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Abstract

For some data sources, a voxel-based representation can provide much more informative data
visualization than the surface-based representation of conventional computer graphics. For ex-
ample, the image data from a 3D Magnetic Resonance Image (MRI) scan consists of a wealth
of information about internal structure, function, and anatomy. Using volume rendering with
appropriate preprocessing, all of this information can be effectively presented to the attending
physician or radiologist. In contrast, surface models derived from the MRI data discard inter-
nal structure, cannot be used to represent objects with poorly defined edges or surfaces, and are
sensitive to segmentation errors. In this paper, we propose the use of a voxel-based data repre-
sentation not only for visualization, but also for modeling objects and structures derived from
volumetric data. The paper describes work in progress towards demonstrating the utility of a
voxel-based format for modeling physical interactions between virtual objects. Data structures
are presented that help to optimize storage requirements and preserve object integrity during ob-
ject movement. An adaptation to volume rendering algorithms is discussed that enables objects
to be rendered individually and then combined in a final compositing step. Finally, algorithms
and prototype systems are presented that use a voxel-based format to model physical interactions
between objects. These physical interactions include collision detection and avoidance of object
interpenetration, haptic, or tactile, exploration of virtual objects using a force feedback device,
and object deformation.
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Introduction
For some data sources, a voxel-based representation can provide much more

informative data visualization than the surface-based representation of conventional
computer graphics.  For example, the image data from a 3D Magnetic Resonance Image
(MRI) scan consists of a wealth of information about internal structure, function, and
anatomy.  Using volume rendering with appropriate preprocessing, all of this information
can be effectively presented to the attending physician or radiologist.  In contrast, surface
models derived from the MRI data discard internal structure, cannot be used to represent
objects with poorly defined edges or surfaces, and are sensitive to segmentation errors.

In this paper, we propose the use of a voxel-based data representation not only for
visualization, but also for modeling objects and structures derived from volumetric data.
The paper describes work in progress towards demonstrating the utility of a voxel-based
format for modeling physical interactions between virtual objects.  Data structures are
presented that help to optimize storage requirements and preserve object integrity during
object movement.  An adaptation to volume rendering algorithms is discussed that enables
objects to be rendered individually and then combined in a final compositing step.  Finally,
algorithms and prototype systems are presented that use a voxel-based format to model
physical interactions between objects.  These physical interactions include collision
detection and avoidance of object interpenetration, haptic, or tactile, exploration of virtual
objects using a force feedback device, and object deformation.

Introduction
New medical imaging technologies such as MRI or Computed Tomography (CT) can

provide high quality, high resolution images.  When stored in a voxel-based format, these
data can provide a wealth of information about a patient's internal anatomy.  Volume
rendering of the voxel-based data is an effective way to present this 3D data to the attending
physician or radiologist.

Recent trends have provided a growing interest in using these 3D images not only to
visualize anatomy, but also to generate patient-specific anatomical models for pre-surgical
planning and surgical simulation.  Such models have been used for implant design in
orthopedics, for planning a surgical approach, for training and education, and for
predicting the outcome of a planned surgery (for example, see papers in [DIGIO94] and
[ROBB94]).

Unfortunately, surface-based models created from the 3D image data discard interior
structure and are prone to estimation errors, especially where details in the surface (such as
small fractures in a bone surface) are small relative to the resolution of the data set.  Thus,
just as in image visualization,  for some data sources a voxel-based data format which
preserves interior structure and objects that do not have well defined surfaces may be more
appropriate than surface-based modeling methods.

In order to perform pre-surgical planning and surgical simulation on a voxel-based
anatomical model, algorithms must be capable of modeling the movement and interaction
among several objects in the scene.  In most cases, objects must be prevented from
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interpenetrating as they move about.  This requires that collisions between objects must be
detected and avoided.  When objects contact each other, they should respond in a
physically realistic way, which means that we must be able to model the transfer of energy
between objects and the shape changes of deformable objects.  This paper discusses several
algorithms and prototype systems that address these requirements.

