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Abstract

This paper presents a method for generating compact and effective constructive-solid-geometry
(CSG) object representations from 2D bitmap representations. The method consists of two parts:
a stochastic search procedure for finding candidate CSG trees and a local optimization procedure
that modifies the primitives of a given CSG tree to effect a better match. Results for several
sample input bitmaps are presented and an application of this method to automatic geometric
morphing between pairs of bitmaps is shown.
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1 Introduction

1.1 Motivation

The generation of object models for graphics and animation applications typically requires
a major investment of resources. While CAD tools for building geometric models exist,
developing models of even simple objects often requires sophisticated design skills and a
signi�cant amount of time. On the other hand, new scanning technologies, including laser
range scanners and industrial CT scanners, can produce volumetricmodels of existing objects
reasonably quickly and inexpensively. Unfortunately, this volumetric format cannot be used
by standard design or manufacturing tools. Hence, methods that convert volumetric data into
a structured graphics format are needed in order to exploit these new scanning technologies.

There are several methods that can be used to convert volumetric or scanned-surface
data into compact or structured surface models (e.g., [2, 3, 7]). However, surface models do
not support all modeling and editing tasks equally well. Some tasks are more appropriately
handled by true solid modeling, as embodied in constructive-solid-geometry (CSG). There
is therefore a need for techniques that convert scanned data to CSG models.

Shapiro and Vossler [11, 12, 13] have addressed a related problem. They present a
practical system that converts limited boundary representations into CSG models. Their
method uses a greedy heuristic to construct a compact CSG representation from a given
set of half-spaces, those bounded by lines and circular arcs. However, their system does
not take volumetric or scanned data as input: it requires that the candidate half-spaces be
provided by the user. Furthermore, it is not clear how their method can be extended to
incorporate additional geometric primitives. Other related problems have been addressed in
computer vision [1, 4, 14] but they are not readily applied to the general scanned-data-to-
CSG conversion problem.

1.2 New contributions

This paper addresses the direct conversion from scanned data to an e�ective CSG model by
solving the 2D version of the problem: given a scanned 2D target bitmap, generate CSG
trees that are compact, easily modi�able, and model the target shape well.

Our algorithm consists of two cooperating processes: 1) A global search procedure that
looks in the space of all possible CSG trees for structures that match the target bitmap well;
and 2) A local optimization procedure that modi�es the primitives of a given CSG tree to
better match the bitmap.

The major contributions of this work are:

� A complete solution. Our system takes raw scanned data | a bitmap | as input, and
produces a compact CSG model using rectangular and circular primitives.

� A 
exible measure of model goodness. Our evaluation metric for candidate CSG trees
provides a quantitative measure of how well a tree models a target bitmap. Further-
more, our use of a stochastic search strategy permits this measure to be 
exible; it can
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be easily modi�ed to re
ect many factors including model accuracy, compactness, lo-
cality (proximity of primitives in the CSG tree should re
ect proximity in the object),
and appropriateness for design purposes.

� Variety of solutions. Unlike constructive heuristics, the proposed stochastic search
strategy is capable of �nding a variety of good solutions, some of which may be more
useful than others for particular editing tasks.

� Addition of new primitives. Any shape that can be e�ciently scan-converted can be
added to the set of primitives elements at the cost of a larger search space.

In addition, as an example application of this work we show how bitmap-to-CSG conver-
sion can be used to morph between pairs of bitmaps (x 3.2).

2 Technical Approach

2.1 Global search

The global search strategy is outlined in Figure 1. The search begins with a set of random
candidate solutions; hill climbing is performed on the candidate solutions in parallel; and
at regular intervals the search is refocused on the more promising solutions by throwing
away less promising ones. The CSG primitives consist of rectangles and circles, whose
parameters | h(x; y); (w; h); �i, indicating a rectangle's position, size, and orientation, and
h(x; y); ri indicating a circle's position and radius | are chosen randomly from the following

uniform distributions: x 2 [W4 ;
3W
4
]; y 2 [H

4
; 3H

4
]; r 2 [1; min(W;H)

2
]; w 2 [1; W

2
]; h 2 [1; H

2
]; � 2

[0; 360], where W and H are the width and height of the bitmap, respectively. The type
of each primitive, i.e., rectangle or circle, is chosen with equal probability. Likewise, CSG
operators are chosen with equal probability from the set: di�erence, intersection, and union.
The number of primitives in a tree is determined by the function norm(a; s), which returns
normally distributed random integers with average a and standard deviation s. Values for
these and other global search parameters are listed in Table 2.

