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Abstract

Finite-state transducers and finite-state automata are efficient and natural representations for a
large variety of problems. We describe a new algorithm for turning a finite-state transducer into
the composition of two deterministic finite-state transducers such that the combined size of the
derived transducers can be exponentially smaller than other known deterministic constructions.
As a consequence, this can also be used to build deterministic representations of finite-state
automata smaller than the minimal finite-state automata computed by the classic determinization
and minimization algorithms. We also report experimental results on large scale dictionaries and
rule-based systems.
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1

Finite-state transducers and �nite-state automata are used in a great variety
of programs such as lexical analyzers. Some of these representations can
contain more than a million states in applications such as Natural Language
Processing. This points out the need for e�cient compaction methods.

The problem is solved in the case of deterministic �nite-state automata
where the minimization algorithm is well known. A minimization procedure
is also available in the case of subsequential transducers [11]. For the general
case of rational functions, Reutenauer and Sch�utzenberger [12] give a way to
construct a bimachine which is minimal modulo a certain equivalence relation
and n the case of subsequential functions, their construction is equivalent to
the minimal subsequential transducer. Building a bimachine (introduced
by [14], see also [4, 2]) can also be seen as building a decomposition of a
rational function f into � � � where � (resp. beta) is a right-sequential
function (resp. a left-sequential function). Such a decomposition is possible
for any rational function [5]. We give here an algorithm that, like in [12],
builds a decomposition of any rational function into a right-sequential and a
left-sequential transducer; this decomposition can be exponentially smaller
than the one proposed in [12] and in the case of subsequential functions it
can be exponentially smaller than the minimal subsequential transducer. In
other words, there exists a family of �nite-state transducers Tn such that, if
Tn = �n ��n is the result of the factorization procedure presented here and if
�n is the minimal subsequential transducer equivalent to Tn (when it exists),
then k�nk+ k�nk = O(logk�nk).

As a curious consequence, this construction can lead to deterministic
representations of �nite-state automata smaller than minimal deterministic
automata. A �nite-state automaton can indeed be viewed as a constant
rational function whose domain is the language recognized by this �nite-state
automaton.

In this extended abstract, we will informally describe the factorization
algorithm and illustrate it by a step-by-step application on an example. The
example chosen also suggests a natural proof (that will be given in the �nal
version of this paper) that there is a family Tn such that, if Tn = �n��n is the
result of the factorization procedure presented here and if �n is the minimal
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sequential transducer equivalent to Tn, then k�nk+ k�nk = O(logk�nk).
1 We

will briey say how this can be used for building �nite-state representation
of �nite-state automata that can be smaller than the minimal deterministic
�nite-state automata.

We will then present some experimental results on some large scale dictio-
naries and rule based systems. The result show that the method is e�cient
and it can, in some cases, represent a big improvement upon previously
known representation.

The algorithm can be applied to any rational function, that is to any function
represented by a transducer T = (�; Q; i;F;E) where � is the alphabet, Q is
the �nite set of states, i 2 Q is the initial state, F � Q is the set of �nal states
and E � Q� �� �� �Q is the set of edges. For each edge (q; a; b; q0), also
called a transition, q is called the starting state of the transition, a is called its
input label, b is called its output label and q0 is called its arrival state. We also
de�ne the notion of transition function by d(q; a) = fq0 2 Qj9(q; a; b; q0) 2 Eg
and the notion of emission function by �(q; a; q0) = fb 2 ��j9(q; a; b; q0) 2 Eg.

Let us �rst consider the particular case of a sequential function such as
the one represented by the �nite-state transducer T of Figure 1. The minimal
sequential transducer � representing the same function, that is j� j = jT j,2 is
given Figure 2. We will here show that it is possible to obtain a decomposition
of T into a right-sequential transducer �right and a left-sequential transducer
�left which can be smaller than the minimal sequential representation. In the
case of T of Figure 1, the decomposition T = �right � �left is given in Figure 3.

The algorithm is informally described on Figure 4. We shall now illustrate
it by a step-by-step application on the example T of Figure 1 and show how
it generates the decomposition of Figure 3. The core of this method and
the reason why it improves upon previous results is introduced in the step
4 which calls the function GRAPH COLORING. This function attempts
to �nd a minimal number of color given a graph such that no two adjacent
vertices share the same color.

1kTk denotes the number of states of the transducer T .
2If T is a �nite-state transducer, jT j denotes the function associated to it.
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Figure 1: Transducer T .

