
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Some Considerations for API Semantics of
Data Transmission

Randy Osborne

TR94-20 December 1994

Abstract

This contribution discusses the data transmission aspects of API semantics for native ATM ser-
vices. Specifically, this contribution: 1. clarifies the semantics of the send and receive primi-
tives presented in the baseline document 94-0150R5. 2. presents an alternative model for data
transmission that is appropriate for emerging applications with high bandwidth and low latency
requirements. This alternative model is intended to complement the socket-like send-receive
model in the baseline document. 3. describes API flow control mechanisms required for data
transmission.

ATM Forum SAA API Subworking Group, contribution 94-1142

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



1. First printing, November 10, 1994



94-1142: Some Considerations for API Semantics of Data Transmission 1

1 Introduction

The SAA API subworking group is de�ning an API to present access to native ATM services such as
signaling and connection-based data transmission. The present semantic description of the API in the
baseline document 94-0150R5 [BaseDoc] appears to be modeled after BSD sockets. (Prior SAA API
contributions make it clear that a socket-like model was the intent at an earlier point.) The popularity
of the socket model for networking makes it an obvious and important choice for an API. This model is
well understood in the networking community and many applications have been written for it.

However, a socket model is not ideal as the exclusive means for access to native ATM services.
In particular, the socket-derived send&receive model for data transmission in [BaseDoc] introduces
communication overhead that hinders certain applications e.g. real time computing and emerging cluster-
based computing paradigms. In order to allow access to the full range of native ATM services it is
important to consider other models for the API in addition to sockets.

This contribution concentrates on the data transmission aspects of the API, taking the socket-like
model as adequate for signaling, and proposes a wider view than send&receive for data transmission.
In particular, this contribution presents an alternative model for data transmission aspects of the API
that is appropriate for emerging applications with high bandwidth and low latency requirements. This
alternative model is intended to complement the socket-like send&receive model in the baseline docu-
ment.

1.1 Summary of Document

Section 2 presents the data transmission primitives in the baseline document, illustrates that the se-
mantics of these primitives are unclear and incomplete, and then clari�es these semantics based on a
send&receive model. Section 3 presents an alternative model for data transmission intended to com-
plement this send&receive model, followed by discussions on the limitations of the send&receive model
and emerging applications precluded by these limitations. Finally, Section 4 follows up on ow control
issues raised in Section 2 and discusses ow control mechanisms required for data transmission.

2 Clari�cation of Data Transmission Semantics

The data transmission primitives in the baseline document [BaseDoc], pertaining to the AAL interface,
are underspeci�ed. After some discussion, this section provides a clari�cation consistent with a socket-
like model (as appears to have been the intent from earlier SAA API contributions).

2.1 Send primitive

The baseline document describes the send primitive as follows:

ATM_API_SEND_DATA(

IN communication_endpoint,

IN data,

OUT byte_count

)

The byte_count speci�es the number of bytes sent.

MERL-TR-94-20 November 1994



2 94-1142: Some Considerations for API Semantics of Data Transmission

It is not clear when ATM_API_SEND_DATA() returns: does it merely enqueue the data (or a pointer
to the data), trusting the driver/network interface to send it later, and return; or does it wait until the
data has been injected into the network? If the former, how does it know what byte_count to return
(since the data may actually be sent by the network interface at some later point). If the latter, must
it be synchronous { can there be an asynchronous indication/noti�cation when the network interface
actually sends the data? In short, is the primitive contracting for data transfer to the driver or data
transfer to the network?

There's also ow control issues. An application could send more data than the driver/network
interface can accept. With ABR tra�c, the network capacity devoted to an application can change at
any time. Thus the API must provide some sort of ow control feedback to the application.

For CBR tra�c, some sort of overow feedback such as just described is still required (though it
may be slower to act, and hence mostly appropriate for occasional instances). In addition, it is useful to
have underow feedback: e.g. a noti�cation when a outgoing CBR queue size with the driver/network
interface drops below some low watermark.

