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Abstract

Vision algorithms are often developed in a Bayesian
framework. Two estimators are commonly used:
maximum a posteriori (MAP), and minimum mean
squared error (MMSE). We argue that neither is ap-
propriate for perception problems. The MAP estima-
tor makes insu�cient use of structure in the posterior
probability. The squared error penalty of the MMSE
estimator does not reect typical penalties.

We describe a new estimator, which we call maxi-
mum local mass (MLM) [10, 26, 65], which integrates
the local probability density. The MLM method is sen-
sitive to local structure of the posterior probability,
which MAP is not. The new method uses an optimal-
ity criterion that is appropriate for perception tasks: it
�nds the most probable approximately correct answer.
For the case of low observation noise, we provide an
e�cient approximation.

We apply this new estimator to color constancy. An
unknown illuminant falls on surfaces of unknown col-
ors. We seek to estimate both the illuminant spectrum
and the surface spectra from photosensor responses
which depend on the product of these unknown spectra.
In simulations, we show that the MLM method per-
forms better than the MAP estimator, and better than
two standard color constancy algorithms. The MLM
method may prove useful in other vision problems as
well.

1 The General Problem
The task of perception is to infer properties of the

world from sensor measurements. For visual percep-
tion, such properties can be object shapes, colors, re-
ectances, or velocities. A common approach to this
problem is Bayesian analysis, which combines the vi-
sual data with prior probabilities to �nd the posterior
probability of properties of the world, which we will
call scene parameters.

Typically, the goal is to choose a best estimate of
the scene parameters. One selects an optimality cri-
terion and uses the posterior probability distribution
to �nd the optimal scene parameter estimate. Two
decision rules are almost universally used: maximum
a posteriori (MAP) and minimummean squared error
(MMSE). We believe that neither is the best choice
for many problems in computational vision.

The MAP rule is to choose the scene parameter
values with the highest posterior probability density.
This estimator is closely related to maximum likeli-
hood methods, and many computational vision algo-
rithms employ it. Examples include algorithms for
shape from shading, stereo, surface reconstruction,
color constancy, motion perception, and object infer-
ence [29, 1, 61, 54, 16, 38, 63, 32, 57, 2, 39, 20]. Reg-
ularization can be interpreted as Bayesian inference
using the MAP estimator [56, 62, 61]. Minimum de-
scription length analysis [18, 55] also has a Bayesian
MAP interpretation [44].

The MMSE rule is to choose the scene parame-
ter values that minimize the average squared distance
from the true scene parameter values. It is simple to
show that the mean of the posterior distribution is the
MMSE estimate. This estimator is also in wide use;
Kalman �ltering [28], for example, uses it.

When the posterior probability mass is well{
localized in the scene parameter space, both the MAP
and MMSE rules provide intuitively appealing esti-
mates that tend to agree with each other. When the
posterior is less simple, these estimates can be unsat-
isfactory. The MAP estimator is insensitive to the
detailed structure of the posterior; only the point of
maximum probability mass matters. The MMSE esti-
mator can be overly inuenced by outlying probability
mass. Furthermore, computing the MMSE estimate
may require a computationally intensive integration
over the entire scene parameter space.

We argue that complicated posterior probability
distributions, where these e�ects matter, occur in real
computational vision problems. For example, it is
common that several sets of scene parameters can ex-
plain the visual data equally well. This e�ect is given
di�erent names: is the aperture problem in motion
perception [33]; metamerism in color perception [21];
the bas relief illusion in shape perception [40, 47]. As
we will see in an example in Section 2, there can be
structure in the posterior probabilities to help disam-
biguate multiple explanations which the MAP rule ig-
nores. The MMSE rule, on the other hand, may select
scene parameters which, while minimizing the squared
error, do not explain the visual data at all.

The key to understanding these estimators, and to
designing a new one, is the notion of a loss function.
For a scene parameter x, a loss function L(x;~x) spec-
i�es the penalty for estimating ~x when the true scene
parameter is x. A loss function leads to a rule for



estimating the scene parameters from the posterior:
choose the scene parameters that minimize the ex-
pected loss [8, 3]. The MAP rule assumes the loss
function L(x; ~x) = ��(x � ~x), which we call the mi-
nus delta loss function. The MMSE rule assumes the
squared error loss function, L(x;~x) = (x � ~x)2.

