
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Window Sharing with Collaborative
Interface Agents

Charles Rich

TR95-12 April 1995

Abstract

An implemented system is described which allows a software agent to collaborate with a human
user using a shared application window. The system automatically controls input permission and
also provides mechanisms for signalling and communication. A generalization of the system to
multiple users and agents, called NShare, is compared with common window-sharing tools, such
as SharedX. This work is part of a larger agenda to apply principles of human collaboration and
discourse structure to human-computer interaction using the interface agent paradigm.

SIGCHI Bulletin, Vol. 28, No. 1, January 1996, pp. 70-78

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1995
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:{

1. First printing, TR-95-12, April 1995

Window Sharing with
Collaborative Interface Agents

Charles Rich
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA 02139

rich@merl.com

ABSTRACT
An implemented system is described which allows a soft-
ware agent to collaborate with a human user using a
shared application window. The system automatically
controls input permission and also provides mechanisms
for signalling and communication. A generalization of
the system to multiple users and agents, called NShare,
is compared with common window-sharing tools, such as
SharedX. This work is part of a larger agenda to apply
principles of human collaboration and discourse struc-
ture to human-computer interaction using the interface
agent paradigm.

KEYWORDS: software agents, interface agents, window
sharing, collaboration, multi-user, multi-input.

1 INTRODUCTION
This paper describes a generic interface paradigm for
use with software agents. Software agents are currently
a new research area in which generally accepted ter-
minology and principles have yet to emerge. Roughly
speaking, a software agent is an autonomous software
process which interacts with humans as well as with ele-
ments of its software environment, such as the operating
system, mail programs, and other applications. Usually,
what the agent does is some kind of intelligent assistance
and is presented in a human-like fashion.1

Most current work on software agents is very application-
speci�c. This paper reports on the design and imple-
mentation of an application-independent graphical in-
terface, based on window sharing, for what I call collab-
orative interface agents. Figure 1 illustrates some of the
key properties of a collaborative interface agent.

� Collaborative: The purpose of the agent is to as-
sist and cooperate with a human user in the per-
formance of some computer-based task. This im-
plies, among other things, that the agent must be
able to communicate with and observe the actions
of the human user and must be able to interact
with whatever application programs are used to
perform the task.

1In fact, my personal working de�nition of a software agent is
any program for which anthropomorphization (ascribing some hu-
man properties) is helpful. Obviously, ascribing human properties

to most software is very unhelpful.

observe

Application
communicate

observe

Agent

User

interact

interact

Figure 1: Collaborative interface agent paradigm.

� Interface Agent: The agent interacts with shared
application programs through the same interface
used by a human user in a way that can be ob-
served by a human user. This approach facilitates
the reuse of existing applications and supports col-
laboration by making it it easy for the user to
know what the agent is doing.

This concept of a collaborative interface agent is closest
to the work of Patti Maes[5], although she uses the term
\collaborative" to refer to the sharing of information
between agents.

The agent paradigm in Figure 1 intentionally mimics the
relationships that hold when two humans collaborate in
a task involving a shared artifact, such as two mechanics
working on a car engine together, or two computer users
working on a spreadsheet together. This is intentional
because this work is part of a larger e�ort [7, 9] to apply
known principles of human discourse and collaboration
to human-computer interaction. The work reported in
this paper primarily concerns the mechanisms of the in-
teraction between humans and interface agents, rather
than the content. Work in progress concerning discourse

1

 Application

American (AA)

Continental (CO)

Delta (DL)

Eastern (EA)

Lufthansa (LH)

Midway (ML)

Trans World (TW)

United (UA)

USAir (US)

Nonstop Only

DFW

Boston San Francisco Pittsburgh

6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm 6am noon 6pm

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

PST

MST

CST

EST

UA 93 BOS Tue 5:45p SFO Tue 9:27p [0]
DL 1014 SFO Thu 10:59a DFW Thu 4:12p [0]
US 326 DFW Fri 8:45a PIT Fri 12:14a [0]

Save:

Restore: Initial

Undo

Done

Itineraries

28

Display?

