
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Appendices for Data Plane Section of API
Baseline Document

R. Osborne

TR95-11 December 1995

Abstract

This contribution proposes text for two Appendices of the API Baseline document 95-0008,
covering aspects of the Data Plane layer. The text for the first Appendix covers pragmatics of
data source and destination. The text for the second Appendix describes the optional extension
to the messaging receive primitive mentioned in Section 3.3.2.3 of 95-0008.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1995
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



1. First printing, April 10, 1995



95-0473: Appendices for Data Plane section of API Baseline Document 1

Appendix A: Pragmatics of Data Send and Receive

Fundamental issues in sending data are:

1. identifying the location for outgoing data,

2. determining when the source location(s) may be reused, and

3. recognizing/handling sender overow.

The most common way to specify the data source is to provide the location of a bu�er (e.g. via a
pointer) and amount of data to send starting from that location. Alternatively, the source data may be
speci�ed as an immediate operand to the send operation, i.e., the data is contained on the stack or in
a register.

The source bu�er cannot be reused until either the data has been deemed sent (or the attempt
aborted) or the data has been copied to another bu�er. Thus returning from a send operation does not
necessarily mean the data has actually been sent. Depending on the communication protocol, (in the
case of AAL5, depending on assured vs. unassured modes), the data might not be deemed sent until it is
known to be successfully received at the destination. Typically, a send operation blocks until the source
data is copied or mapped to an intermediate bu�er (e.g. in the operating system/network driver). An
implementation could also block until the data is deemed sent, but since this incurrs latency waiting
for the network this usually has poor performance. Yet other possibilities are to poll until the reuse is
indicated or to asynchronously interrupt/notify/callback the application to permit bu�er reuse.

Sender overow may occur if the network is not able to send data as fast as an application(s) can
transfer data via send operations. In particular, intermediate bu�ers in the operating system/network
driver may overow. This is an important issue for ABR tra�c: the network capacity devoted to
such a connection can change at any time. Thus no amount of sender rate preplanning or bu�er size
can prevent overow. Furthermore, the ABR connection capacity can change rapidly. Consequently,
implementations may provide a feedback mechanism for indicating and controlling sender overow. (Of
course, a particular implementation is free to simply drop data while an overow condition exists, but
this is not a satisfactory solution for all applications.) Fundamental ways to accomplish this feedback
are by blocking (e.g. on a send call), polling (either explicitly or based on some value returned by a
send call), or interrupt/noti�cation/callback to the application. It is often e�ective to tie the source
generation rate to the availability of bu�ers for reuse.

Fundamental issues in receiving data are:

1. identifying the location for depositing incoming data,

2. indicating arrival of data to the application, and

3. recognizing/handling receiver overow.

Typically, the operating system/network driver chooses a temporary intermediate location in oper-
ating system memory for the incoming data. However, it is also possible for the application to specify
a location for the incoming data. For example, the application can indicate a memory range that can
be transferred to the operating system/network driver as a bu�er.

The application can determine the arrival of data via polling or blocking until the data arrives.
Alternatively, the application can be informed of data arrival via an interrupt/noti�cation/callback. In
polling or blocking, once data has arrived it is transferred via copying or mapping to a location pre-
speci�ed by the application in the receive operation. In the case of interrupt/noti�cation/callback, the

MERL-TR-95-11 April 1995



2 95-0473: Appendices for Data Plane section of API Baseline Document

application can provide a location at the time of such an event to which the data it is transferred via
copying or mapping.

Receiver overow may occur if the application may not be able to retrieve (or use data) as fast as the
network may receive it. As with sender overow, intermediate bu�ers in the operating system/network
driver may overow. This is an important issue for ABR tra�c: the network could deliver data at any
point; moreover, the application may not be scheduled. Unless the application is guaranteed to attempt
to receive data at regular intervals (e.g. via a timer) and the connection PCR1 is set appropriately, it
is possible that receiver overow occurs. Receiver overow is also an issue for CBR connections unless
the application can be guaranteed to be scheduled regularly and consume data. Since the application
may not be scheduled as thus not able to consume and thereby replenish the intermediate bu�ers, there
should be a interrupt/noti�cation/callback mechanism for receiver overow feedback.

For guaranteed connection rates (e.g. CBR), underow may also be an issue. Sender underow
arises when there is insu�cient data available for the network to send. For CBR connections, sender
underow may result in a violation of the guaranteed rate to the destination application. Likewise,
receiver underow arises when there may not be su�cient data available for the application.

Finally, it is very common to use operating system/network driver memory as a intermediate bu�er
for sending and receiving. Various work has explored eliminating the overhead of this approach by
obtaining the source data directly from application memory and storing incoming network data directly
into application memory. (For best results, this requires some support in the network interface architec-
ture.) [Druschel] presents a good discussion of this approach. Closely related in spirit is work on Active
Messages [vonEicken], and [Osborne] describes an ATM network interface architecture to support this
approach.