We believe that neither loss function adequately ap-
proximates the loss for incorrect estimates in most per-
ception problems. The minus delta function loss im-
plies that small estimation errors are as bad as large
ones. The squared error loss function provides for a
loss that accelerates with the size of the estimation
error. But in perception an estimate that is approxi-
mately correct will often do, and once the estimation
error is su�ciently large the loss saturates. For ex-
ample, if we are trying to catch a ball thrown to us,
small errors in the perceived size or velocity of the ob-
ject will not cause us to drop the ball. Once the errors
are large enough so that we fail to catch the ball, it
does not really matter how large they are.

The choice of estimation rule can strongly inu-
ence algorithm performance. We describe a loss func-
tion which is well-suited to perception. It integrates
probability density to �nd the local probability mass
in a region. We call it the local mass loss function,
and the resulting estimation rule the maximum lo-
cal mass (MLM) estimator. In the context of per-
ception, both we [10, 26] and Yuille and Bultho� [65]
independently suggested this loss function, although
neither computed with it. The function rewards ap-
proximately correct estimates, and gives a saturating
penalty to incorrect estimates. It is related to Shep-
ard's notion of a \consequential region" [59]. It is in
the same spirit as the penalty functions used in robust
regression [5, 52, 4] which �t well-parameterized data
but ignore outliers. However, the local mass loss func-
tion applies to the scene parameters, not to the ob-
servations, and a�ects the equations di�erently than
regression penalty functions.

We illustrate these estimation ideas with a simple
problem below. In Section 3, we apply the MLM es-
timator to a longstanding problem in computational
vision: color constancy|how to infer the colors of ob-
jects viewed under unknown illumination. We show
that the maximum local mass estimate performs bet-
ter than two existing color constancy algorithms, and
signi�cantly better than the MAP estimate. We show
how to compute the MLM estimate e�ciently. This
estimator may improve the performance of other vi-
sion algorithms.

2 A Simple Example
We observe a number, y, and are told that it is the

product of two other numbers: y = a b. What are
those two numbers, a and b?

This is a degenerate case of a perception problem.
The datum y corresponds to the visual data, such as
an image. The parameters to be estimated, a and
b, are the scene parameters. They could generalize to
surface and illuminant color, descriptions of shape and
reectance, or estimates of motion. Typical of prob-
lems in computational vision, this problem is under{
determined and non{linear.

Let us say the datum is y = 1, and that we know
that 0 < a; b < 4. From geometric considerations

alone, we can only say that the solution must lie along
a segment of the hyperbola ab = 1.

A probabilistic analysis yields more. We want to
�nd the posterior probabilty, P (xjy), of the parameter
vector x = (a b)T , given the observation y. (Lower-
case boldface letters indicate vectors; uppercase bold-
face letters indicate matrices.) Using Bayes' theorem,
we write the posterior probability as

P (x j y) = P (y j x) Px(x)
Py(y)

=
[likelihood] [priors]

[normalization]
:

(1)
The normalization constant, Py(y), is independent

of the parameters x that we seek to estimate. (Fol-
lowing convention, we use P to denote the probability
density function of its argument. Where possible, we
add a subscript to identify the function). Px(x) is the
prior probability of the scene parameter x. P (y j x)
is called the likelihood function. It contains a forward
model: given scene parameters, it tells the probability
of an observation y. We allow for observation noise,
so the forward model is probabilistic. A deterministic
rendering function, f (x), returns the observation asso-
ciated with scene parameters x in the absence of noise.
Here, the rendering function is f (x) = a b = x1 x2.
We assume the observation noise to be normally dis-
tributed with mean zero and variance �2. Then the
likelihood function is

P (y j x) = 1

(
p
2��2)N

e
�ky�f (x)k2

2�2 : (2)

We will assume \uniform" priors, Px(x) =
1
16 , over

the range [0;4]� [0; 4], and zero elsewhere. Using this
prior and the likelihood of Eq. (2) in Bayes' theorem,
Eq. (1), gives the posterior distribution for our exam-
ple:

P (x j y = 1) =

�
Ce

�(1�ab)2

2�2 if 0 < a; b < 4
0 otherwise,

(3)

where we have combined constants over the variables
of interest into C. This posterior distribution is shown
in Fig. 1 (a). Points along the hyperbola ab = 1 form
a ridge of highest probability. Because of the obser-
vation noise, other parameter pairs have a non-zero
probability. Note from Fig. 1 (b) that, while the ridge
has equal height everywhere, it is wider near (1; 1)
than at other points along the hyperbola.