MERL-TR-95-2. Version 1.0 February 1995



4

$/$
0

a/<E>

b/<E>

c/<E>

d/<E>

e/<E>

f:<E>

g:<E>

h/h

i/i

1

k/ak
l/bl

m/cm2

k/ak

l/bl3

l/bl

m/cm4

k/ak

l/cl

5

k/ak

6

l/bl
7

m/cm
8

h/h
i/i

9

h/h j/j

10

$/$
11 12

Figure 2: Subsequential transducer � , < E > stand for the empty string �.

m/ml/l

$/$

a/a0

b/a0

d/a0

e/a0

k/k

l/l

m/m

h/h

i/i

g/g

0

a/a2

c/a2

d/a2

g/a2

1

a/a1
c/a1

d/a1

f/a1

2 $/$0

a2/c

a1/b

a0/a

h/h

i/i

1

k/k
2

$/$
3

l/l

4
m/m

5
6

h/h

i/i
7

h/h
j/j

8

Figure 3: left: �right, right: �left

MERL-TR-95-2. Version 1.0 February 1995



5

(�right; �left) = FACTORIZE(T )
1. Call A= EXTRAC DOMAIN(T ) to build the automaton A obtained from T by

considering only the input symbols.
2. Call A2=SQUARE(A) to build A2 = (Q2 � Q�Q; (i; i); F � F;E2).
3. Call G=BUILD GRAPH(Q;Q2) to generate the graph G = (Q;EG) such that

(q1; q2) 2 EG i� (q1; q2) 2 Q2.
4. Call RG=GRAPH COLORING(G) to build an equivalence relation RG on Q

as small as possible compatible with G,
that is such that q1RGq2 ) (q1; q2) is not in EG.

5. Call A1=DET MERGE(REV(A),RG) to determinize the reverse of A into A1

while identifying states that are in the same
equivalence class in RG.

6. Call T1=ADD STATE CONTEXT(A1) to transform A1 into the transducer T1 s.t.
dom(jT1j) = jA1j and s.t. each output edge can be
written (q; a; (a; q); q0).

7. Call T2=ADJUST LEFT(T ,T1) which builds the transducer T2
such that T = T1 � T2.

8. Call R2=MONOID(T2) to compute
the equivalence relation R2 on ��Q such that
(a; q1)R2(b; q2) i� (q; (a; q1); b; q

0) 2 E2 , (q; (b; q2); b; q
0) 2 E2.

9. Call �right=REPLACE OUTPUT(T1,R2) to replace each output symbol (a; q) by its
equivalence class R2(a; q) and

Call �left=REPLACE INPUT(T2,R2) to replace each input symbol
of T2 by its equivalence class in R2.

Figure 4: The factorization algorithm.
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STEP 1 and 2: The �st step consists of identifying where is the left-to-
right undeterminicity of the original transducer. More speci�cally, we look
for the pairs of states (q1; q2) such that they both can be accessed by the
same input string. For instance, for T of Figure 1, since $ � a can lead to the
states 2, 3 and 4, then (2; 3); (2; 4) and (3; 4) are such pairs. 3

To identify these pairs we only have to consider the input part of the
transducer, that is only the input labels (left labels) on each transition. We
thus �rst build the automaton A obtained by removing from T all the output
labels (step 1). An obvious way to identify the set of pairs is to determinize
the automaton A according to the classical power set construction algorithm
(see [1] for instance). In fact, the fact that two states q1 and q2 can be
reached by the same word is equivalent to the fact that there is some state
set q of the powerset construction such that q1 2 q and q2 2 q. For instance,
the determinization of A is given Figure 5, it shows that the set of pairs we
are looking for is the reexive closure of f(2; 3); (3; 4); (2; 4)g. This method
however has an exponential time and space complexity and the deterministic
version of A isn't used later. It is thus possible to compute the square of A
(function SQUARE(A) of step 2) and get the same set of pairs. In fact, if
A = (Q; i; F; d) then A2 is de�ned by A2 = (Q2 = Q � Q; (i; i); F � F; d2)
where d2((q; q

0); a) = d(q; a) � d(q; b) and there is an equivalence between
the fact that a word w reaches two di�erent states in A and the fact that
it reaches a state (q; q0), with q 6= q0, in A2. Therefore, the set of pairs
we look for is Q2 � f(q; q)jq 2 Qg. SQUARE(A) is partially represented in
Figure 6, it leads to the same set of pairs, that is the reexive closure of
f(2; 3); (2; 4); (3; 4)g.

STEP 3 : At this point, we just format the set of pairs as a graph whose
vertices are the states of A and whose edges are the pairs (q; q0) s.t. q 6= q0

and (q; q0) 2 Q2 with Q2 the states of SQUARE(Q). For our example, this
leads to the graph G of Figure 6, right.