QoS issues also arise. At the sender, QoS amounts to making sure the application can deliver data to
the network at the contracted rate. This necessitates both overow and underow feedback mechanisms
to the application.

Finally, there remains a number of other semantic issues: How to specify where the data comes
from? (What does IN data mean?) Stream vs. message mode? Unreliable or reliable data delivery?

2.2 Receive primitive

The baseline document describes the receive primitive as follows:

ATM_API_RECEIVE_DATA(

IN communication_endpoint,

OUT data,

OUT byte_count

)

In the case of stream mode, the byte_count parameter is the number of bytes received.

As with its send analogue, it is not clear when ATM_API_RECEIVE_DATA() returns: does it return
immediately with whatever data (or a pointer to data) that may be available; or does it block until
some quantity of data is available? Must it be synchronous { can there be an asynchronous indica-
tion/noti�cation when the network interface actually sends the data to the application? In short, is the
primitive contracting for data transfer from the driver or data transfer from the network?

There's also ow control issues. What if an application doesn't do a receive call, or do receive calls
quickly enough { what happens if driver/network interface bu�ers overow? Although for ABR tra�c it
is possible to imagine such feedback a�ecting the network ow control and thus backing up to the source,
the time constant and complexity involved suggests that this is more easily handled as a destination
application responsibility. Thus applications may be charged with performing receive calls at regular
intervals. Still, there must be a mechanism for the driver/network interface to notify the application of
such need. This is true for both ABR and CBR tra�c.

QoS issues also arise. At the receiver QoS amounts to making sure the network interface/driver can
deliver data to the application at the contracted rate. This necessitates an overow feedback mechanism
to the application.

MERL-TR-94-20 November 1994



94-1142: Some Considerations for API Semantics of Data Transmission 3

Finally, a number of other semantic issues: How to specify where the data goes? (What does
OUT data mean?) Stream vs. message mode? Unreliable or reliable data delivery? How is information
about experienced congestion and possible data corruption conveyed to the application?

2.3 Clari�ed semantics

There are many positions to take with respect to the above issues. This section clari�es the above
semantics in a way consistent with a socket-like model. We present very simple interfaces: we provide
only overow protection and assume unreliable data delivery.

2.3.1 Send

We separate the \data" �eld into a pointer to an application bu�er and a count of the number of bytes
to send starting from this bu�er point.

ATM_API_SEND_DATA(

IN communication_endpoint,

IN buff,

IN len,

OUT byte_count

)

ATM_API_SEND_DATA() attempts to transfer len bytes starting from the pointer buff to the con-
nection indicated by communication_endpoint. The call blocks until completing this attempt at which
time it returns with byte_count equal to the number bytes (starting from buff) that were transferred.
A value of �1 for byte_count indicates that an error occurred and an undetermined number of bytes
were transferred.

Remarks: The point at which the data is actually transmitted through the connection is implemen-
tation dependent. An implementation may simply transfer the data to a queue in the driver/network
interface and return from the call. In this case byte_count indicates the number of bytes transferred
across the API and not necessarily out on the network. A queue overow may result in byte_count <

len. Thus note that the data delivery is unreliable. An error may include an overowed queue. The
application e�ects ow control by checking the byte_count after attempting a send.

2.3.2 Receive

ATM_API_RECEIVE_DATA(

IN communication_endpoint,

IN buff,

IN len,

OUT byte_count

)

ATM_API_RECEIVE_DATA() attempts to transfer len bytes from the the connection indicated by
communication_endpoint to a bu�er starting from the pointer buff. The call blocks until completing
this attempt at which time it returns with byte_count equal to the number of bytes transferred. A
value of �1 for byte_count indicates that an error occurred.