The optimal scene parameters x minimize the ex-
pected loss, R(~x j y), called the Bayes risk. Taking
the expectation of the loss over the posterior distribu-
tion, we have:

R(~x j y) =

Z
P (xjy) L(x; ~x) dx (4)

For the special case of shift invariant loss functions,
L(x; ~x) = l(x � ~x), the Bayes risk is l(�~x) convolved
with the posterior P (~xjy).

Part (a) of Fig. 2 shows the loss associated with the
MAP rule. Part (d) shows the corresponding Bayes
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Figure 1: Bayesian analysis of the problem ab = 1.
Assuming uniform prior probabilities over the graphed
region, (a) shows the posterior probability for gaussian
observation noise of variance 0:18. The noise broadens
the geometric solution into a hyperbola{shaped ridge of
maximum probability. (b) Note the di�erent thickness
of the ridge; some parts have more local probability
mass than others, even though the entire ridge has a
constant maximum height.

risk for our y = ab problem with uniform priors. For
the MAP estimator, the Bayes risk is minus the poste-
rior probability. (In this and related �gures, increas-
ing loss is plotted upward to show the extrema more
clearly.) Every point along the hyperbolic ridge in the
�gure has equal probability density, so the MAP rule
does not give a unique estimate. Such ridges occur
in vision and other estimation problems when many
alternatives can account for the observations equally
well. MAP estimation ignores all variations in width
of the ridge, which can be a signi�cant source of in-
formation.

Fig. 2 (b) shows the loss function of the MMSE es-
timator. The Bayes risk is shown in (e). Note that the
MMSE estimate is a = b = 1:3, a strange result given
the observation ab = 1. The MMSE rule is sensitive
to the structure of the posterior, but it leads to an
estimate which is very unlikely to have generated the
observed datum.

The loss function of the maximum local mass
(MLM) method addresses de�ciencies of both the
MAP and MMSE estimators. We de�ne the minus
local mass loss function as a gaussian of small covari-
ance:

L(x;~x) = �e�jK
�

1
2

L
(x�~x)j2 ; (5)

where we adopt the notation that jK� 1
2 xj2 =

xT K�1 x. For matricesKL of su�ciently small eigen-
values, this loss function rewards approximately cor-
rect answers, yet penalizes all grossly incorrect an-
swers equally, see Fig. 2 (c). Fig. 2 (f) shows the cor-
responding expected loss for the ab = 1 problem. The
MLM estimate is (1:0; 1:0), which both accounts well
for the datum y = 1 and is the estimate that is most
probable to be approximately correct, in the sense of
maximizing the local probability mass. The ridge of
the posterior, Fig. 1 (a), is widest near (1:0; 1:0) (see
cross{sections in Fig. 1 (b)). More parameter values
near (1:0; 1:0) could have caused the observed datum
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Figure 2: Left column: Three loss functions. Plots
show penalty for guessing parameter values o�set from
the actual value, taken to be the plot center. (a) Minus
delta function loss, assumed in MAP estimation. Only
precisely the correct answer matters. (b) Squared er-
ror loss (a parabola), used in MMSE estimation. Very
wrong guesses can carry inordinate inuence. (c) Mi-
nus local mass loss function. Nearly correct answers are
rewarded while all others carry nearly equal penalty.
Right column: Corresponding expected loss, or Bayes
risk, for the y = ab problem. Note: loss increases ver-
tically, to show extrema. (d) Expected loss for MAP
estimator is minus the posterior probability. There is
no unique point of minimum loss. (e) The minimum
mean squared error estimate, (1:3;1:3) (arrow) does not
lie along the ridge of solutions to ab = 1. (f) The mi-
nus local mass loss favors the point (1:0;1:0) (arrow),
where the ridge of high probability is widest. There is
the most probability mass in that local neighborhood.