Background
New imaging and data sampling technologies have resulted in large, multi-dimensional

arrays of data.  Conventional sources of volumetric data include: imaging technologies,
such as magnetic resonance imaging (MRI) or computed tomography (CT); spatial data
sampling, such as geological core sampling or the measurement of temperature or pressure
by weather balloons for climate studies; and numerical simulations such as 4D studies of
fluid flow or turbulence.  More recent sources of volumetric data include industrial CT,
finite-element analysis techniques, and "voxelization" methods used to convert CAD and
CSG models into voxel-based data representations that can be visualized with voxel-based
rendering methods [KAUF87].

Early methods to visualize volumetric data used surface rendering techniques to display
polygon-based surface models derived from the volumetric data.  Since the late 1970's,
volume rendering techniques have been developed which enable more direct visualization
of the volumetric data.  With appropriate preprocessing, volume rendering can be used to
visualize surfaces, interior structure, and objects that do not have well defined surfaces.
Many effective volume editing tools, volume rendering algorithms and data compression
schemes have been developed (see for example [KAUF90A]).   Although processing needs
and large memory requirements are still major hurdles that need to be overcome, faster
algorithms and special-purpose hardware are enabling real-time volume rendering of data of
significant size and resolution [NEUM93B][CABRAL94].

Recently, Kaufman et al [KAUF93] have introduced the field of volume graphics,
where a voxel-based data format is used to represent graphical objects that are customarily
represented by surface-based models.  They have demonstrated that many of the graphical
effects, such as shading and reflectance, that are available in surface-based graphics
representation are also possible using volume graphics [KAUF88], [AVILA92],
[YAGEL92].  Assuming that memory needs and processing requirements can be met
effectively, Kaufman et al assert that volume graphics has the potential to supersede
surface-based graphics just as 2D raster graphics superseded vector graphics.  Whether or
not this potential is realized will depend on many factors.  However, as occurs in data
visualization, some objects will be more accurately modeled using a voxel-based volume
graphics format than conventional graphics formats.

Data Structures
There are two important considerations when designing data structures for voxel-based

objects that interact in a virtual environment.  First, the data structure of the virtual space
must be simple and easily updated.  While many data structures have been devised to
reduce memory requirements of voxel-based data, these generally require significant
preprocessing and are not suitable for an environment in which objects can continuously
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move and change shape.  The second consideration is that each voxel can consist of many
elements.  For example, in an image volume, each voxel may contain color, opacity, a
gradient vector, reflectance parameters, material strength and other properties.  Storing
these lengthy voxel data structures directly in the large array of the virtual environment is
very inefficient if there is a lot of empty space between objects.  In addition, if object
voxels were moved about the discrete array structure of the virtual environment, they
would have to be resampled for non-integer movements.  Accumulated sampling error
would quickly lead to complete degradation of an arbitrarily moving object.

Figure 1 illustrates the data structures used by algorithms and prototype systems
discussed in this paper.  Two separate data structures are used to minimize storage
requirements and maintain the integrity of complex, moving objects while providing an
easily updated structure for the virtual environment.  An occupancy map with dimensions
of the virtual environment is used to monitor interactions among objects and global changes
in the environment.  Each element of the occupancy map is large enough for a single
address and contains either a null pointer or an address of an object voxel data structure.
Voxel data structures consisting of elements such as color, opacity, reflectance coefficients,
vector gradient, material properties, position, neighbor addresses, etc. are stored in
compact object arrays.  The occupancy map is initialized by mapping the addresses of
voxels in each object into the occupancy map using the voxel positions in object space
coordinates and a mapping transformation from object space to the virtual environment
space.

1 memory cell

- contains null pointer or
address of one object voxel

Occupancy Map
Object 1 Array

1 voxel

- contains voxel color,
transparency, reflectance,
gradient vector, material
properties, etc.