Boston UA San Francisco DL Dallas A Pittsburgh

Boston UA San Francisco DL Dallas US Pittsburgh

Boston UA San Francisco AA Dallas A Pittsburgh

Boston UA San Francisco AA Dallas S Pittsburgh

ESTCSTMSTPST

Boston
(BOS)

Baltimore
(BWI)

Atlanta
(ATL)

Philadelphia (PHL)Pittsburgh
(PIT)

Dallas
(DFW)

Denver
(DEN)

San Francisco
(SFO)

Oakland
(OAK)

 Agent

 User

Ok

No

Figure 2: Screen shot of test tube system.

and collaboration issues with interface agents is briey
discussed in the Section 6.2.

The �rst part of this paper concentrates on the situa-
tion illustrated in Figure 1, in which there is one hu-
man user and one interface agent. Section 4 describes a
generalization of the paradigm to multiple human users
and/or software agents, including a comparison with
other window-sharing systems, such as SharedX.

2 EXAMPLE SCENARIO
Figure 2 is a screen shot of an application that has served
as a \test tube" for developing the ideas described here.
Although careful attention has been paid to making the
agent interface application-independent, it is often help-
ful to see a concrete example that motivates the work.

The shared application in Figure 2 is an air travel plan-
ning system (implemented for this research) that pro-
vides a direct manipulation interface to an airline sched-
ule database and a simple constraint checker. By press-
ing buttons, moving sliders, and so on, the user can spec-
ify and modify the geographical, temporal, and other
constraints on a planned trip. The user can also retrieve
and display possible itineraries satisfying the given con-
straints.

A typical session using this application to solve a dif-
�cult travel problem (without the help of a software
agent) takes about 15 minutes. The role of the col-
laborative interface agent is to help the user by, for ex-
ample, suggesting strategies for systematically relaxing

constraints, explaining how to recover from errors, and
taking over parts of the search space itself.

2.1 Home Windows
In addition to the shared application window, Figure 2
shows that the user and agent each have an individual
home window. As we will see below, these home win-
dows are the main mechanism for direct communication
between the user and the agent. The home windows
start out in the default corner locations shown in the
�gure, but may be moved to di�erent screen locations
by the user in the usual ways provided by the window
system. Furthemore, given a distributed window system
like X, the agent process can be running on di�erent ma-
chine than the application.

Each home window contains an identifying face and a
cursor. The user's cursor is his usual mouse pointer, seen
in the middle of his home window. The agent's cursor is
the pointing hand icon shown in its home window. The
agent uses this icon to point and click on the shared
application window just as the user does. The agent's
eyes blink periodically to indicate that its process is still
running.

The example scenario continues in Figure 3. To save
space in this and the remaining screen shots in the pa-
per, the air travel application window is replaced by a
simple nine-button panel representing a generic graphi-
cal application.

2

 Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9

 Agent

May I press Button9?

 User

Ok

No

Figure 3: The agent points to and asks permission to
press Button9.

 Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9

 Agent

 User

Ok

No

Figure 4: The agent grabs input permission and
presses Button9.

 Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9

 Agent

 User

Ok

No

What next?

Try all the buttons

Pick the best button

Figure 5: The agent signals for attention.

In Figure 3, several things have happened. First, the
user has moved his cursor out of his home window onto
the shared window and is pointing at Button7. The
agent has also moved its cursor out of its home window
and is pointing at Button9. Second, the agent has dis-
played a message (question) in its home window for the
user to read. At this point, the user may reply to the
agent's question by, for example, clicking on the \Ok"
button. However, the user is also free to do anything
else he wants on his home window or the shared win-
dow. The interface agent paradigm di�ers here from
the typical pop-up dialogue-box kind of interaction, in
which the main window is \hung" until the question is
answered or dismissed. The interface agent interaction
is asynchronous and mixed initiative, just like a two peo-
ple collaborating with a shared artifact.

2.2 Input Permission
In Figure 4, the agent has grabbed input permission and
is in the midst of pressing Button9. The user and the
agent never simultaneously have input permission (see
further discussion of this point in Section 4). Notice
that the user's cursor, located on the shared window
below Button7, has changed from its usual arrow shape
to a cross. This is a visual indicator to the user that
he does not currently have input permission. If the user
presses a key or mouse button while in this state, the
interface will beep and no events will be sent to the
shared application. The user may, however, move his
cursor while in this state.

