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Abstract

We present two methods for building a finite-state transducer which generalizes a finite-state
transduction to any word on a given alphabet. The methods are exact in the sense that the
inferred transducer coincides on the inputs for which the initial function is defined. We apply the
methods to the problem of grapheme-to-phoneme transcription. In this case, the initial function
is given in the form of an aligned letters–phonemes dictionary. The generalized function gives
a phonetic transcription for words not in the dictionary based on its similarity to other words.
In addition, for this problem, the generalization could be represented more compactly than the
initial dictionary.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1995
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Revisions history.

1. Version 1.0, 95/03/16



Tree Insertion Grammar 1

1 Introduction

Finite-state devices have important applications to many areas of computer science, including
pattern matching, databases and compiler technology. Although their linguistic adequacy to
natural language processing has been questioned in the past, there has recently been a dramatic
renewal of interest in the application of �nite-state devices to several aspects of natural language
processing. This renewal of interest is due to the speed and the compactness of �nite-state
representations. This e�ciency is explained by two properties: �nite-state devices can be made
deterministic, and they can be turned into a minimal form.

Our work relies on two central notions: the notion of a �nite-state transducer and the
notion of a subsequential transducer. Informally speaking, a �nite-state transducer is a �nite-
state automaton whose transitions are labeled by pairs of symbols. The �rst symbol is an input
token and the second is an output token. Applying a �nite-state transducer to an input string
consists of following a path according to the input tokens while storing the output tokens, the
result being the sequence of output tokens stored. Finite-state transducers can be composed,
intersected, merged with the union operation, sometimes made deterministic and minimized1.
Basically, one can manipulate �nite-state transducers as easily as �nite-state automata.2

There is a natural correspondence between annotated corpora and functions: a corpus can
be seen as a collection of points and their images by a function that maps the raw input to
the annotated output. Although �nite-state transducers seem therefore appropriate for data-
driven methods, �nite-state transducers have seldom been used as a framework for automatic
data-driven methods.

We present twomethods for building a deterministic �nite-state transducer which generalizes
a deterministic function to any word on a given alphabet. In addition to their ability to
generalize from examples, the methods are exact in the sense that the inferred transducer
coincides on the inputs for which the initial function is de�ned.

The approach is general but for explanatory purposes in this abstract we describe it in
the application context of grapheme-to-phoneme transcription. Using a 480,000-word aligned
phonetic dictionary (Laporte, 1988) as training corpus3, we show how a deterministic �nite-
state transducer that transcribes words to their phonetic transcriptions can be constructed. This
transducer does not merely represent the dictionary since it is capable of handling unknown
words accurately.

Numerous frameworks have been proposed for this problem, among which: purely rule-
based systems (Allen et al., 1987; Kaplan and Kay, 1994), information theoretic systems such as
decision trees (Lucassen, 1983; Lucassen and Mercer, 1984), hybrid systems (Meng et al., 1994;
Huang et al., 1994), table lookup models (Bosch and Daelemans, 1993), dictionary-based (Coker
et al., 1990; Laporte, 1993)4 and neural networks (Sejnowski and Rosenberg, 1987).5 However,
to our knowledge, our method combines features that no other system embodies simultaneously:
the method is exact in the sense that it covers precisely the full (480,000 words) phonetic
dictionary given as training data; it generalizes since it performs well on new words not found
in the training set; it is compact since the space required to store the function is smaller that

1See for example, Berstel (1979), Mohri (1994) and Roche and Schabes (1994).
2However, whereas every �nite-state automaton is equivalent to some deterministic �nite-state automaton,

there are �nite-state transducers that are not equivalent to any deterministic �nite-state transducer. Transduc-
tions that can be computed by some deterministic �nite-state transducer are called subsequential functions.