Object 2 Array

Figure 1. Data structures for a voxel-based object representation.  The occupancy map consists of regularly spaced
memory cells of integer size that contain either a null pointer or an address of one object voxel.  The occupancy map
is the size of the application's virtual world.  The object arrays consist of data structures each containing the
information for a single voxel.  This voxel data structure can include many properties and attributes including voxel
color, transparency, gradient vector, position vector, material properties, etc.  Object arrays are not necessarily
rectangular; object voxels are not necessarily evenly spaced or of equal sizes; and voxels are not necessarily ordered
within the array.  Since a voxel-based graphics system is very memory intensive, the purpose of this double data
structure is to pack the large voxel structures of the objects as efficiently as possible while maintaining a map of the
entire virtual space for modeling interaction between objects.
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Object-based Volume Rendering
Volume rendering of large data volumes is complicated by the fact that voxels must be

composited in order, either from the front of the data volume (facing the viewing plane) to
the back of the object or from back-to-front.  Fortunately, if a large data volume is
segmented into non-overlapping convex sub-volumes, 2D intermediate images consisting
of accumulated color and transparency through the sub-volume can be calculated and
composited to form the volume rendered image of the entire volume.  This method is
illustrated in Figure 2.  It has been used in several algorithms that distribute volume data
over multiple processors for parallel rendering [HSU93], [MA93], [NEUM93A].

1 memory cell

- contains null pointer or
address of one object voxel

Occupancy Map
Object 1 Array

1 voxel

- contains voxel color,
transparency, reflectance,
gradient vector, material
properties, etc.

Object 2 Array

Figure 1. Data structures for a voxel-based object representation.  The occupancy map consists of regularly spaced
memory cells of integer size that contain either a null pointer or an address of one object voxel.  The occupancy map
is the size of the application's virtual world.  The object arrays consist of data structures each containing the
information for a single voxel.  This voxel data structure can include many properties and attributes including voxel
color, transparency, gradient vector, position vector, material properties, etc.  Object arrays are not necessarily
rectangular; object voxels are not necessarily evenly spaced or of equal sizes; and voxels are not necessarily ordered
within the array.  Since a voxel-based graphics system is very memory intensive, the purpose of this double data
structure is to pack the large voxel structures of the objects as efficiently as possible while maintaining a map of the
entire virtual space for modeling interaction between objects.

In the proposed system, where the virtual environment consists of a large virtual space
containing several independent objects, this volumetric partitioning method can be
especially efficient.  As long as objects are stored as non-overlapping convex volumes
(non-convex objects can be sub-divided to form convex sub-volumes), then intermediate
images for each object can be rendered independently, and the final image can be generated
by compositing these intermediate images.

There are several advantages to this object-based rendering method.  First, volumes
containing objects can be made as compact as possible so that storage is minimized and
empty space in the virtual world is not rendered.  Second, if the viewpoint does not change
during a time interval, only objects that have moved during the interval need to be re-
rendered.  The new intermediate images are combined with unchanged intermediate images
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in the final compositing step.  This can greatly reduce rendering times in dynamic systems.
Third, the object-based data storage gives an intuitive subdivision of the data for
distribution to multiple processors in parallel rendering algorithms.  Finally, object data
remain static within an object array even when the object moves about the virtual
environment.  Movement of an object relative to the virtual environment only requires an
update to the coordinate mapping transformation between the object and the environment.
Hence, objects are not resampled when they move, eliminating object degradation due to
accumulated resampling errors.

Collision Detection
When modeling objects in a virtual environment, it is important to model interactions

between objects in a physically realistic way.  For example, in most cases, objects must be
prevented from penetrating each other and they should react to collisions by exchanging
momentum and energy and possibly by deforming on impact.  The first step of modeling
interactions between objects requires the detection of collisions between moving objects.