Appendix B: Application-de�ned Control Information

Asynchronous receive, as described in Section 3.3.2.3, typically reduces the overhead of reception as
compared to polling and blocking. However, the asynchronous receive described in that section noti�es
the application after the message data has already been received by the system and hence stored in some
temporary intermediate location. To improve the performance of communication | both bandwidth
and latency | it is desireable to eliminate the overhead of this intermediate copy as well. [Druschel]
describes a means to support data transfer directly to the application without any operating system
interaction or intermediate data copies. However, this approach unfortunately has poor resolution for
the destination of data: data is stored in whatever pre-speci�ed application bu�er happens to be next in
the free bu�er queue. Consequently, the application may have to copy the data where it wants the data,
negating some of the advantage of the direct data transfer. In many instances the sender knows or can
know, e.g. by a request made by the destination, where the data should be deposited in the application
memory at the destination. This Appendix describes an extension of the semantics in Section 3.3.2.3
which supports such direct placement of data at the destination.

B.1 Overview

The extension provides a means for the sender to include control information in a message that the
destination can use to determine exactly where the message data should be deposited at the destination.
The major elements of the extension are:

1. a mechanism to add application de�ned control information to messages at the source.

1Peak Cell rate

MERL-TR-95-11 April 1995



95-0473: Appendices for Data Plane section of API Baseline Document 3

2. a mechanism to de�ne the interpretation of the message control information upon message recep-
tion (a receive handler). This receive handler should execute at the lowest possible level in the
system.

The general purpose handler allows a fast way to determine how to process the message without
requiring intermediate storage of the full message (thus incurring copying overhead). [vonEicken] calls
this idea Active Messages.

B.2 Example Primitives

The following constructs are illustrative examples.

ATM_send_cntl&data(

IN endpoint_identifier,

IN cntl_source,

IN data_source,

OUT sending_result

)

This construct mirrors ATM_send_data (Section 3.3.1) in every way except that the message data
sent consists of the control information described by cntl_source followed by the data described by
data_source. cntl_source is a descriptor in the same format as data_source. The control and data
�elds are explicitly provided separately so that a given set of control information may be used in many
messages without copying the control information to the front of each data block.

The following construct is highly system dependent.

ATM_install_receive_handler(

IN endpoint_identifier,

IN cntl_interpreter,

OUT result

)

ATM_install_receive_handler() installs the one argument procedure cntl_interpreter

(given as a pointer) as the receive handler to be executed on receipt of a message for the connection indi-
cated by endpoint_identifier. This procedure has the signature cntl_interpreter(IN msg_cntl_blk)

where msg_cntl_blk is a pointer to the control information of an arriving message (which is at the head
of an arriving message). This procedure should decode the control portion of an arriving message and
must work in concert with the control information structure provided by the sender. After installation
of the handler, the call returns with result giving a status indication.

B.3 Implementation Issues

The previous section gives only a general semantic description. In practice, to ensure both low overhead
and protection of other processes from errant receive handlers, an implementation will probably not
follow this description literally. It is imperative for performance that the receive handler run as the
lowest possible level of the system. To accommodate this goal, some receive handler operations repre-
senting common operations may be prede�ned and implemented directly by hardware (as in the hybrid

MERL-TR-95-11 April 1995



4 95-0473: Appendices for Data Plane section of API Baseline Document

deposit model [Osborne]) to avoid interrupts to the kernel on every message arrival. In the absence
of hardware support, an implementation may provide prede�ned fast interrupt processing routines (as
in Active Messages [vonEicken]) in the kernel for common control operations. Although the suggested
semantics are such that all operations dispatch through the cntl_interpreter procedure, an imple-
mentation will likely dispatch to any prede�ned operations directly, leaving the cntl_interpreter for
the interpretation of any operations not prede�ned by the system.

For example, an implementation may perform read and write operations using prede�ned hardware
or kernel operations. A message with control information specifying one of these prede�ned operations
would be handled directly by the hardware or kernel respectively without notifying the application.

A message with control information specifying some non-prede�ned operation will invoke a speci�ed
receiver handler procedure, executed in application space.

There are address space mapping and protection issues associated with direct delivery of messages
to an application. [Thekkath] and [Osborne] give two methods for dealing with these issues.

References

Druschel - "Experiences with a High-Speed Network Adaptor: A Software Perspective",

Peter Druschel, Larry Peterson, and Bruce Davie, SIGCOMM 94

Osborne - "A Hybrid Deposit Model for Low Overhead Communication in High Speed LANs",

R. Osborne, Proc. of IFIP 4th International Workshop on Protocols for

High-speed Networks, August 1994

Thekkath - "Separating Data and Control Transfer in Distributed Operating Systems", C.

Thekkath, H. Levy, and E. Lazowska, Sixth Int'l Conference in Architectural

Support for Programming Languages and Operating Systems, October 1994

vonEicken - "Active Messages: A Mechanism for Integrated Communication and Computation",

T. Von Eicken et al, Intl Symposium on Computer Architecture, May 1992

MERL-TR-95-11 April 1995


	Title Page
	Title Page
	page 2


	Appendices for Data Plane Section of API Baseline Document
	page 2
	page 3
	page 4
	page 5