3In this paper, we only consider words with exactly one phonetic transcription.
4Laporte (1993) also gives a proof that the set of phonetic rules used in his system is equivalent to a �nite-state

transducer.
5We refer the reader to Klatt (1987) for an extensive survey of text-to-speech systems.
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2 Schabes & Roche

then space needed to store the phonetic dictionary; it uses a single framework for representing
rules and the list (dictionary) of exceptions; it is bidirectional (letter-to-sound/sound-to-letter)
since �nite-state transducers are by de�nition bi-directional and it is very fast (12,000 words/s)
since the letter-to-sound function is represented as a deterministic �nite-state transducer.

We show how the �rst method can also be used for compression and evaluate it on un-
known words. We then describe a second method for inferring an exact generalization in the
form of a deterministic �nite-state transducer. This method is closely related to approaches
that transcribe each letter based on surrounding letters (such as for example, decision trees
(Lucassen, 1983), neural networks (Sejnowski and Rosenberg, 1987) and table lookup models
(Daelemans and Bosch, 1993)). The method is more accurate than the �rst one but is not
useful for compressing the initial dictionary.

In the �nal paper, we will also report experiments on English data.

2 Preliminary Concepts

We illustrate the methods by applying them to the problem of grapheme-to-phoneme transcrip-
tion. For experimental purposes, we use an aligned dictionary of 480,000-word French words
(Laporte, 1988). The dictionary consists of a list of words where each character is associated
with a one-character phoneme code (possibly representing an empty phoneme). In this paper,
we only consider words with exactly one phonetic transcription.

For example, the French word \artichaut" (\artichoke" in English) is transcribed as
\artiS--o-" where \�" stands for the empty sound; we write artichaut/artiS--o-.

The methods generalize the data found in the dictionary using all aligned substrings of
di�erent length of all dictionary entries. Substrings of n characters (n-grams) aligned with
n phonemes are called n-phons. Given an aligned dictionary, the set of n-phons are trivially
computed.

For example, all 4-phons for the above example are arti/arti, rtic/rtiS, tich/tiS-,
icha/iS--, chau/S--o and haut/--o-.

For a given length n, the methods build a dictionary of n-phons that correspond to the most
likely transcription of each n-gram. For example, if the 3-phon cha/S-- occurs �ve times in the
dictionary and the 3-pho cha/S-a occurs three times in the dictionary, the most likely 3-phon

for the n-gram cha is cha/S-- and only this one will be stored in the 3-phon dictionary.

The construction and the use of these dictionaries di�er for both method and will be de-
scribed in the following two sections.

3 First Method

The method is better illustrated by an example. Consider the following sample dictionary
obtained by merging 1-phon, 2-phon and 3-phon dictionaries:6

6In practice it is useful to add begin and end markers to each word. For sake of simplicity those markers are
ignored in this paper.
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a/a

r/r

t/t

i/i

c/k

h/-

u/-

ch/S-

au/-o

aut/-o-

Using the above dictionary, the word artichaut is transcribed left to right as follows.

a

a

r

r

t

t

i

i

ch

S-

aut

-o-

Looking at the �rst letter (artichaut remains to be transcribed), the longest n-phon de�ned
in the dictionary that matches what follows is a/a. a is emitted and we move to the second
letter (r) and so on until the �fth letter. When we reach the �fth letter (chaut remains), we
have emitted (arti). At that point, two n-phons match, c/k and ch/S-. The longest one,
ch/S-, is chosen and we move to the seventh letter (aut remains) while emitting S-. At that
point, au/-o and aut/-o-match. The longest one is chosen (aut/-o-) and the word artichaut
is correctly transcribed as artiS--o-:

Note that in the above n-phon dictionary, the 5-phon chaut/S--o- does not need to be
stored since it can be obtained from this dictionary (with ch/S- and aut/-o-) with the same
procedure.

More precisely, the method builds a series of n-phon dictionaries. The 1-phon dictionary is
�rst built.7 Dictionaries of increasing lengths of n-phons are inductively built. Assuming that
all dictionaries up to a given length n� 1 have been built, we build the dictionary for length n

by removing from the set of most likely transcriptions of length n the ones that can correctly
be derived from the dictionaries of length up to n� 1.