MERL-TR-94-20 November 1994



4 94-1142: Some Considerations for API Semantics of Data Transmission

Remarks: An receive queue overow may lead to byte_count < len. The handling of a receive
queue overow in the driver/network interface is implementation dependent. We assume there is some
mechanism, such as a noti�cation/interrupt/signal/callback to the application, or even as simple as
dropping all further incoming data while the queue is full and setting an error condition.

Whether or not data is actually copied is implementation dependent. An implementation may bu�er
data on memory pages and then e�ect a receive by mapping such a page into application space.

2.3.3 Further Remarks

Many semantic details are still missing from the above. For a description of the details associated with
the format of the data units see 94-0813 [Singer]. We assume an indication/noti�cation mechanism for
conveying experienced congestion and possible data corruption to the application. Most of the details
beyond this are implementation dependent. Finally, note that another layer can be added to the above
API for reliable data transport.

3 An Alternative Model for Data Transmission

An API aspiring to give access to native ATM services should allow exibility to meet requirements
for high bandwidth and low overhead communication. Section 3.1 presents an alternative model for
data transmission intended to complement the send&receive model discussed in Section 2. The sections
following provide motivation and justi�cation: Section 3.2 describes limitations of the send&receive
model, Section 3.3 presents emerging applications precluded by these limitations, and Section 3.4 gives
requirements of such applications.

3.1 The Model

We propose adding the following simple model as an optional extension of the API described in the
baseline document 94-0150R5.

3.1.1 Overview

The data transmission model consists of the following major elements:

1. receive via noti�cation. That is, message reception is asynchronous. There is no need to perform
an explicit call to receive message data.

2. minimal data copies (preferably zero, for direct data delivery). Message data is directly delivered
to the application space where possible and otherwise the application noti�ed via an interrupt,
signal, or callback that a message has arrived.

3. a mechanism to add application de�ned control information to messages at the source.

4. a mechanism to de�ne the interpretation of the message control information upon message recep-
tion (we call this a receive handler). This receive handler should execute at the lowest possible
level in the system. That is, an (expensive) context switch to application space on every message
arrival to execute the receive handler should be avoided where possible. Section 3.1.3 discusses
possible implementations.

MERL-TR-94-20 November 1994



94-1142: Some Considerations for API Semantics of Data Transmission 5

Whereas elements (1) and (2) set the spirit of the model, elements (3) and (4) are the real seman-
tic core (note that (4) subsumes (1)). Together they present a capability for low level, application-
speci�c asynchronous actions on message delivery. Asynchronous delivery avoids the latency problem of
send&receive. The general purpose handler allows a fast way to determine how to process the message,
avoiding the data placement causality problem in Section 3.2 and providing su�cient exibility to meet
the requirements in Section 3.4. As an example of the power of this approach, elements (3) and (4) can
be used to build a send&receive model like in Section 2.

Various means already exist to extend the socket-like send&receive model for asynchronous delivery
e.g. signals and select calls in UNIX and callbacks in Windows Sockets. However, these means generally
fail to achieve element (2) since the message data is stored in an intermediate location before the
noti�cation is issued. (See Section 3.2 for more discussion of this issue.) Some optimizations exist
to reduce data copies, such as ADCs [Druschel], whereby incoming messages are stored directly in
application space at locations indicated in circular queues shared between the application and network
interface. However, the direct placement of data is limited to locations pre-contained in the free bu�er
queue. Finally, elements (3) and (4) are more powerful than the Winsock callbacks: the message �lter
operation is an arbitrary handler rather than just a read mask and the handlers do not require context
switching to application space to execute unlike callbacks.

3.1.2 Example primitives

For concreteness we cast our model in the form of the following example API primitives:

ATM_API_SEND(

IN communication_endpoint,

IN controlp,

IN control_len,

IN buff,

IN data_len,

OUT byte_count

)

ATM_API_SEND() attempts to transfer a message to the connection indicated by
communication_endpoint. The message consists of control_len bytes of control information starting
from the controlp pointer followed by data_len bytes of data starting from the pointer buff. The call
blocks until completing this attempt at which time it returns with byte_count equal to the number of
bytes transferred (starting from controlp for the �rst control_len bytes and then starting at buff for
the remainder). A value of �1 for byte_count indicates that an error occurred.

