cost end system implementation by using a host processor for
the ABR processing. With this con�guration, the control table is placed in a local memory
on board for easy access by the chip through a local bus. The PRQ resides in host memory
for easy access by a host processor. Since the chip only writes to PRQ, large PCI latency is
avoided by a posted write mechanism.

An ABR assist implements the hardware part of the ABR processing. It performs the
following major functions.

� Dequeue an item from the shaper FIFO when the transmitter is ready to send a cell,
and re-schedule a connection in the shaper after transmission of an in-rate cell for the
connection. Notice that this function is performed for all types of connections.

� Determine a cell type for a connection by reading control table in a way described in
Section 3.2.

� Submit ABR requests to the PRQ as described in Section 3.1.

� Interrupt the host processor in a way described below.

To reduce a host processor's ABR processing overhead, the ABR assist implements a spe-
cial interrupt mechanism which enforces a minimum interrupt period. Speci�cally, instead of
generating one interrupt for each request submitted to the PRQ, the chip generates just one
interrupt for all requests submitted within a user speci�ed interrupt period. Fewer number
of interrupts and batch processing of ABR requests reduces the overhead incurred by a host
processor. Since ABR processing is normally done on a per-RM-cell basis and not time critical,
this mechanism is a useful means to allow users to reach a compromise between responsiveness
and software overhead of ABR 
ow control.

Upon receiving an ABR interrupt from the chip, the host processor dequeues and processes
requests in the PRQ one by one. Processing required for each type of request is described in
Section 3.3. It should be noted that operations described in Section 3.3 implement ATM Forum's
ABR 
ow control speci�cation only. Additional/alternative processing can be performed to
enhance ATM Forum's 
ow control scheme or implement other 
ow control schemes. The
DART chip also has additional hardware support to allow implementation of Quantum Flow
Control as speci�ed by the Flow Control Consortium [2]. Space limitations preclude a discussion
of further details here.
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4.3 Host ABR processing overhead

One important issue that needs to be addressed for software ABR processing using a host pro-
cessor is how one can best compromise between the overhead incurred by the host processor and
the performance of the implemented ABR 
ow control. On one hand, the host should be inter-
rupted as infrequently as possible to minimize the overhead. On the other hand, ABR requests
submitted to the PRQ should be processed as soon as possible to improve the responsiveness
of ABR 
ow control. In the rest of this section, we present some overhead measurement that
have been performed and discuss the impact of processing delay to the responsiveness of ABR

ow control.

Measurements on a 100MHz Pentium system indicate 5�sec to enter and exit the Windows
NT low level driver1 and about 7�sec on average to process three ABR requests (FRM TX,
FRM RX, BRM RX). At full line rate of 155 Mbps, this overhead is experienced on average
every 86�sec (32 cell times). In other words, if the minimum interrupt period is set to one RM
period (i.e., 32 cell times), in the worst case it takes no more than 15% of a host's processing
power to support full line rate ABR transmission and receiving simultaneously. In a normal
case, we expect less overhead for the following reasons:

� When an end system is sending and/or receiving at high rates, a network driver is involved
a lot in transmitting and receiving data frames. A driver can be programmed to also check
the PRQ after submitting or receiving a frame to/from the network interface card so that
no ABR interrupts need to be generated when the host is performing driver tasks. This
can reduce the ABR interrupt overhead and also improve the responsiveness of software
ABR 
ow control.

� Host ABR processing overhead occurs only when transmitting or receiving ABR tra�c.
All other tra�c types, i.e., CBR/VBR/UBR, do not require a host's involvement for 
ow
control. So the host overhead is signi�cantly smaller than 15% in the presence of other
types of tra�c and/or when it is not simultaneously sending and receiving ABR tra�c at
full line rate.

� Since the processing of ABR requests is not time critical, the host can batch ABR requests
to amortize overhead by increasing the minimum interrupt period. A longer interrupt
period is equivalent to making the feedback loop longer. We will investigate its impact
to the 
ow control responsiveness and performance by using an ATM network simulator
developed by NIST [6] and a VERILOG model developed for the DART chip.

In any case, the rapid roll out of fast PCs will diminish the relative overhead (We plan to
redo the measurements on 160MHz Pentium-Pro PCs). The con�guration of an end system
with a host processor doing ABR processing provides a low-cost solution for the �rst generation
ATM products implementing ABR 
ow control. In the case that the responsiveness of ABR

ow control and host overhead requirements can not be met, a dedicated local processor on
board can always be used with the proposed software approach for a high-end network interface
card.

5 Conclusions

In this paper, we discussed the necessity of implementing 
exible ABR 
ow control in ATM
networks and presented an approach for doing ABR 
ow control in software. With a careful

1Kindly performed for us by Brad Chen and Yasuhiro Endo at Harvard University [5].
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partition of ABR functions and a novel interface between software and hardware, our approach
requires a minimum amount of hardware support as compared to implementing ABR fully in
hardware or using an on-chip processor core for ABR processing. A very low cost endstation can
be realized by having a host CPU do the ABR processing with a reasonably low overhead. It
also allows the same minimum hardware to support ABR 
ow control by a dedicated processor
to achieve high performance at a high-end network interface card or in a network switching
node. The proposed approach is currently being implemented in a Mitsubishi Electric's ATM
network interface control chip.
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