When the agent has �nished pressing Button9, it should
relinquish input permission to the user, at which time
the user's cursor will return to being an arrow. The user
may also force the agent to relinquish input permission
at any time by clicking on the agent's face in the agent's
home window.

2.3 Signalling and Communicating
Finally, in Figure 5, two things are happening. First,
the agent is signalling for attention by \waving:" the
two hand icons shown overprinted in the agent's home
window are displayed in quick alternation to give the ap-
pearance of movement. Signalling is a polite way for the
agent to request control in a mixed initiative interaction.
The user may, of course, choose to ignore the signalling,
in which case a well-designed agent will desist.

For example, in the air travel planning application, the
agent may signal because it has noticed that the user
has overconstrained his trip. If the user clicks \Ok" in
response to this signalling, the agent may then o�er to
appropriately relax some of the user's constraints.

The second feature illustrated in Figure 5 is the user's
extended menu accessed by clicking on the horizontal ar-
row in his home window. Clicking on one of these menu
items sends the corresponding message to the agent.
This message may be the literal text string shown in
the menu or some corresponding internal symbol. The
list of menu items may be �xed or may be modi�able by
the agent. Depending on the capabilities of the agent,

3

the user may also, by clicking on the pencil icon, en-
ter a text-editing interface in which a message may be
composed in a natural or arti�cial language

3 ARCHITECTURE
Figure 6 shows the architecture of the system that im-
plements the example scenario above. At the bottom
of the �gure are the application program and its asso-
ciated window that are being shared between the agent
and the user. At the top of the �gure is the user's dis-
play which is generating window events in response to
use of the mouse and keyboard.

In order to provide a well-de�ned software interface for
agents, the system is divided into two modules. The
translatormodule intercepts certain window events from
the user's display, such as entering/leaving a home win-
dow or clicking the mouse button, and translates them
into requests that are sent to the controllermodule. For
example, whenever the translator sees a mouse click on
the agent's face, it generates an Interrupt request. The
controller request types and the translator's rules are
discussed in detail in Section 5.

Agents send requests directly to the controller. For ex-
ample, in order to grab input permission, the agent
sends an Activate request to the controller. The re-
turn value from this request lets the agent know if its
request was successful or not. There are also requests
to query the state of the controller, such as to �nd out
the current location of the user's cursor.

The controller generates window events on the home
windows and the shared window. For example, in re-
sponse to an Execute request, the controller will, as-
suming the requestor has input permission, generate the
appropriate window events to simulate a mouse or key
click on the shared window. The controller's main re-
sponsibility is to make sure that only one participant
in the interaction has input permission at a time. The
controller also also takes care of updating the graphics
on the home windows.

As mentioned above, given a distributed window system
like X, the agent process, the user's display process, the
translator, the controller, and the application program
may all be running on di�erent machines.

The dashed line in Figure 6 indicates that a mechanism
needs to be provided for agents to directly query the
state of the application program. For example, the air
travel planning agent needs know the sequence of cities
the user plans to visit without trying to \reverse engi-
neer" the pixels on the map display or asking the user
for information that has already been entered. The best
way to provide this mechanism in a generic way is to
adopt a model-based approach to user interface design,
which has other bene�ts relative to implementing col-
laborative interface agents, as discussed in Section 6.1.

4 MULTIPLE USERS AND AGENTS
Some collaborations involve more than two participants.
The architecture in Figure 6 requires no fundamental

window
events

window
events

requests

 Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9

 Agent

May I press Button9?

 User

Ok

No

return
values

User

requests

return
values

Agent

Application

Shared Window

Controller

Translator

Home
Windows

Figure 6: Collaborative interface agent architecture.

changes to generalize to multiple users and agents, other
than to say that the translator receives window events
from multiple displays and the controller receives re-
quests from multiple agents. In most window systems,
window events are already coded with the source win-
dow, so that it is easy for the translator to generate
separate controller requests for each user. Furthermore,
the controller in the single user/agent case already keeps
track of requests from multiple sources.

4.1 The NShare Interface
In moving from the special case of one agent and user,
certain cosmetic changes described below need to be
made to the interface in order to make the presentation
more logical and symmetric.