In surface-based graphical formats, objects are modeled as lists of polygons or other
primitive surface elements.  In this format, each element is essentially a set of mathematical
equations or conditions.  For example, a single three-sided polygon consists of an ordered
list of three vertices.  The polygon surface element is the intersection of three half planes
defined by the polygon vertices.  In order to detect a possible collision between two
objects, each element in the first object must be checked for intersection with many
elements in the second object.  This amounts to solving for an intersection between two
sets of mathematical equations and conditions for each possible combination of object
elements.  Reasonably complex objects may consist of many thousands of surface
elements.  Although algorithms have been introduced that reduce the number of element
pairs that must be checked for intersection, collision detection between complex objects
remains one of the major computational efforts in computer applications which perform
physically realistic modeling or simulation [BARRAF94].

In contrast, collision detection for voxel-based objects is conceptually simple and does
not require any mathematical analysis.  As objects are moved in the virtual environment,
object voxel addresses are simply shifted in the occupancy map array.  Collisions are
detected automatically when a voxel address from one object tries to write into an
occupancy map cell that is already occupied by the voxel address of another object.  This
simple algorithm is illustrated in Figure 3.
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Occupancy Map

Figure 3. Collision detection algorithm.  As object 2 moves along its desired trajectory, the addresses of the object
voxels are shifted in the occupancy map.  If an attempt is made to shift an object 2 address into an occupancy map
cell that is already occupied by an address of object 1, then a collision is detected.

time = t0

Occupancy Map

time = ∆t + t0

collision detected

object 1

object 2

desired movement
of object 2

The data structures that have been proposed here suggest the following simple
algorithm for detecting collisions and preventing objects from penetrating each other:

determine desired object position
while (stepsize to desired position > threshold) {

for (all voxels in the moving object) {
check occupancy map cells of desired positions to see if they are

occupied
}
if (all occupancy map cells are free) {

move the object into the desired position
update the occupancy map
exit

}
else if (any of the occupancy map cells is occupied) {

avoid object interpenetration by reducing the step size
update the desired position

}
}

Collision Detection Prototype Systems
Two prototype systems have been built to test this algorithm for detecting collisions and

avoiding object interpenetration.  In a 2D prototype system, the occupancy map is updated
as the positions of 2D objects are manipulated with the computer mouse.  Applications that
have been developed for this prototype include a virtual maze where objects with complex
edges are moved between the voxel-based maze walls.  Collisions with the maze walls are
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detected and the objects are restricted to the free space between the maze walls.  In a second
applications, 2D virtual puzzle pieces with arbitrary edges can be cut from a digitized color
picture and assembled using a computer mouse.

In a 3D prototype system, voxel-based nut, washer, and bolt objects are interactively
manipulated, visualized and assembled.  The object positions and orientations are
controlled interactively with a 6 degree-of-freedom Fastrack 3Ball input device by
Polhemus.  Computation and rendering was performed on an SGI Reality Engine although
only minimal effort was made to optimize code or to take advantage of specialized
hardware.  Memory limits and the need for interactive rates limited the sizes of object
volumes to less than about 680 kbytes.  Volume rendering quality was compromised in
order to attain interactive speeds (updates of 3 to 10 frames per second) but quality of the
rendering was sufficient for good visualization of object position.

Using this 3D prototype system, objects can be moved, visualized and collided with
walls and other objects at interactive rates.  With some dexterity, it is possible to assemble
the washer on the bolt, but poor positioning control and feedback with the current system
makes it too difficult to thread the nut on the bolt.  Planned improvements to the system
include the addition of depth perception for better control of object placement along the z-
axis, calculation of collision forces for simulating more physically realistic reactions to
collisions, and force-feedback for better perception of collisions.