ATM_INSTALL_RECEIVE_HANDLER(

IN communication_endpoint,

IN control_block_interpreter,

OUT old_handler,

OUT result

)

ATM_INSTALL_RECEIVE_HANDLER() installs the one argument procedure control_block_interpreter
(given as a pointer) as the receive handler to be executed on receipt of a message for the connection
indicated by communication_endpoint. This procedure has the signature
control_block_interpreter(IN msg_ctl_blk) where msg_ctl_blk is a pointer to the control infor-
mation of an arriving message. This procedure should decode the control portion of an arriving message

MERL-TR-94-20 November 1994



6 94-1142: Some Considerations for API Semantics of Data Transmission

and must work in concert with the control information structure provided by the sender. After installa-
tion of the handler, the call returns with old_handler pointing to the old receive handler (which may
be NULL) and result set to a value � 0 on success and �1 on failure (i.e. if an error occurred).

3.1.3 Implementation Issues

Section 3.1.2 gives only a general semantic description. In practice, to ensure both low overhead and
protection of other processes from errant receive handlers, an implementation will probably not follow
this description literally. As mentioned in requirement (4) in Section 3.1.1, it is imperative for perfor-
mance that the receive handler run as the lowest possible level of the system. To accommodate this goal,
some receive handler operations representing common operations may be prede�ned and implemented
directly by hardware (as in the hybrid deposit model [Osborne]) to avoid interrupts to the kernel on
every message arrival. In the absence of hardware support, an implementation may provide prede�ned
fast interrupt processing routines (as in Active Messages [vonEickII]) in the kernel for common control
operations. (Section 3.4 gives more details on Active Messages.) Although the suggested semantics are
such that all operations dispatch through the control_block_interpreter procedure, an implemen-
tation will likely dispatch to any prede�ned operations directly, leaving the control_block_procedure
for the interpretation of any operations not prede�ned by the system.

For example, an implementation may perform read and write operations using prede�ned hardware
or kernel operations. A message with control information specifying one of these prede�ned operations
would be handled directly by the hardware or kernel respectively without notifying the application.

A message with control information specifying some non-prede�ned operation will invoke a speci�ed
receiver handler procedure, executed in application space. If the application is not already running, this
context switch will be expensive. Consequently, an implementation may elect to queue some messages
involving such unsupported operations until that application is scheduled. Either a send&receive model
could be used for queueing such messages or a ADC-like approach [Druschel]. While such message
queueing reduces the overhead of message processing, it increases the latency. Thus it will be important
for the sender to include su�cient information in the control portion of the message so that the desti-
nation can quickly determine (perhaps using a prede�ned operation) whether to immediately context
switch to the appropriate application space and execute the receive handler or enqueue the message for
processing when that application is scheduled.

We leave for future consideration the address space mapping and protection issues associated with
direct delivery of messages to an application. [Thekkath] and [Osborne] give two methods for dealing
with these issues.

Finally, section 4 discusses some of the rami�cations various implementations have for ow control.

3.2 Limitations of the Send&Receive Model

The discussion in Sections 2.1 and 2.2 illuminates many issues in data transmission. A send&receive
model, such as given in Section 2.3, while simple and familiar, is only one way of addressing these
issues. Such a model embeds a particular choice of operations and costs that may be acceptable for
some applications but not preferable for others.

There are two basic limitations with a send&receive model. The �rst is that data is not delivered until
the application explicitly performs a receive operation. Such polling gives rise to a tradeo� of latency vs
overhead, which is unsatisfactory for applications with low latency communication requirements. The
second, which follows as a consequence of the �rst, is that data must be stored somewhere, independent
of its intended use, upon arriving at a destination until the application performs a receive operation and

MERL-TR-94-20 November 1994



94-1142: Some Considerations for API Semantics of Data Transmission 7

processes the data. Unfortunately, the fact that the application may merely want the data to be stored
at some location (in application space) cannot be known until after the receive operation, at which time
the data has already been stored somewhere else.