Figure 7 shows the interface to a system, called NShare,
for window sharing with multiple users and collaborative
interface agents. In this example, there are two users,
named Chuck and Dick, who are at di�erent locations,
and two agents, named Smurk and Glurk. Figures 7
and 8 show what is seen on Chuck's and Dick's displays,
respectively, at the start of a short example scenario.
(The agents don't have displays).

In NShare, the shared application window is replicated
on all displays as shown. Each user has a local home
window, i.e., his home window on his own display, and
one or more replicated remote home windows, i.e., home
windows on other user's displays. (Agents only have re-
mote home windows.) Notice that a cursor hand icon
now appears in all (both agents' and users') home win-
dows. The cursors in these black-and-white screen shots
are distinguished only by their orientation; on a color

4

Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9 Chuck

Ok

No

 Glurk Smurk

 Dick

Figure 7: Chuck’s display at start of scenario.

Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9 Dick

Ok

No

 Glurk Smurk

 Chuck

Figure 8: Dick’s display at start of scenario.

Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9 Chuck

Ok

No

 Glurk Smurk

Button7 would better!

 Dick

Figure 9: Chuck pressing a button (Chuck’s display).

display the cursors are also color-coded to their corre-
sponding home windows.

The hand icon in a user's home window serves two func-
tions. First, with multiple human collaborators, it can
be useful for users, not only agents, to have a way of
signalling. A user can therefore click on the hand icon
in his local home window to issue a Signal request, in
which case his hand icon will start waving on all users'
displays. Second, as we will see below, in NShare a user's
mouse pointer becomes a hand icon when it moves onto
the shared window.

Also, comparing Chuck's local home window in Figure 7
with his remote home window in Figure 8, notice that
the communication menu that appears in a user's local
home window is replaced by the user's face in his remote
home windows.

4.2 Automatic Input Permission Control
With multiple users and agents, keeping track of in-
put permission becomes slightly more complicated (see
discussion of SharedX below). Each on-window cursor
therefore has two modes. In the active mode, the cursor
icon is �lled in, meaning that the corresponding partic-
ipant has input permission. In the passive mode, the
hand icon is drawn in outline, meaning that the cor-
responding participant does not have input permission.
For example, in Figure 9, Chuck's cursor is active and is
pressing Button9, while Smurk and Glurk are passively
pointing to other buttons and Dick is signalling.

Input permission is granted and relinquished in NShare
as follows. All cursors start out in passive mode on their
home windows, as in Figure 7. Agents change their cur-
sor modes by sending controller requests. When a user
moves his cursor onto the shared window, it remains
in passive mode until he attempts to provide input by
pressing a key or mouse button. At this point, the trans-
lator sends an Activate request to the controller, which
succeeds if and only if no other participant is active.
Users relinquish input permission by moving their cur-
sor o� the shared window.

4.3 Inter-Participant Communication
In a realistic application of NShare, particularly with
current developments in network technology, the human
users will most likely be in voice communication, as well
as having shared windows. Therefore, although users
can compose text messages in their home windows for
other users to read, this is not likely to be the preferred
mode of user-user communication.

However, until software agents start to use voice recog-
nition technology, user-agent communication in the mul-
tiple user and agent interface will be based on the home
window menus as in illustrated Section 2. An additional
concern in this situation, however, is that, like a shared
voice channel, these text/symbolic messages should be
observable by all participants.

5

Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9 Chuck

Ok

No

What next?

Try all the buttons

Pick the best button

 Glurk Smurk

 Dick

Figure 10: Chuck sending a message.

Application

Button1 Button2 Button3

Button4 Button5 Button6

Button7 Button8 Button9 Dick

Ok

No

 Glurk Smurk

 Chuck

Try all the buttons.

Figure 11: Dick’s display at same time as
Figure 10.

For example, in Figure 10, Chuck has selected the \Try
all the buttons" message from his local home menu. No-
tice that this message text immediately shows up on all
Chuck's remote home windows, e.g., on Dick's display
in Figure 11. Smurk and Glurk, the interface agents,
can receive Chuck's message by sending a GetMessage
request to the controller with `Chuck' as the argument.