Haptic Exploration of Large Data Volumes
One direct application of the voxel-based algorithm for collision detection and

avoidance of object interpenetration is a system to haptically explore or "feel" the 3D
surface of a virtual object.  Haptic, or tactile, exploration will enhance visualization
methods for complex data and provide valuable feedback in the simulation of deformable
objects.  Using the proposed data structures along with a relatively small voxel-based
model of the user's hand or fingertip, the computation required to detect and avoid
collisions between the user's hand and the data is small even when the virtual object itself is
very large and complex.  In a voxel-based system for haptic exploration, the object data are
stored in a large static data array.  A small voxel-based object representing the user's hand
or fingertip is shifted through the data array, tracking movement of the user's hand.  When
a voxel of the hand model encounters a voxel belonging to the object, a force feedback
device is used to limit the hand movement to avoid penetration of the virtual object by the
hand model.  Using object-based volume rendering, pre-computed, high quality images of
the volume data can be composited with dynamically computed images of the hand.  As
long as the hand model is small enough for fast rendering, visualization of the system will
be fast enough for interactive use.

A prototype system, illustrated in Figure 4, is currently under development for haptic
exploration of a high resolution 3D CT scan of a human hip.  In the current design, a force
feedback system [MASSIE94] is used to track the user's fingertip position in the virtual
environment.  The fingertip position is represented by a single voxel in the occupancy map.
When the fingertip voxel encounters voxels belonging to the hip surface, the force feedback
device prevents the user's fingertip from moving in a direction that would penetrate the
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virtual object, allowing the user to "feel" the hip surface.  Stereo pairs of 3D volume
rendered images of the hip data plus the fingertip are presented to the user via stereo
goggles.  Some control of the viewpoint is enabled in real time using pre-computed volume
rendered images of the hip data.

Note: Figure 4 is hand-drawn and is available only  in the
Hardcopy version of this doccument.

Figure 4. A prototype system for haptic exploration of a virtual object using a force

feedback device.  Voxel-based algorithms for detecting collisions and avoiding object

interpenetration are used as input to a force feedback device to limit the user's hand

position as it explores the data volume.  By restricting hand motion so that it can not

penetrate the virtual model, the user is able to 'feel' the data.

Object Deformation
For modeling physically realistic interactions, we must be able to model both rigid and

deformable objects.  For example, in surgical simulation, we would like to be able to model
deformation and tearing of skin during an incision, stretching or contraction of a muscle
during limb movement, or deformation of an organ when it is probed by a surgeon's
instrument.  Some very interesting work has been done in modeling skin using finite
element methods [TERZ90] [PIEP92].  However, finite element methods require solutions
of large systems of differential equations and hence they are computationally expensive so
that only small numbers of grid points may be used in interactive systems.

In a voxel-based deformable object model, each voxel is connected to its nearest
neighbors.  As forces are applied to the object, these connections are maintained while the
object deforms.  The connections act like non-linear springs which tend to pull the voxel
mesh back towards an equilibrium state.  Because the number of interconnections between
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voxels is large, finite element methods to determine final voxel positions at each time step
are impractical.  Instead, we allow the system to exist in a non-equilibrium state and adjust
each voxel position independently of adjustments to neighbors.  A closed feedback loop
iteratively pulls each voxel towards an equilibrium position determined by the current
position of neighboring voxels.  This system will eventually settle in an equilibrium state
after a finite disturbance if the feedback system is stable.  Figure 5 illustrates a voxel that is
pulled towards an equilibrium position equidistant between its 4 nearest neighbors.

top

rightleft

bottom

Figure 5. At each time step, the distances from the current voxel (dark
circle) to its nearest neighbors (open circles) are examined.  If these
distances do not satisfy an equilibrium condition, the current voxel is
moved closer to an equilibrium position.  In this example, the current
voxel is moved towards the point equidistant from its nearest
neighbors.

The same data structures used for voxel-based rigid objects in a virtual environment are
also used for deformable objects.  However, in addition to color and other information, the
object array elements also contain each voxel's exact position in the virtual environment.
As the objects are deformed, these positions are updated and hence, although the object
data remain static, the object deformation warps the data grid.  The major advantage to this
strategy is that the object data is not degraded by resampling errors when the object is
stretched or compressed.  However, rendering algorithms that can handle non-uniform
grids are required.  As in a non-deformable system, each occupancy map cell contains
either a null pointer or the address of a voxel lying within the cell's area in the virtual
environment.  While a voxel can be physically located anywhere within a given cell, each
cell may contain at most one voxel.