than those near any other estimate.
Our simple product example shows us several

things. The loss function is important and can change



the optimal estimate. The MAP solution ignores
information from the widths of the ridges of maxi-
mum likelihood. The MMSE solution, while optimal
in the mean squared error sense, can give solutions
which can be non-sensical from a perceptual stand-
point (1:3 � 1:3 6= 1:0). The maximum local mass,
MLM, solution integrates probability density to mea-
sure the local probability mass. It exploits structure
in the posterior distribution and assumes a penalty
function which is reasonable for perception problems.
We will see that its computation involves local oper-
ations in the parameter space. We develop a method
to compute the MLM estimate and apply that to a
long standing problem in computational vision: color
constancy.

3 Application: Color Constancy
The matte reection from a surface is the prod-

uct of the incident illumination spectrum and the sur-
face reectance spectrum. In general, the illumination
spectrum is not known, yet human observers do well
at estimating colors of surfaces, related to their re-
ectance spectra, viewed under unknown illumination.
The perceived colors are roughly constant [21].

Humans show some color constancy even in a sim-
pli�ed \mondrian world" of matte surfaces, illumi-
nated by a single di�use illuminant [51, 14]. How
color constancy could be acheived in such a simpli-
�ed world has received much attention [51, 41, 15, 42,
12, 49, 23, 30, 63, 10, 20]. Here we develop the
MLM estimate for the illuminant. We expect that in-
sights gained from studying this problem will apply to
the more general case of color constancy in the natu-
ral image, and may yield improved processing of color
images [13]. In addition, our results can serve as an
ideal observer benchmark for human performance in
the simpli�ed domain.

We consider a collection of Nl matte surfaces. We
write the reectance of the jth surface as a column
vector, sj . The entries specify the fraction of inci-
dent light reected in N� bands throughout the vis-
ible spectrum. Similarly, we specify the illuminant
spectral power distribution with a column vector e.
The spectral power distribution of the light reaching
the imaging device is cj , the entry-by-entry product
of those two spectra. We write cj = diag(e) sj , where
diag(x) places the elements of the vector x along the
diagonal of a matrix, with zeros elsewhere.

A visual system typically samples the reected
spectrum cj with Nr classes of linear photosensors.
We specify the photosensor sensitivities with a matrix
R. The pqth element of R is the sensitivity of the
pth sensor class to light in the qth wavelength band.
We let the vector rj represent the responses of each of
the sensor classes to the reected spectrum cj . With-
out sensor noise, we have the rendering equation for
the sensor responses rj to the jth colored surface as a
function of the scene parameters, e and sj:

rj = f (e; sj) = R cj = R diag(e) sj: (6)

We seek to �nd the illuminant spectrum e and the
surface spectra sj from the photoreceptor responses rj
to each surface.

3.1 Previous Work
3.1.1 Representation

Researchers have developed �nite-dimensional linear
models for naturally occuring surface and illuminant
spectra. An illuminant spectrum lies within an Ne di-
mensional linear model Be if we can write e = Bewe,
where Be is a matrix (N� by Ne) and we is an Ne di-
mensional column vector. The entries of we are called
the linear model weights for the illuminant e. Simi-
larly, the surface reectance spectra lie within the lin-
ear model Bs if we can write sj = Bswsj , where Bs

is an N� by Ns matrix and wsj is an Ns dimensional
column vector.

Linear models with either three or four basis func-
tions describe a large sample of measured illuminants
[36] and the CIE has standardized a three dimensional
linear model for daylights [17]. Linear models with di-
mension as low as three also capture a large percentage
of the variance of measured surface reectance spec-
tra [48, 34]. Brainard [9] provides a handbook-style
review of the use of linear models in computational
color vision.

In this representation, the rendering equation,
Eq. (6), becomes

rj = f (we;wsj) = R diag(Bewe) Bswsj

= R diag(Bswsj) Bewe: (7)

3.1.2 Algorithms

Most modern color constancy algorithms incorporate
linear model constraints. Maloney and Wandell [49]
showed that when there are Nr classes of photorecep-
tors, the rendering equation may be inverted if the
illuminants lie within an Nr dimensional linear model
and that the surfaces lie within an Nr�1 dimensional
linear model. We refer to their algorithm as the sub-
space algorithm [49, 64]. For human vision there are
only three classes of cone photosensors, so that Mal-
oney and Wandell's analytical result applies only if
the surface spectra lie within a two-dimensional linear
model, which is not the case for natural surfaces.