As mentioned earlier, the work described here focuses
on the mechanisms for communication rather than the
content. It is up to the participants in NShare to iden-
tify the intended recipients of messages based on their
content. For example, Glurk may respond to the \Try
all the buttons" message rather than Smurk because
Glurk is programmed to respond to this kind of message
and Smurk is not. Alternatively, the user may explicitly
identify an intended recipient through a submenu or as
part of the text of the message. Managing the ow of
conversation in multi-participant communication is an
area for future research.

4.4 Comparison with SharedX
With the increasing recent interest in collaborative work,
there have been many systems developed for sharing
windows between multiple users. A typical such system
is Hewlett Packard's SharedX. In addition to providing
a well-de�ned interface (controller requests) for software
agents, NShare makes some other modest improvements
to SharedX and similar products.

Most current window sharing systems are extensions to
the X Window System that allow real-time sharing of

X-protocol-based applications between two or more re-
mote displays. In such systems, the shared application
window is automatically replicated on all users' displays,
so that all users can simultaneously see changes in the
state of the application. However, only users who have
input permission are allowed to provide input to the ap-
plication by mouse or keyboard. Typically, any number
of users can have input permission at the same time.
The list of users and their input permission state is dis-
played in a separate control window and changed via
toggle buttons in that window.

Unfortunately, as acknowledged in the SharedX User's
Guide:

When sharing a window with several receivers
[users] who have input permission, it may be-
come confusing who is inputting at any given
time.2

An obvious solution to this problem is to only let one
user have input permission at a time. However, this
is not the way such systems are usually used, because
changing input permissions requires going to a separate
control window, which is inconvenient and interrupts the
ow of the collaboration. The NShare system remedies
this di�culty by automatically granting and relinquish-
ing input permission as described above.

When two people share a display in the traditional way,
i.e., standing or sitting side by side, they often point to
items on the display with their �ngers or use the mouse
to point out items. Unfortunately, SharedX does not
replicate mouse pointers on all users' displays. Instead,
SharedX provides separate \telepointer" icons that users
have to explicitly click and drag around, which is less
convenient than just pointing with the mouse as in NShare.

5 IMPLEMENTATION
The air travel and NShare prototypes described above
were implemented in Common Lisp using the XWindow
System and the Garnet [6] graphics package. Window
replication in the NShare prototype was handled inside
the application program. A more practical implemen-
tation of NShare would make use of one of the many X
protocol multiplexers, such as Xy [1].

The rest of this section describes in detail the controller
requests and translator rules for the multiple user and
agent system, which apply to the single user and agent
system as a special case.

5.1 Controller Requests
Controller requests are generated by the translator in
response to users' mouse and keyboard events or are
received directly from agents (see Figure 6). Requests
either succeed or fail. When a request succeeds, it may
also return a value if speci�ed below. Failing requests
have no e�ect on the controller's state.

In each of the following speci�cations, \the requestor"
refers to the user or agent issuing the request. Also, all

2HP SharedX 2.0 User's Guide, Chapter 4.1.

6

aspects of the controller state not explicitly speci�ed to
change are unchanged by a request.

Permission Requests The following requests may change
the state of participants' input permission.

Activate { Request input control.

Succeeds i� the requestor is on the shared win-
dow and no other participant is active. After suc-
cessful completion, the requestor's cursor is active.
If the request is successful and the requestor was
not active when the request was issued, then a
MotionNotify3 window event is generated with the
requestor's current location as argument.

Deactivate { Relinquish input control.

Always succeeds. If the requestor is on the shared
window, then the requestor's cursor is passive at
end of the request; otherwise the request has no
e�ect.

Home { Return home.

Always succeeds. If the requestor is on the shared
window when the request is issued, then the re-
questor is at home and passive at the completion
of the request; otherwise the request has no e�ect.

Interrupt { Deactivate currently active participant.

Succeeds i� there is an active participant at the
time the request is issued. After successful com-
pletion of the request, the previously active par-
ticipant is passive. The return value is the name
of the previously active participant.

Signal(on?) { Turn signalling on/o�.

Succeeds i� the requestor is at home. After suc-
cessful completion, the requestor's cursor is in the
signalling mode if the given ag is true or in the
passive mode if it is false.

Geometric Requests The following requests depend on
the geometry of the shared application's graphical user
interface. See Section 6.1 for a discussion of how to write
the logic of an agent so that it does not have to deal with
this geometry explicitly.