In a rigid system, the distance between neighbors cannot change.  In an elastic system,
the distance can change but will return to the zero state when equilibrium is achieved.  In a
deformable system, the system will still be in equilibrium when distances to neighboring
voxels lie within some limits.  Figure 6 illustrates the position that a voxel of a deformable
object can assume relative to its left neighbor while remaining at equilibrium.  As long as
the voxel lies within the rectangular region defined by the maximum and minimum
allowable horizontal separation and the maximum shear, horiz_dymax, in the vertical
direction, then no position correction is required.  Note that anisotropic materials can be
modeled when different equalization regions are allowed for horizontal and vertical
neighbors.  For example, if the system of Figure 6 has the given equilibrium region for left
and right neighbors and an equilibrium region for top and bottom neighbors where
maximum and minimum separations along the vertical axis are equal, then the object would
be able to compress and expand along the horizontal axis but not along the vertical axis.
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Using this strategy, we can model materials such as skeletal muscle which can be more
easily stretched and compressed along one axis than the other.

left }}

dxmin

horiz_dymax

dxmax

Figure 6. Equilibrium position of the current voxel (dark
circle) relative to its left neighbor.  As long as the current
voxel lies within the outlined rectangle, then it is at
equilibrium with respect to its left neighbor.  If dxmin is

equal to dxmax , then the object will not deform in the

horizontal direction.  The magnitude of horiz_dymax
affects how much the object can shear.

In a deformable system, the motion of a selected voxel is limited by its surrounding
voxels in the sense that a voxel cannot move into a cell that is already occupied.  Hence, in
order for a voxel to move from one position to another, all cells intersected by the line
joining the two positions must be empty.  When movement along a given path is inhibited
by an occupied cell, the current voxel is moved as far as possible within its present cell and
then the unfinished movement is transferred to the voxel in the occupied cell.  The new
voxel then attempts to continue movement along the desired path.  This transfer of
momentum continues until either the sum of the voxel movements is equal to the desired
movement or a fixed voxel is encountered.  As controlled voxels are moved,  other voxel
positions continue to be iteratively adjusted towards equilibrium positions.  Figure 7
illustrates the movement of a selected voxel in a 1D system.  Note that the deformable
object is compressed when pushed and stretched when pulled.

Figure 7. When the selected voxel (dark circle) is moved within a
specified minimum separation from its neighbor, the minimum
separation is maintained and both voxels continue to move in the
desired direction.  When the selected voxel is moved in the opposite
direction, as in the bottom half of the figure, its neighboring voxel
begins to move once a specified maximum separation occurs.  When
the minimum and maximum separations differ, the object will
compress when pushed and stretch when pulled.  The object's
deformability is increased by increasing the difference between the
maximum and minimum allowable separations.

Both 1D and 2D prototype systems have been built to test algorithms for moving and
deforming voxel-based objects.  While much work is needed to improve these systems and
enable interactive control of reasonably sized objects, these prototypes have demonstrated
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that realistic simulation of complex motions can be accomplished with the data structures
and strategies that have been presented here.  Current efforts are directed towards designing
a 2D system that will model interactions between several deformable 2D objects of
reasonable size and complexity.

Summary
This paper has introduced data structures and algorithms for modeling interacting,

deformable voxel-based objects in a virtual environment.  Prototype systems have been
developed that show the feasibility of these systems for interactive control and manipulation
of complex objects.  While these methods will initially be most attractive for models
derived from volumetric data, they will also have some advantages in conventional graphics
systems.  There are many challenges for developing a large interactive virtual environment
using voxel-based objects, including limits due to rendering speeds, data access speeds,
and memory requirements.  However, these challenges are analogous to those originally
faced by conventional graphics.  Further development of intelligent data structures, fast,
parallel algorithms, and special purpose hardware will enable the exploration and realization
of the full potential of volume graphics.
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