The key elements of the global search | those that most a�ect performance | are
the perturbation operators used to generate new candidate solutions from existing ones.
The operators and their probability of application are summarized in Table 1. The REP
operator replaces an existing subtree containing e primitive objects with a new random
subtree containing norm(e; s0) primitives. The CUT operator deletes a randomly chosen
subtree, and the MOD operator changes the type of a randomly chosen primitive from a
rectangle to a circle, or vice versa.
ADD is the most complicated operator: half the time it adds a newly generated subtree

by unioning it with an existing subtree; otherwise it adds a new subtree by di�erencing it from
an existing subtree. In both cases the new subtree is small, containing norm(a0; s0) primitives.
In contrast to the behavior of the initialization procedure and the REP operator, the ADD
operator locates primitives at speci�c positions of the target bitmap. These positions are
the local maxima or minima (depending on whether they make a net addition or subtraction
to the resultant CSG object) of a Euclidean distance map [5] derived from the bitmap. The
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Initialize S to be a set of random CSG trees,
each comprising norm(a; s) primitive objects;

Locally optimize and evaluate each tree in S;
i 0;
j  0;
while i < N and j < B do

f
Perturb, locally optimize, and evaluate
a randomly selected tree in S;

if perturbed tree is better then
f
Replace original tree with perturbed tree;
j  0;
g
else j  j + 1;
if i mod n = 0 then

f
Sort S by tree score;
Replace bottom half of S with top half;
g
i i+ 1;
g
Return best tree in S;

Figure 1: Global search by parallel hill climbing.
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Perturbation Probability

REP: Replace a random subtree
with a newly initialized one.

0.3

ADD: Add a targeted subtree at a
randomly chosen location.

0.3

CUT: Delete a randomly chosen
subtree.

0.3

MOD: Change the type of a ran-
domly selected primitive.

0.1

Table 1: Perturbation operators for global search.

primitive size parameters | width and height for rectangles, radius for circles | are given
by the expression max(1; norm(d; d)), where d is the value of the Euclidean distance map at
the relevant local maximum or minimum and represents the distance to the nearest edge in
the bitmap.

2.2 Local optimization

Once a CSG tree has been generated, it is passed to the local optimizer, which adjusts
the parameters of each primitive to improve the match between the CSG tree and the
target bitmap. In order to measure the goodness of this match, primitive elements of the
CSG tree are scan-converted and combined using the node operators to generate a bitmap
representation of the CSG tree. As illustrated in Figure 2, the mismatch between the target
bitmap and the CSG bitmap is represented by the sum of the UNCOVERED region | pixels
in the target bitmap that are not covered by the CSG tree | and the EXCESS region |
pixels in the scan-converted CSG tree that do not lie in the target bitmap.

Figure 3 outlines the general approach taken in the local optimizer. Adjustments are
made to each primitive in the CSG tree depending on the amount and distribution of the
EXCESS and UNCOVERED regions local to the primitive. For example, the position of the
primitive is shifted until it lies roughly centered between the local EXCESS and UNCOV-
ERED regions. This is done by shifting the primitive in small steps towards the center of
the local UNCOVERED region and away from the center of the local EXCESS region as
illustrated in Figure 4a.

The dimensions of the primitive are adjusted until the amount of local EXCESS is roughly
equal to the amount of local UNCOVERED. Each dimension of the object (radius for circles,
height and width for rectangles) is adjusted independently. As illustrated in Figure 4b, if
the amount of local UNCOVERED exceeds the amount of local EXCESS, the primitive
dimension is increased. Otherwise if the local EXCESS exceeds the local UNCOVERED,
the primitive dimension is reduced.
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EXCESS region

UNCOVERED region

Object

Circle primitive

Figure 2: Excess and uncovered regions.

Adjusting the rotation of the primitive using the local EXCESS and UNCOVERED re-
gions is somewhat more complicated. The general approach involves rotating the primitive
until its principal axis is aligned with the principal axis of local pixels of the target bitmap.
This is accomplished by rotating the primitive away from the principal axis of the local
EXCESS region and towards the principal axis of the local UNCOVERED region. The prin-
cipal axis of a region is determined by the principal eigenvector of the region's inertial tensor
matrix. Although this method is valid for both 2D and 3D systems, it is computationally
expensive and can be subject to instability. Hence, in the 2D system, a simpler method is
used: the primitive is rotated by small steps in a positive direction while the score improves;
if the score does not initially improve, the primitive is rotated in a negative direction.