Move(x,y) { Move cursor.

Always succeeds. The requestor's cursor is moved
to the given x-y location on the shared window
and, if the requestor is active, a MotionNotify(x,y)
window event is generated. If the requestor is at
home when the request issued, then the requestor
is passive at end of the request; otherwise the re-
questor's cursor mode is unchanged.

Execute(event) { Execute window event.

Succeeds i� the requestor is active. If the re-
questor is active, then the given window event is

3I am using the X terminology here for the window event nor-

mally generated when the user moves his mouse.

generated at the requestor's current location. The
given event may be any window event supported
by the window system, except MotionNotify (see
Move request).

Status Requests The following requests query, but do
not change, the state of the controller.

QueryAll { All participants.

Always succeeds. The return value is a list of the
names of all current participants.

QueryActive { Active participant.

Succeeds i� there is an active participant. The
return value when successful is the name of the
active participant.

QueryDisplay(name) { Participant's display.

Succeeds i� the named participant has a display
(i.e., it is a human user). The return value when
successful is the name of the display.

QueryLocation(name) { Participant's cursor location.

Succeeds i� named participant is on the shared
window. The return value when successful is the
x-y location of the participant's cursor.

QuerySignalling(name) { Participant's signalling state.

Succeeds i� participant's cursor mode is signalling.

Message Requests The following requests concern com-
munication between participants and do not modify the
state of the controller.

Note that the message argument to these requests may
be any symbolic object, not necessarily text in a natural
language. It may also be convenient to de�ne both an in-
ternal and external form of each message, such that the
external form (e.g., English text) is shown in the mes-
sage areas of the home windows, and the corrrespond-
ing internal form (e.g., a symbolic code) is returned by
GetMessage.

PutMessage(message,append?) { Display message.

Always succeeds. The (external form of the) given
message appears in the requestor's message area.
If the append ag is true, then the given message
is appended to any message already being shown;
otherwise previous message is cleared.

GetMessage(name) { Get named participant's message.

Succeeds i� the given participant's message area
is not clear. The return value when successful is
the (internal form of the) message(s) being shown.

ClearMessage { Clear message area.

Always succeeds. The requestor's message area is
cleared.

7

5.2 Translator Rules
The following rules determine how the translator (see
Figure 6) generates controller requests. In the following,
\the pointer" refers to the user's pointer.

� Whenever the pointer leaves the shared window a
Home request is generated.

� Whenever the pointer enters the shared window, a
Move request is generated with the pointer's initial
window coordinates as arguments. A ClearMes-
sage request is also generated.

� Whenever the pointer changes location within the
shared window, a Move request is generated with
the new coordinates as arguments.

� Whenever the pointer is on the shared window and
the user presses/releases a key or mouse button,
an Activate request is generated. If the Activate
request succeeds, then an Execute request is gen-
erated with the appropriate window event argu-
ment. (If the Activate request fails, then the local
display beeps.)

� Whenever a user clicks on the face of another par-
ticipant, an Interrupt request is generated i� that
participant is active (otherwise the local display
beeps).

� (NShare only) Whenever a user clicks on the cur-
sor hand icon in his local home window, a Signal
request is generated with a true ag if the user is
passive, or a false ag if the user is signalling, i.e.,
signalling mode is toggled.

Note that from the standpoint of the controller, each
participant's cursor location is always either on the shared
window or at home. However, at the local display, a
third possibility exists, namely that the user's pointer
may be on another window entirely. From the stand-
point of remote users, the local user's pointer being on
an another window is indistinguishable from it being at
home.

6 FURTHER WORK
The work reported above provides the basic low-level
communication and interaction mechanisms needed to
support collaboration with interface agents. Further
work is now concentrating on the content of such col-
laborations, using the single user and agent test-tube
system shown in Figure 2.

6.1 Model-Based User Interfaces
Notice that in the system architecture described above,
the agent is required to send requests to the controller,
such as Move requests, that include geometric informa-
tion about the screen layout of the application interface.
For example, in order to press Button1, the agent needs
to know the x-y coordinates of the button's location on
the screen.