In our example, the two-phon ar/ar is not stored since it can be derived from the uni-phons
a/a and r/r.

We could carry this operation up to the length of the longest word in the original dictionary,
or stop at a shorter length k and construct an exception dictionary of entries that cannot be
correctly derived from the k-phon dictionaries. Note that the exception dictionary only contains
words of length strictly greater than n.

So far, we have described the method in terms of dictionaries (n-phon and exception dic-
tionaries). The method however operates on �nite-state transducers representing these dictio-
naries. Each n-phon dictionary can be trivially represented as a �nite-state transducer where
each arc is labeled with a pair of letter and phoneme. Similarly the exception dictionary is
represented as a �nite-state transducer.

We build inductively a single �nite state transducer Fk that computes the phonetic tran-
scription of a word. The transcriptions according to the one-phon dictionary is obviously a
deterministic �nite-state transducer. Inductively, assume that we have built the machine op-
erating with the 1� to n-phon dictionaries. Suppose also that the n+1-phon dictionary is rep-
resented as deterministic �nite-state transducer, then the algorithm described in Appendix A

7As previously said, this dictionary contains the most likely transcription of each character.
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4 Schabes & Roche

n # exceptions # states in Fn jFnj=jF0j % % compression

0 479,300 48,244 100

1 457,657 47,842 99

2 368,044 46,829 97

3 276,249 43,210 89

4 182,311 40,461 83

5 135,882 45,666 94

Figure 1: First method: di�erent levels of n-phons applied to the whole dictionary.

largest n-phon % letters % words

1 71 4.4

2 85 23

3 91 43

4 94.5 61

5 96 69.5

6 96.7 74.2

Figure 2: First method: performance on unknown words

computes the combined deterministic transducer. This operation is repeated until the n-phons
of length k are included. Finally, the exception dictionary is combined similarly (at the last
step)8 to form Fk .

By construction, the �nal deterministic �nite-state transducer outputs the exact same tran-
scription for each word in the initial phonetic dictionary. Moreover, it generalizes the function
to any string. The constructed n-phon dictionaries can be seen as transcription rules inferred
from the dictionary; and the exception dictionary as exceptions to those rules.

3.1 Experiments

We �rst ran experiments on the entire dictionary. Figure 1 shows the coverage and compression
obtained by the transducer Fn constructed for increasing values of n (as described in the previous
Section). The second column shows the number of words in the exception dictionary. The third
column shows the number of states of the �nal deterministic transducer Fn (it includes the
exception dictionary). Therefore, for any n � 0 and for any word w in the original dictionary,
Fn(w) is the original phonetic transcription. The fourth column shows the ratio of number of
states in Fn to the number of states of F0 (which is the original transducer representing the
dictionary). This percentage represents the compression ratio. This compression ratio is based
on the �nite-state representation which already compresses by a factor of 10 compared to the
ASCII representation. An optimal compression ratio (83%) is obtained for n = 4.

In order to evaluate the generalization capabilities of this method, we also ran experiments
by randomly splitting the dictionary into two parts, 90% of which was used for training purposes
and 10% for testing. Figure 2 shows the performance obtained by the transducer constructed for
increasing values of n. The second column shows the percentage of letters correctly transcribed
and the third column the percentage of words correctly transcribed.

The experiments show that after a certain length (4), there is a tradeo� between the com-
pression and generalization capabilities.

8The exception dictionary contains n-phon of greater than k.
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Tree Insertion Grammar 5

We can further improve the generalization capabilities by using an alternative method de-
scribed in the next section.

4 An Alternative Method: Window Sliding

The �rst method transcribes n-grams of characters at a time from left to right while always
trying to transcribe as many characters at a time. When an n-gram has been transcribed, the
characters in this n-gram are no longer considered when transcribing the remaining characters.
The second alleviates this apparent drawback and is capable of considering any character when
making a decision.