Once the parameters of each primitive have been locally optimized, primitives that do not
contribute to the �nal CSG model are pruned from the tree. The tree score is then computed
as the sum of the number of EXCESS pixels, the number of UNCOVERED pixels, and a
scalar weight, k, times the number of primitives in the CSG tree. (Including the number of
primitives in the score promotes compact trees.) This score is then returned to the global
search.

3 Results

3.1 Bitmaps and their CSG trees

Figures 5, 8, and 10 contain hand-drawn bitmaps that served as some of our test input.
The algorithm described in x 2 was run �ve times for each bitmap using di�erent random-
number seeds. The CSG trees shown below were selected from the �ve �nal trees generated
for each bitmap. For each tree we report the total number of di�erent CSG trees that were
evaluated during its run before arriving at the result shown: this number always consists of
500 initial random trees, plus some variable number of trees produced by application of the
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P  Number of primitives in CSG tree;
Generate a bitmap representation of the CSG tree;
Determine EXCESS and UNCOVERED regions;
Calculate the score;
j  0;
while j < M and score is improving do
f
for i 0 to P � 1 do

f
Adjust position of primitive i;
Adjust dimensions of primitive i;
Adjust orientation of primitive i;
g
Recalculate the score;
j  j + 1;
g
Prune the CSG tree;
Return the optimized tree and its score;

Figure 3: Local optimization of primitive parameters.

perturbation operators.1

As with many heuristic search methods, this approach requires setting many parame-
ters. The parameter values that were used in the examples reported here were derived by
experimentation and are listed in Tables 1 and 2.

Figures 6 and 7 show two CSG trees for the bitmap depicted in Figure 5. The former was
found after evaluating 2,096 trees; the latter after evaluating 2,787 trees. The tree in Figure 6
contains a minimal number of primitives and is preferable for editing operations that will
preserve the object's symmetry. The tree in Figure 7 contains one more primitive, but is
preferable for asymmetric editing. These examples illustrate the utility of an algorithm that
is capable of producing a variety of near-optimal results for the scan-and-edit applications
we have in mind.

The bitmap in Figure 8 is one of those used for the morphing tests described in x 3.2.
A corresponding CSG tree, the product of 2,824 tree evaluations, is shown in Figure 9.
After 400 iterations of the search procedure, the likelihood that each perturbation operator
(Table 1) would yield an improvement was fairly high: MOD, 0.49; REP, 0.33; ADD, 0.48;
and CUT, 0.26. However, by the time the best tree was found, these numbers had declined
signi�cantly: MOD, 0.15; REP, 0.12; ADD, 0.10; and CUT, 0.09. This behavior was

1An alternative measure of computational e�ort is the number of primitives that were scan-converted.
A maximum of 400,000 primitive scan-conversions is performed in the local optimization and evaluation of
a 10-primitive CSG tree; the average number is somewhat less. Multiplying the maximum number by the
number of trees evaluated gives an upper bound on the number of primitive scan-conversions performed.
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Object

Rectangle primitive
a)

shift primitive

increase radius

Object

Circle primitive

b)

Figure 4: Position and dimension adjustments.

Figure 5: An example bitmap.
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Parameter Value

jSj: Candidate-solution set size. 500

N : Maximum # of trees searched. 5000

B: Maximum # of trees searched w/o improvement. 500

n: Refocus interval for global search. 50

a: Average size of initial tree. 10.0

s: Standard deviation of initial tree size. 2.0

a: Average size of added tree. 3.0

s: Standard deviation of added-tree size. 1.5

W;H: Width and height of bitmap. 128

M : Maximum # of iterations in local optimizer. 80

k: Tree-size weighting in score. 25

Table 2: Parameter values used for examples in x 3.

Rectangle

(64,62,30,45,270)

∪

Rectangle

(64,63,16,49,180)

\

Rectangle

(64,78,66,20,0)

∪

Rectangle

(64,47,66,20,180)

Figure 6: Automatically generated CSG tree for bitmap from Figure 5.
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Rectangle

(64,62,29,46,90)

\

Rectangle

(85,47,25,19,181)

∪

Rectangle

(85,78,25,19,0)

∪

Rectangle

(44,47,19,24,270)

∪

Rectangle

(44,78,25,20,2)

Figure 7: A second CSG tree for bitmap from Figure 5.
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Figure 8: Bitmap for the letter 'P'.

typical of the other tests too.
Finally, the bitmap shown in Figure 10 was inspired by the familiar icon on the back of

the U.S. $1 bill. The results for this bitmap are shown in Figures 11 and 12. The former
required 3,074 CSG-tree evaluations; the latter, 4,485. The two candidate trees further
illustrate the diversity of solutions that can be generated by the stochastic search method.