STEP 4 : The purpose of this step is to de�ne an equivalence relation
RG on Q compatible with the graph G we just built. In other words, we look
for an equivalence relation RG such that qRGq

0 ) (q; q0) is not in EG where
EG is the set of edges of G. Moreover, we will see that in order to get a
representation as small as possible, RG should have as few equivalent classes
as possible. This is exactly the de�nition of the extensively studied graph

3With the notations of [4], we look for the pairs (q1; q2) s.t. i�1q1 \ i�1q2 6= ;.
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Figure 5: Determinization of A

coloring problem. Recall that given a graph G = (Q;EG), the graph coloring
problem consists of �nding a partition of Q into a minimum number of color
classes C1; C2; ::; Ck where no two vertices q and q0 can be in the same color
class if there is an edge in EG between them. Recall also that the graph
coloring problem is NP-hard [8], thus no general optimization method for it
is known. However, it is possible to use heuristics [3, 10, 7] to �nd a solution
that, while not optimal, is not very far from the optimality (see [7] for ex-
perimental results). Here, we applied the simplest heuristic which consists in
coloring the vertex in order. The vertex q1 is assigned the color C1 and the
vertex qi is assigned the lowest indexed color Cj that contains no vertex adja-
cent to qi. If no such color exists, a new one containing only qi is created. In
our example, it created the following partition :ff0; 1; 2; 5; 6; 7; 8g; f3g; f4gg.
We thus end up with the equivalence relation RG s.t. jQ=RGj = 3 and such
that RG(0) = f0; 1; 2; 5; 6; 7; 8g, RG(3) = f3g and RG(4) = f4g.

STEP 5: The purpose of this step is to build a right-to-left deterministic
automaton that encodes just enough information about the right context to
separate the states of A (and therefore T ) than can be reached by the same
input word. In other words, we want to build A1 such that, for each w such
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Figure 6: left: A2 = SQUARE(A), right: G = BUILD GRAPH(Q;Q2)

that w reaches two di�erent states q and q0 of A, for each u; v 2 �� s.t.
w � u;w � v 2 jAj then u and v lead to two di�erent states in A1. We will
later show how this allows to do only deterministic transitions. To compute
A1 we �rst have to take the reverse automaton of A, denoted ~A, obtained
by inverting the transitions (q0 2 dA(q; a) i� q 2 d ~A(q

0; a)) and by having the
starting states ~i de�ned by F = f~ig and the �nal states set de�ned by ~F = fig
4. The automaton A1 is then de�ned by A1 = (2Q=RG; RG(~i); RG( ~F ); d1)
where the transition function d1 is de�ned by

d1(q; a) = RG(
[

R(qi)2q

[

qj2R(qi)

d ~A(q; a))

In our example, this operation leads to the automaton A1 of Figure 7,
left.

STEP 6: To compute the image of an input word w in the �nal decom-
position, we will �rst read the input from right to left and go through A1.
While doing that, we should remember the path followed in A1. A way to do
that [2] is to turn A1 into a transducer that, for each transition, reemits the
input and adds a reference to the state at which the transition started. For
instance, if one reads the letter a while being at the state number 2, one emits
the pair (a; 2). Therefore, if one takes the string $ �a �m �d �g �$ and applies it
on A1, one gets the output ($; 0) � (a; 0) � (m; 0) � (g;1) � ($; 0). The transducer
T1 that realizes this transformation is obtained from A1 by adding on each
transition (q; a; q0) the output (q; a) (function ADD STATE CONTEXT) .
For our example, T1 is represented Figure 7, right.

4We can indeed assume that, without loss of generality, F only has one element.
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STEP 7 : This step consists of adjusting the original transducer T

such that one can �rst apply the transducer T1. More precisely, we want
to compute the transducer T2 such that jT j = jT1j � jT2j. T2 is obtained by
looking at each transition (q; a; b; q0) of T , each transition (q1; a; (a; q1); q2)
of T1, and if there is one word u � a � v 2 dom(f) s.t. q 2 d(i; u) and q1 2
d(i1; v) then replace a by (a; q1) in T to produce the transition (q; (a; q1); b; q

0).
For our example, such a transducer T2 is represented Figure 8. The exact
de�nition of T2 is T2 = (Q; i;F;E2) where E2 is de�ned as follows: we �rst
de�ne the auxiliary function g2 that to each state of T associates the set of
states of T1 de�ned by

g2(q) =
[

w2��jd(q;w)\F 6=;

d1(i1; w)

E2 is then de�ned by

E2 =
[

(q;a;b;q0)2E

[

q002g2(q0)