The method is best understood by an example. Consider the following n-phons dictionary:
fila/fila

lament/lam~a--

ment/m---

cla/kla

The �rst method transcribes the word filament incorrectly to filam---:

fila ment

fila m---

It considers the �rst letter and matches fila/fila which is the longest n-phon in the dic-
tionary for that letter; it then moves to the �fth letter (ment remains) and matches ment/m---
and moves to the end. This method seems inappropriate in this case since it did not use the
longer context lament/lam~a.

The second method transcribes the word filament correctly to filam~a-- as follows.

filament

f� � �

� i� �
l� � � � �
� a� � � �

� � m� � �
� � � ~a� �

� � � � -�
� � � � � -

The �rst letter f is considered and the longest match around this letter is used to transcribe
this letter. The longest match is fila/fila and f is transcribed as f. Then, the second letter
i is transcribed as i since fila/fila is the longest match that can be slided and aligned on i.
Then, the third letter l is consider. The longest match that can be slided on l is lament/lam~a--.
Similarly, a is transcribed to a according to lament/lam~a--; m is transcribed to m according
to lament/lam~a--; e is transcribed to ~a according to lament/lam~a--; n is transcribed to -

according to lament/lam~a-- and t is transcribed to - according to lament/lam~a--.
However, using this dictionary, both methods will correctly transcribe clament to klam---.
More precisely, the second method transcribes an input word one character at a time.

For decreasing window lengths, the method �rst aligns the n-phon window starting at the
current character and slides the window until a match is found. When the match is found,
the current character is transcribed according to the n-phon and the method is reiterated on

MERL-TR-95-08 March 1995



6 Schabes & Roche

First Method Window Sliding

n # exceptions jFnj=jF0j % % letters % word # exceptions jFnj=jF0j % % letters % word

0 479,300 100 0 0 479,300 100 0 0

1 457,657 96 71 4 457,657 96 71 4

2 368,044 79 85 23 369,135 78 85 23

3 276,249 59 91 43 241,053 50 93 50

4 182,311 39 95 61 165,452 35 95 64

5 135,882 32 96 70 116,752 27 96 72

6 97 74 75,930 21 97 79

7 54,279 19 98 82

8 45,645 18 98 83

9 41,973 19 98 84

Figure 3: Second method. Comparison with Window Sliding.

another untranscribed character. This transcription can be done in any order, not necessarily
from left to right.

This method bares resemblance to previous approaches since it looks at windows of charac-
ters in order to transcribe the input.

Similarly to the �rst approach, we build the n-phon inductively on length n. The 1-phon
dictionary is identical to the one of the �rst method. The n+1-phon dictionary is obtained by
removing any n+1-phon correctly encoded (according to the second method) by the dictionary
of 1� to n-phons.

Figure 3 compares the two approaches. In this Figure, jFkj is the number of characters in the
ASCII dictionary of 1- to k-phons plus the number of characters in the exception dictionary (in
ASCII form). The Window Sliding method has a better generalization accuracy. This results
in a simple compression method on the ASCII �le. However, since this compression ratio is
given with respect to the original ASCII �le, it cannot be compared with the compression
ratio of Figure 2 which was given with respect to the �nite-state representation of the original
dictionary.

Due to the lack of space, we do not include more details on this approach. The �nal paper
will include more details on this method. In particular, we will show how this method can be
turned into a deterministic �nite-state transducer.

5 Conclusion

There is a natural correspondence between annotated corpora and functions: a corpus can
be seen as a collection of points and their images of a function that maps the raw input to
the annotated output. We have shown that �nite-state transducers are very well suited for
data-driven methods.