From a modularity point of view, it would be desir-
able to separate this kind detailed geometric information

Agent
Logic
& State

UnGUI

development
time

geometric
requests

application-level
actions

Agent

Shared Window

Controller

GUI

Application
Logic & State

non-geometric requests

Model
time
run

Interface

Application

Figure 12: Using an interface model.

from the application-level logic of the agent's behavior.
At a logical level, the agent should operate with primi-
tive actions such as \Press Button1" or, in the case of
the air-travel planning application, \make American be
the preferred airline."

Figure 12 shows an approach to achieving this kind of
modularity by partitioning both the application and the
interface agent into a logical and a presentation compo-
nent. For the application, the presentation component
is the graphical user interface (GUI). In its purest form,
this separation is what has come to called a \direct ma-
nipulation interface," i.e., one in which all aspects of the
application state are viewable and modi�able through
the GUI.

The agent is decomposed into its logical part and a
module called an \UnGUI." Conceptually, a GUI maps
(sequences of) window events into applications actions.
An UnGUI performs the inverse mapping, i.e., given an
application action, it computes a sequence of window
events that achieve it. Said more mathematically, the
composition of an UnGUI and the corresponding GUI
compute the identity function.

In the prototypes described here, the UnGUI module
was hand-coded. However, in the long run, a better
approach is to use the model-based user interface para-
digm [10], in which an explicit, largely declarative repre-
sentation, called the interface model, is developed which
describes the relationship between the application se-
mantics and its interface appearance. It should then be
possible to automatically generate both the GUI and
the UnGUI for a given system from this model. Further
research needs to be done on the appropriate represen-
tations for the interface model and algorithms for the
automatic generation [2].

8

6.2 Collaboration and Discourse Structure
The larger agenda underlying this work is to apply prin-
ciples of human collaboration [4] and discourse struc-
ture [3] to human-computer interaction using the inter-
face agent paradigm. These principles include:

� dividing the steps of an interaction into segments
based on their purposes

� modelling how the purposes of segments relate to
each other and to the overall goals of the collabo-
ration

� establishing mutual beliefs (between the user and
agent) about the division of labor and about their
shared artifacts

� negotiation of mutual beliefs

These principles have been validated across a wide range
of tasks involving human collaboration in natural lan-
guage. Because they address the structure of collabo-
ration at the information-theoretic level, I believe they
apply equally well to human-computer collaboration us-
ing an restricted arti�cial language [8] instead of natural
language for communication.

REFERENCES
1. Xmc and Xy

| Scalable window sharing and mobility. In Proc.
8th Annual X Technical Conf. (Boston, MA, Jan.
1994).

2. An architecture
for transforming graphical interfaces. In Proc. ACM
Symposium on User Interface Software and Tech-
nology (Marina del Rey, CA, Nov. 1994), pp. 39{48.

3. Attention, in-
tentions, and the structure of discourse. Computa-
tional Linguistics 12, 3 (1986), 175{204.

4. Plans for dis-
course. In Intentions and Communication, P. R.
Cohen, J. L. Morgan, and M. E. Pollack, Eds. MIT
Press, Cambridge, MA, 1990, ch. 20, pp. 417{444.

5. Agents that reduce work and informa-
tion overload. Comm. ACM 37, 17 (July 1994),
30{40. Special Issue on Intelligent Agents.

6. Garnet: Comprehensive sup-
port for graphical, highly-interactive user inter-
faces. IEEE Computer 23, 11 (Nov. 1990), 71{85.

7. Negotiation in collaborative activity: An
implementation experiment. Knowledge-Based Sys-
tems 7, 4 (Dec. 1994), 268{270.

8. An arti�cial discourse language for
collaborative negotiation. In Proc. 12th National
Conf. on Arti�cial Intelligence (Seattle, WA, Aug.
1994).

9. Negotiation in collaborative activ-
ity: A discourse analysis. Knowledge-Based Sys-
tems 7, 4 (Dec. 1994), 265{267.

10. Model-
based user interfaces: What are they and why
should we care? In Proc. ACM Symposium on
User Interface Software and Technology (Marina
del Rey, CA, Nov. 1994), pp. 133{135.

9

	Title Page
	Title Page
	page 2

	Window Sharing with Collaborative Interface Agents
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