3.2 Application to geometric morphing

To demonstrate the capability and 
exibility of the approach described here, the algorithm
was modi�ed to perform geometric morphing between pairs of bitmaps. The modi�cations
are straightforward:

� Two target bitmaps are used.

� Each candidate solution consists of two CSG trees that are structurally identical, but
that can have di�erent primitive objects.

� Each tree is locally optimized with respect to its corresponding target bitmap, and the
score given to a candidate solution is the average score for its two trees.

� Structural identity between the two trees is maintained by having the initial trees be
identical copies, and by applying the same REP, ADD, and CUT operations to both
trees. However,MOD operations and local optimization are applied independently to
each tree, and no pruning is done by the local optimization procedure.

The solution returned by the modi�ed algorithm consists of two trees that are structurally
identical, but each of which is a good match for one of the two target bitmaps by virtue of
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Rectangle

(68,89,53,28,90)

∪

Circle

(78,38,16)

∪

Rectangle

(66,38,24,32,180)

\

Circle

(78,37,25)

∪

Rectangle

(63,64,101,38,90)

Figure 9: CSG tree for the letter 'P'.

Figure 10: Bitmap for the eye-in-diamond icon.
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Circle

(64,85,9)

\

Rectangle

(98,25,46,185,154)

∪

Circle

(64,65,34)

∩

Circle

(65,103,32)

\

Rectangle

(60,59,39,87,208)

∪

Rectangle

(52,125,22,153,90)

\

Circle

(90,135,81)

Figure 11: CSG tree for the eye-in-diamond icon.
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Rectangle

(96,101,15,82,81)

∪

Circle

(64,85,9)

∪

Rectangle

(56,67,12,21,260)

∪

Rectangle

(22,49,38,130,28)

\

Rectangle

(64,85,31,44,118)

\

Rectangle

(64,34,103,162,180)

∩

Rectangle

(112,208,417,92,243)

Figure 12: A second CSG tree for the eye-in-diamond icon.
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possible di�erences between the primitive objects in each tree. Morphing is accomplished by
straightforward interpolation of the corresponding primitives in both trees.2

Sample morphs are shown on the accompanying videotape. The algorithm parameters
used were identical to those reported in Table 2, with one exception: in the morphing runs,
for which simpler shapes with smaller expected tree sizes were used, the average initial tree
size, a, was set to 5:0. Each pair of bitmaps shown depicts two topologically di�erent letters.
This approach is di�erent from previous work on 2D geometric morphing [8, 9, 10] in both
its ability to morph between topologically di�erent shapes and in the style of morphs that
it produces.

4 Conclusions and Future Work

In this paper we have presented a complete system for 2D bitmap-to-CSG conversion. Before
attempting to solve the general problem of converting 3D point data to a useful, equivalent
CSG representation, a better grasp of the 2D problem is still required. We plan to explore
the following extensions to our current approach:

� A greater variety of primitives. One advantage of our system is its potential for accom-
modating di�erent primitive objects. If a primitive can be scan-converted e�ciently, it
can be incorporated straightforwardly. For example, triangles and ellipses are obvious
candidates for inclusion. However, the added bene�t of having extra primitives will be
o�set somewhat by the increase in search-space dimensionality.

� Faster scan-conversion. The dominant computational cost in our current system is due
to scan-conversion of primitive shapes. Taking advantage of scan-conversion hardware
on high-end graphics workstations will increase the capacity for further experimenta-
tion and the ability to explore bigger search spaces.

� More intelligent searching. The use of a Euclidean distance map to generate targeted
subtrees in theADD operator (x 2.1) caused a signi�cant improvement in performance.
We anticipate similar improvements from additional heuristics for proposing and posi-
tioning primitive objects. The analysis of Shapiro and Vossler [11, 12, 13] is a possible
source of relevant ideas. However, care must be taken when developing such heuristics:
the bene�ts of a more focused search can be outweighed by a decrease in the variety
of solutions found.

� Di�erent objective criteria. Compactness alone is not a su�cient criterion for identify-
ing CSG models that are easy to modify and edit. Locality is doubtless an important
consideration, and additional criteria may be derived from a study of typical model-
editing tasks [6].

2Interpolating between two orientations (which is relevant for rectangles only) can be done either clockwise
or counterclockwise. For the morphs on the video we chose the directions of rotation for e�ect.
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