In Buchsbaum's algorithm [15], the illuminants and
surfaces must lie within Nr dimensional linear models.
The algorithm assumes that the spatial mean of the
surface reectances is constant for all images. This
is the \gray world" assumption, which implies that
color constancy must break down for images where
the mean reectance di�ers from the assumed mean.
However, the human visual system maintains at least
partial color constancy in spite of shifts of the mean
surface reectance [27, 11, 50].

Recently, researchers have studied color constancy
as a statistical estimation problem. Trussell and Vhrel
[63] have used a maximum likelihood approach (closely
related to MAP estimation) to estimate the illumi-
nant. D'Zmura and Iverson [20] also use a MAP ap-
proach. Brainard and Freeman [10] applied an MMSE
criterion to estimate the illuminant.

None of the previous approaches to this problem
uses an error criterion which is tailored to the per-
ceptual problem at hand. Here, we show the bene�ts
of the maximum local mass method. To specify our



algorithm we must select the prior probabilities, then
minimize the expected loss.

3.2 Priors
For our simulations, we created three dimensional

linear models for surfaces and illuminants. We choose
a linear model for surfaces by performing principal
components analysis on the data of Kelly et al. [37, 53]
who measured the reectance functions of 462 Munsell
papers. We then found the best �tting model weights
for each individual surface in the data set. We �t these
distributions with gaussians of the sample mean and
covariance matrix.

We took our three dimensional linear model for il-
luminants to be the CIE linear model for daylights
[17]. To generate a prior distribution on the weights,
we generated CIE daylights with correlated color tem-
peratures drawn according to a normal distribution
with mean 6500�K and standard deviation 4000�K.
(Draws outside the range 3000� to 25000�K were re-
jected.) We scaled these illuminants by factors drawn
uniformly between 1 and 10. We computed the linear
model weights we on each function and �t the result-
ing distribution with a gaussian.

Note that it is not required that the priors be gaus-
sians for the results which follow.

3.3 Approximation for the Local Proba-
bility Mass

We want to apply the maximum local mass estima-
tor to the color constancy problem. The Bayes risk,
which we seek to minimize, involves an integral over
the entire scene parameter space, Eq. (4), yet our loss
function, Eq. (5), is only appreciably non-zero near
the estimate ~x. We want to exploit that locality to
�nd an approximation for the Bayes risk which de-
pends only on measurements at ~x. This simpli�cation
applies generally to scene parameter estimation by the
MLM method in the limit of low observation noise.

To examine this limit, we write the observation
noise covariance as 1

�
Kn, where Kn is �xed, and let �

become large. Similarly, to form a localized loss func-
tion, we write its covariance as 1

�
KL, where a �xed

KL de�nes the shape of the loss covariance, and we let
� become large. For the loss function to sample the
full width of the ridges of the posterior distribution,
the loss function must be larger than those ridges, so
we will study the regime where �

�
is small.

Combining Eqs. (1), (2) and (4) for the posterior,
likelihood and risk, we have:

R(~xjy) = C

Z
[likelihood] [priors] [loss function] dx

= �C
Z

exp [��

2
jK� 1

2

n (r� f (x))j2] Px(x)

exp [��

2
(jK� 1

2

L (x� ~x)j2 )] dx (8)

For an integral of the form

I(� ) =

Z
exp [���(x)] g(x) dx; (9)

the leading order term in an asymptotic expansion for
large � is [6]:

I(� ) � e���(x0)pj det(�xixj (x0))j
(
2�

�
)
n
2 g(x0); (10)

where x0 minimizes �(x).
We identify g(x) = Px(x) and

�(x) =
1

2
jK� 1

2

n (y � f (x))j2 +
�

2�
jK� 1

2

L (x�~x)j2: (11)

Then, using the approximation of Eq. (10), we have:

R(~xjy) � �Ce[��( 12 jK
�

1

2
n (y�f (x0))j

2+ �

2�
jK

�

1

2

L
(x0�~x)j2)] �

Px(x0)pj det(�xixj (x0))j
: (12)

Twice di�erentiating �(x) in Eq. (11) gives

�xixj (x0) = f 0
T

i K�1
n f 0j�(y�f (x0))T K�1

n f 00ij+
�

�
[K�1

L ]ij;

(13)
where [�]ij means the i, jth array element,

f 0i =
@f (x)

@xi
jx=x0

; and f 00ij =
@2f (x)

@xi@xj
jx=x0

: (14)

To apply Eq. (12) for the expected loss at ~x, we
need to �nd an expansion point x0 where �(x) of
Eq. (11) is minimized. If we restrict attention to evalu-
ating the risk for estimates ~x at local maxima or ridges
of the likelihood function, then both terms of �(x) are
minimized locally by the choice x0 = ~x. Thus, we can
set x0 = ~x, in Eq. (12) to evaluate the risk at points
of maximum likelihood. (We believe setting x0 = ~x
in Eq. (12) will well approximate the risk for other
points, as well).

At x0 = ~x, the di�erence between the risk R(~xjy)
in Eq. (12) and the negative posterior, Eq. (1), is the
factor, 1p

j det(�xixj (~x))j
. This allows the local mass

risk to respond to the width as well as the height of
probability ridges such as those shown in Fig. 1.

A related approximation is used in Bayesian statis-
tics, dating to Laplace [43, 22, 35, 8]. The �rst two
terms of �xixj (x0) form the conditional Fisher infor-
mation matrix, Iij [22, 3]. It can be used to marginal-
ize the posterior over nuisance parameters [7, 45, 3],
yielding a factor of 1p

det(Iij )
after integration (for

indices i, j of the marginalized variables). Recent
authors have exploited this in parameter estimation
[31, 60, 46] and computer vision [24, 25]. However,
if one marginalizes over parameters, one can not es-
timate their optimal values. Furthermore, for un-
derdetermined estimation problems, det(Iij) can be
zero, spoiling the approximation. The loss function
approach avoids this singularity, and allows for trad-
ing o� accuracy requirements among scene parameter
components.



4 Results
We simulated scenes consisting of 8 randomly

drawn surfaces under a single randomly drawn illu-
minant. We used the rendering equation Eq. (7) and
the Smith-Pokorny estimates of the human cone sensi-
tivities [19] to compute the cone responses, perturbing
them with additive gaussian noise.

We searched for the minimum loss illuminant. At a
given illuminant value in the search, we solved the ren-
dering equation, Eq. (7), for the surface weight values
which accounted for the observations. We then used
Eq. (12) to �nd the local mass loss at these values. We
used a BFGS variable metric optimization algorithm
[58] (the constr optimization routine in Matlab 4.2a)
to descend to a locally optimal estimate. A broad
range of � and � give similar results; we used � = 100,
� = 10000, and set KL equal to the covariance matrix
of the prior probability of the scene parameters.

For comparison, we estimated the illuminant us-
ing the subspace [64], gray world [15], and MAP algo-
rithms. We used the gray world assumption to set the
overall scaling of the subspace algorithm, which only
recovers relative spectra.

4.1 Comparison among algorithms
The four panels of Figure 3 show the performance

of the four algorithms for a single illuminant. The
actual illuminant spectrum is shown by the solid line
in each panel of the �gure. The dotted lines in each
panel show individual estimates produced by each al-
gorithm. To produce each estimate, we drew a set of
surfaces from the prior distribution and computed the
sensor responses. We then added 1% noise to the sen-
sor responses and applied each algorithm. The maxi-
mum local mass estimates are grouped closest to the
actual illuminant spectrum. The gray world algorithm
estimates are correct on average but have have wider
variability. The MAP estimator ignores relevant in-
formation in the posterior distribution, which results
in a systematic bias of its estimates. The subspace
algorithm is not guaranteed to work under these con-
ditions, and its estimates are extremely noisy [10].