[

(q00;a;(a;q00);q)2E1

(q; (a; q00); b; q0)

Obviously, kT2k = kTk and it can be proved that jT j = jT1j � jT2j.
STEP 8 and 9: Note that on Figure 8 the input symbols (a; 0) and

(b; 0) behave in exactly the same way. That is, they have the same output
symbols from the same starting states and to the same arrival states. There-
fore, if instead of outputting two di�erent symbols in T1 one outputs only
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Figure 8: T2 = ADJUST LEFT(T; T1)

one symbol, say (a; 0), it reduces the number of transitions: the transition
(1; (b; 0); a; 2) disappears. More formally, we can de�ne the equivalence re-
lation R2 on the input symbols of T2 by (a; q1)R2(b; q2) i� (q; (a; q1); c; q

0) 2
E1 , (q; (b; q2); c; q

0) 2 E1. The function MONOID returns this equivalence
relation R2. The function �left=REPLACE INPUT(T2,R2) then takes each
input symbol and replaces it by its equivalence class, that is

E�left = f(q;R2((a; q1)); b; q
0)j(q; (a; q1); b; q

0) 2 E2g

In a similar way, the function �right=REPLACE OUTPUT(T1,R2) takes each
output symbol and replaces it by its equivalence class.

In order to evaluate the factorization method we compared the size of the
resulting factorization �rst with the minimal sequential transducer [11] when
it exists and second with the bimachine factorization as given in [2]. We
give the size (number of states and number of transitions) of the sequential
transducer on the �rst line. The size of the bimachine factorization is given

MERL-TR-95-2. Version 1.0 February 1995



11

on the second line and the size of the factorization we obtain with the method
presented here is given on the third line.

We �rst took a dictionary that to each inected word of French associates
its phonetic transcription [9], called DELAPF. In that case, we obtain a
factorization smaller that the sequential representation.

We then encoded two sets of syntactic constraints taken from two di�erent
syntactic classes from [6] as described in [13]. The �nite functions that we
represent take a simple sentence described by this part of the grammar,
and associates to it the same simple sentence with parenthesis around the
noun phrases. These functions are easy to represent by non-deterministic
transducers but they are not sequential. Trying to convert such functions
into a sequential transducer results in an in�nite number of states. The
complexity of these functions is due to the fact that the sentence structures
are lexically very sensitive to the main verb. In that case, we observe that
the factorization we present here is an order of magnitude smaller than the
classical factorization. In that case, the factorization presented here is the
only reasonable deterministic representation.

Note that the compression capabilities of this method relies on the avail-
ability of a compact non-deterministic representation. In these experiments,
the input was in such a form: in the case of the phonetic dictionary it came
from the shape of the phonemic rules and in the case of syntax, the natural
description is highly non-deterministic.

Table 1: Results of experiments
Delapf SynCons-1 SynCons-2

nb of states nb of trans. nb of states nb of trans. nb of states nb of trans.
Sequ. Trans. 48,224 134,726 1 1 1 1
Bima. Fact. 95,659 245,852 244,721 511,311 >1,000,000 >1,000,000.

Presented Fact. 46,881 130,952 8,783 27,511 42,224 165,991

Since any �nite-state automaton A can also be de�ned as the domain of the
rational function that maps each word in L(A) to a constant word, this fac-
torization procedure can also be applied on a �nite-state automaton. In fact,
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note that the automaton obtained by removing the output labels from the
transducer T of Figure 1 is a non-deterministic �nite-state automaton (NFA)
whose minimal deterministic automaton has the same number of states as
the sequential transducer � of Figure 2. Therefore, the same method leads
to a deterministic decomposition smaller than the minimal deterministic au-
tomaton. Of course, looking up a word in this decomposition takes exactly
(if the transducers are represented in an appropriate manner, that is, with
random access to the transitions) twice the time it takes to look it up in the
minimal deterministic automaton.

We described an algorithm that given any �nite-state function, computes a
factorization of this function into the composition of a right-sequential trans-
ducer with a left-sequential transducer. In the particular case of sequential
functions, this factorization can be exponentially smaller than the minimal
sequential transducer. Moreover, since each factor is deterministic, the space
and time complexity of computing the output of an input word w is linear
in term of the length of w and is independent of the size and the complexity
of the function.

The method can be applied to �nite-state automata in order to build
deterministic representation (deterministic factorization, in fact) of �nite-
state automata smaller than the minimal deterministic automaton.

Experiments performed on large scale dictionaries and large scale rule-
based systems demonstrates the usefulness of the approach for various aspects
of language processing.
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