There are three solutions to this causality-induced data placement problem. The �rst solution is to
copy the data. Simple implementations of the send&receive semantics in Section 2.3 adopt this solution
by bu�ering data within the API implementation layers (i.e. driver) and copying it to an application
speci�ed bu�er on a receive call. (Data may also be bu�ered within the API implementation layers
at the sender.) However, it is well known that the main impediment to high bandwidth host network
implementations is excessive data copying due to bu�ering. The second solution avoids copying by
mapping the data. High performance implementations usually adopt this solution: the receive call
causes the initial data locations to be mapped to an application speci�ed bu�er. While this eliminates
a data copy, it has two consequences. First, to e�ect this mapping e�ciently, the units of mapping are
constrained to the relatively large sizes of pages. This puts a preference on the exchange of large data
units in order to e�ciently use the bu�er space on a page and biases the structure of an application
towards such large bu�ers. Second, the copying is replaced by a page mapping operation. Although
page mapping is signi�cantly cheaper than copying for a page of data, page mapping is nevertheless an
operating system operation that is not cheap. This implies that the data transfer must be a certain
size to amortize the cost of the mapping. (Small data transfers could still be done using copying, but
that requires knowing in advance the size of the transfer.) The third solution is to change the receive
semantics and have the receive call return a pointer to some application location in which the data is
stored. This works �ne so long as the application does not require the data in a particular location.
Otherwise, the data must be copied or mapped, incurring the drawbacks of the �rst two solutions.

In the �rst two solutions small messages are proportionally much more costly than large messages.
The third solution is not favorable for small messages either since small messages are very likely to
be required to be stored at speci�c locations within an application, requiring copying or mapping. In
addition, the rapid response messages for which the send&receive model already yields poor latency are
typically small messages. Therefore, although the send&receive model can be optimized for large data,
high bandwidth transmission, it is not suited for rapid exchange of small amounts of data, making it a
bad choice for some applications.

3.3 Motivation: Small data transfers and Low overhead communication

While high bandwidth bulk data communication is obviously important, there is an increasing set of
applications requiring small data transfers and low overhead communication. By low overhead we mean
both low latency and low impact on host performance (for message processing).

Cluster-based computing | the networking of commodity processing nodes for high performance
computing | is an emerging paradigm. The growth in the use of �rst generation cluster computing
using Ethernet and such software tools as PVM [Geist] has been phenomenal. Latency, however, poses a
fundamental limit to the e�ectiveness and applicability of cluster-based computing. There is no funda-
mental reason why ATM networks cannot provide low enough latency to provide the nucleus for future
cluster-based computing. The raw network has little delay: interfaces can do message demultiplexing
in hardware and switching can be fast. Some commercial switches right now get latencies of 2 to 3
cell times. However, current commercial network interfaces with send&receive APIs get latencies in the
order of 250 microseconds [Osborne] and (much) worse. It is possible to do much better with alterna-
tive models. Various researchers have used standard commercial ATM interfaces to get application to
application latencies below 30 microseconds [Thekkath, Osborne, vonEickI].

There is little doubt that cluster-based computing will be an important computing paradigm. Some
go as far as to say that cluster-based computing will be the dominate computing model in the future

MERL-TR-94-20 November 1994



8 94-1142: Some Considerations for API Semantics of Data Transmission

[Patterson]. And it isn't so much what one can do today with cluster-based computing but what one can
do in the future. Low overhead communication will allow today's distributed computing applications to
be restructured for better performance at lower cost. See [Thekkath] for one example.

Low overhead communication is also important for real-time computing, such as in industrial control
systems.