As a case study, we experimented with grapheme-to-phoneme transcription using a 480,000
word phonetic dictionary of French. We have presented twomethods for building a deterministic
�nite-state transducer which is capable to transcribe any word even of it is not in the original
dictionary. In addition to their ability to generalize from examples, the methods are exact in
the sense that the inferred transducers coincide on the words de�ned in the dictionary. Since
the resulting transducers can be smaller than the original function, the methods can also be
used for dictionary compression.
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Tree Insertion Grammar 7

The two methods di�er on their generalization accuracy and their compression capabilities.
The methods are general and we believe that they are useful for a wide range of data-oriented

applications.
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A Combine Operation

In the following, a �nite-state transducer T is formally de�ned as a 5-tuple (�;Q; i; F; E) where:
� is a �nite alphabet; Q is the set of states or vertices; i 2 Q is the initial state; F � Q is the
set of �nal states; E � Q� � [ f�g � �� �Q is the set of edges or transitions.

This leads to the de�nition of deterministic transducers called subsequential transducers:
a subsequential transducer T is a 6-tuple (�; Q; i;F; E;�) where: �; Q; i;F; E are de�ned as
above, but E is such that 8q 2 Q; 8a 2 �; jf(q; a;b; q0) 2 Egj � 1; and the �nal emission
function � maps F on ��, one writes �(q) = w.

In addition, it is useful to de�ne the state transition function d by d(q; a) = q0 s.t. 9(q; a; b; q0) 2
E; and the emission function � by �(q; a; q0) = b if (q; a; b;q0) 2 E.

For w1; w2 2 ��, w1 ^ w2 denotes the longest common pre�x of w1 and w2.
The following algorithm combines two transducers T1 = (�; Q1; i1; F1; E1; �1) and T2 =

(�; Q2; i2; F2; E2; �2) to form a third transducer T = (�; Q; i; F; E; �) according to the method
described in Section 3.
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10 Schabes & Roche

1. COMBINE TRANSDUCERS(T1 = (�; Q1; i1; F1; E1; �1),T2 = (�; Q2; i2; F2; E2; �2))
2. q = 0;n = 1; i = 0;C [0] = ((0; �); (0; �));F = f0g; �(0) = �;E = ;;
3. do f
4. ((x1; u1); (x2; u2)) = C[q];
5. if (x1 2 F1)
6. F = F [ fqg; �(q) = u1 � �1(x1);
7. for each a s.t. d1(x1; a) 6= ;
8. CASE 1 : x2 6= OUT
9. CASE 1.1 : d2(x2; a) 6= ;
10. y1 = d1(x1; a); y2 = d2(x2; a);
11. CASE 1.1.1 : y2 62 F2

12. �1 = �1(x1; a; y1);�2 = �2(x2; a; y2);
13. b = u1 � �1 ^ u2 � �2;
14. S0 = ((y1; b�1 � u1 � �1); (y2; b�1 � u2 � �2))
15. if 9r 2 [0; n� 1] s.t. C[r] == S 0

16. e = r;
17. else
18. C[e = n+ +] = S0;
19. E = E [ f(q; a; b; e)g;
20. CASE 1.1.2 : y2 2 F2

21. b = u2 � �2(x2; a; y2) � �2(y2);
22. S0 = ((0; �); (0; �));
23. if 9r 2 [0; n� 1] s.t. C[r] == S 0

24. e = r;
25. else
26. C[e = n+ +] = S0;
27. E = E [ f(q; a; b; e)g;
28. CASE 1.2 : d2(x2; a) = ;
29. Call AUX;
30. CASE 2 : x2 = OUT
31. Call AUX;
32. q + +;
33. g while (q < n);
34. Function AUX
35. y1 = d1(x1; a); b = u1 � �1(x1; a; y1);
36. if y1 = 0 then y2 = 0 else y2 = OUT;
37. S0 = ((y1; �); (y2; �));
38. if 9r 2 [0; n� 1] s.t.C[r] == S 0

39. e = r;
40. else
41. C[e = n+ +] = S0;
41. E = E [ f(q; a;b; e)g;
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