We also investigated how the algorithms performed
under some violations of the assumed prior statistics.
In one set of simulations, we varied the illuminant
while continuing to draw surfaces from the prior dis-
tribution for surfaces. We used two illuminants in ad-
dition to the 6500�K daylight. One was a 4000�K day-
light and the other a 10000�K daylight. We summarize
the results by computing the average (over 19 individ-
ual runs) fractional root mean squared error (RMSE)
between the estimate and true illuminant. Figure 4 (a)
shows this error measure for each algorithm and each
illuminant. For all three illuminants, the MLM algo-
rithm performs best, and the quality of its estimates
is independent of which illuminant is simulated.

In a second set of simulations, we used the 6500�K
illuminant but biased the mean of the distribution
used to draw the surfaces. We used two biases. For
one, we biased the surface mean so that the mean sen-
sor responses under the 6500�K illuminant were the
same as for the unbiased surfaces under the 4000�K
illuminant. For the other, we biased the surface mean
so that the mean sensor responses under the 6500�K
illuminant were the same as for the unbiased surfaces
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Figure 3: Visual comparison of illumination spec-
trum estimates for four color constancy algorithms:
local mass, gray world, MAP and subspace. For a
given illuminant, shown in dark line, a set of surfaces
was drawn from the prior distribution 19 times. For
each draw, each algorithm estimated the illuminant
reectance spectrum. The maximum local mass esti-
mates, (a), are grouped closest to the actual illumina-
tion spectrum. The gray world algorithm estimates,
(b), have wider variability. The MAP estimator, (c),
ignores relevant information in the posterior distribu-
tion, which results in a systematic bias of its estimates.
The subspace algorithm, (d), was not designed to work
under the tested conditions, and performs poorly.

under the 10000�K illuminant. This manipulation is a
test of the robustness of the algorithms with respect to
violations of the gray world assumption. Figure 4 (b)
shows the fractional RMSE for the unbiased condi-
tion and the two biased conditions. Biasing the sur-
faces impacts the performance of all of the algorithms.
However, the MLM algorithm is clearly the most ro-
bust with respect to the manipulation, and its error
is roughly half that of the next best algorithm (the
gray world algorithm) for all three surface draw con-
ditions. The prior built into the MLM algorithm is
not so strong as to make it brittle when the particular
scene is biased from the \average" scene.

5 Conclusions
We study perception from the point of view of

Bayesian decision theory. We argue that neither of
the two commonly used estimators, MAP and MMSE,
is appropriate for the task of perception. We pro-
pose a new estimator, called the maximum local mass,
MLM, estimate. This estimate maximizes an integral
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Figure 4: Summary results. (a) shows the perfor-
mance of all four algorithms for three illuminants. (b)
shows the performance of all four algorithms for three
surface draw conditions. The performance measure is
the average (over 19 individual runs) fractional root
mean squared error (RMSE) between the estimate and
true illuminant. For all conditions, the MLM estimate
performs substantially better than the other algorithms.
It is seen to be robust against these violations of its prior
assumptions.

over the local posterior probability density. The MLM
estimate assumes a loss function appropriate to per-
ception problems: it rewards approximately correct
answers, and penalizes all grossly incorrect answers
equally. The maximum local mass estimator �nds the
most probable approximately correct answer.

The MLM estimate may be most useful when a set
of competing explanations account for the observed
image data. Then the MLM estimate exploits impor-
tant local structure in the posterior probability that
the MAP estimate overlooks. We give an analytic ap-
proximation for the expected loss to be minimized,
valid for low levels of observation noise. We show with
a simple example that the choice of estimator matters,
and that the MLM estimate can give a sensible answer
where the MAP and MMSE estimates do not.

We apply the MLMmethod to a long-standing com-
putational vision problem: color constancy. We esti-
mated illuminant and surface spectral compositions
from photosensor observations of products of such
spectra. In computer simulations, we compared
our MLM algorithm with the MAP estimate, and two
standard color constancy algorithms, the subspace al-

gorithm and the gray-world algorithm. The MLM
algorithm performed better than the gray-world and
subspace algorithms, and signi�cantly better than the
MAP estimate. We compared the algorithms under
some violations of the prior assumptions used by the
algorithms. The MLM method still performed well,
and better than the other algorithms.

We believe use of the maximum local mass estimate
may improve the performance of other Bayesian com-
putational vision algorithms as well.
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