3.4 Requirements for high bandwidth and low overhead communication

High bandwidth communication requires minimal copying of data. The objective is a \zero copy"
model in which data is transmitted directly from sender application memory to destination application
memory without any intermediate copies (by endstation drivers or operating system software). This
direct delivery is like end-to-end DMA.

Low overhead communication also requires minimal copying of data. Other requirements arise from
the manner in which low overhead communication is used. We identify three:

1. fast noti�cation of message arrival { In this case an application needs to know as quickly as
possible when a particular message arrives. This need arises, for example, when the message is a
synchronization reply (e.g. lock grant) or other result (e.g. a read result from a remote node) for
which the application is waiting.

2. fast reply to message arrival { In this case (really the remote analogue of the �rst) an application
needs the result of a query or a remote node as quickly as possible. The round trip latency is
important for many messages such as for reading a data value from a remote node or acquiring a
lock on a remote node for which an application waits. Hence a fast reply to an incoming message
is required.

3. random addressing { Messages requiring rapid response are typically small in size. Furthermore,
applications with �ne grained sharing and/or irregular data structures may transfer data in small
messages. To avoid data copying we would like to have the ability to place data directly into
the destination memory where the application expects it. This requires the ability to specify an
arbitrary address, rather than just a linearly increasing address as in adding a packet to a receive
queue.

An important aspect in realizing (3) is adding some sender supplied information (an address in this
case) to a message. In fact, all three cases above require some sort of control information in addition
to the data in a message. Active Messages [vonEickII] is a technique that exploits this observation
by interpreting the control part as carrying the name of an interrupt handler to be executed at the
destination. This interrupt handler may process additional arguments in the control part and then
decide what to do with the message: whether to store the data or reply with some value. The hybrid
deposit model [Osborne] relies on hardware support from the network interface to directly execute the
most common and simple types of control (such as pure data delivery, as in a write) and falls back on
Active Messages for less common control messages.

A send&receive model is not adequate to meet the above requirements. First, operating system
interaction for data transfer and mapping ensures latency is large. Second, interpretation of a message's
contents and hence reaction to a message cannot begin until the application performs an explicit receive
call. Such a synchronous approach for asynchronous message arrivals gives unacceptable latencies.

MERL-TR-94-20 November 1994



94-1142: Some Considerations for API Semantics of Data Transmission 9

4 Flow control

4.1 Recommendation

The API should include mechanisms on the sending and receiving interfaces for feedback of sender and
receiver overow respectively. Multiple methods are possible for the sender overow feedback, including
a mandated check of the sending status. However, the receiver overow feedback must be in the form
of a noti�cation or callback in case the application is not scheduled.

The API may optionally include mechanisms to report underow at the sender and receiver interfaces
respectively. The sender underow feedback must be in the form of a noti�cation or callback in case
the application is not scheduled.

4.2 Discussion and Rationale

As discussed in Section 2 the API must deal with ow control. The fundamental issues are:

� sender overow { The network may not be able to send data as fast as the application can transfer
data via a send call. Thus driver/network interface queues may overow.

� receiver overow { The application may not be able to retrieve (or use data) as fast as the network
may receive it. Thus driver/ network interface queues may overow.

Sender overow is an vital issue for ABR connections: the network capacity devoted to such a
connection can change at any time. Thus no amount of sender rate preplanning or queue size can
prevent overow. Furthermore, the ABR connection capacity can change rapidly. Consequently, it is
essential that there exist a fast reacting feedback mechanism for ow control. (Of course, a particular
implementation is free to simply drop data while an overow condition exists, but this is not a satis-
factory solution for all applications.) Fundamental ways to accomplish this feedback are by blocking
(e.g. on a send call), polling (either explicitly or based on some value returned by a send call), or
interrupt/noti�cation/callback to the application.

Sender overow is less of an issue for CBR connections since the guaranteed network capacity allows
preplanning on the part of the application. An important distinction is that sender overow with CBR
connections is a result of mismanagement in the application or interference from other applications
or the operating system. By making driver/network interface queues large enough this can be made
su�ciently rare that a slow reacting feedback mechanism will su�ce. Nevertheless, it is convenient for
an application to have some way to determine remaining queue capacity; this can be used as a ow
control mechanism.

The send&receive model has built-in ow control: send could just refuse to accept data.

One possible implementation of the data send in Section 3.1.2 to achieve minimal copies is a \non-
bu�ered" send in which the sender queues data for transmission and the network interface transfers
the data directly to the network. In this case there has to be some mechanism for checking if the
driver/interface has accepted data for later transmission. This mechanism can be used for ow control.

Receiver overow is also a vital issue for ABR connections: the network could deliver data at any
point; moreover, the application may not be scheduled. Unless the application is guaranteed to attempt
to receive data at regular intervals (e.g. via a timer) and the connection PCR is set appropriately, it is
possible that receiver overow occurs. Receiver overow is also a vital issue for CBR connections unless
the application can be guaranteed to be scheduled regularly and consume data.

MERL-TR-94-20 November 1994



10 94-1142: Some Considerations for API Semantics of Data Transmission

The send&receive model needs an interrupt/noti�cation/callback mechanism for such receiver over-
ow. Similarly there must be some ow control mechanism for \non-bu�ered" receives in which data
is directly delivered to the application. Whether or not bu�ering is being done in kernel or application
space, the bu�ers could �ll up. A high water mark callback or noti�cation is required.

Two additional issues important for guaranteed connection rates (e.g. CBR) are:

� sender underow { There may not be su�cient data available for the network to send. For CBR
connections, sender underow may result in a violation of the guaranteed rate to the destination
application. A similar issue can arise with ABR connections with non-zero MCR.

� receiver underow { There may not be su�cient data available for the application. For CBR con-
nections this condition might indicate a violation of the guaranteed rate and should be reported.

For CBR connections the send side must have a low watermark callback or noti�cation. A receive
side low watermark could be useful but does not seem essential. Even with MCR=0, ABR connections
could bene�t from a send side underow: such a noti�cation could alert an application to the opportunity
to send more data.

5 References

BaseDoc - "Native ATM API Service Description Draft Specification", ATM Forum SAA API

Subworking Group document 94-0150R5, Sept 1994

Druschel - "Experiences with a High-Speed Network Adaptor: A Software Perspective",

Peter Druschel, Larry Peterson, and Bruce Davie, SIGCOMM 94

Geist - "PVM: Parallel Virtual Machine: A Users Guide and Tutorial for Network

Parallel Computing", A. Geist el al, MIT Press, 1994

Osborne - "A Hybrid Deposit Model for Low Overhead Communication in High Speed LANs",

R. Osborne, Proc. of IFIP 4th International Workshop on Protocols for

High-speed Networks, August 1994

Patterson - "A Case for Networks of Workstations (NOW)", D. Patterson, First Networks

of Workstations Workshop, October 1994

Singer - "ATM API Comments and Expanded Text", David Singer, ATM Forum contribution

94-0813, Sept 1994

Sunderam - "The PVM Concurrent Computing System: Evolution, Experience, and Trends",

V. Sunderam, A. Geist, J. Dongarra, and R. Manchek, Parallel Computing,

Vol 20(4), 1993

Thekkath - "Separating Data and Control Transfer in Distributed Operating Systems", C.

Thekkath, H. Levy, and E. Lazowska, Sixth Int'l Conference in Architectural

Support for Programming Languages and Operating Systems, October 1994

vonEickI - "Low-Latency Communication over ATM Networks using Active Messages", T. von

Eicken et al, Proc. of Hot Interconnects II, August 1994

vonEickII - "Active Messages: A Mechanism for Integrated Communication and Computation",

T. Von Eicken et al, Intl Symposium on Computer Architecture, May 1992

MERL-TR-94-20 November 1994


	Title Page
	Title Page
	page 2


	Some Considerations for API Semantics of Data Transmission
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11


