
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Stochastic Search Technique for Graph
Bisection

Joe Marks, Stuart Shieber, J. Thomas Ngo

TR94-18 December 1994

Abstract

We present a new heuristic algorithm for graph bisection. This heuristic combines stochastic
search and an implicit notion of clustering in a novel manner. In comparison with a large-sample,
time-equated set of runs of the Kernighan-Lin algorithm, the new algorithm demonstrates a mod-
est but significant superiority in terms of the best bisections found. Keywords and phrases: graph
bisection, graph partitioning, stochastic search, heuristics.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

1. First printing, TR94-18, November 1994.

1

Given a graph G = (V;E) with an even number of vertices, the graph-bisection problem is
to divide V into two equal-sized subsets X and Y such that the number of edges connecting
vertices in X to vertices in Y (the size of the cut set , notated cut(X;Y)) is minimized.
This problem is NP-complete [6]. Graph bisection and its generalizations1 have considerable
practical signi�cance, especially in the areas of VLSI design and operations research.

The benchmark algorithm for graph bisection is due to Kernighan and Lin [11]. (The
e�cient implementation of this heuristic technique was described by Fiduccia and Mattheyses
[4], so the algorithm is sometimes referred to as the Kernighan-Lin-Fiduccia-Mattheyses
algorithm.) The Kernighan-Lin (KL) algorithm improves an initial random bisection by
making a sequence of locally optimal vertex swaps between the subsets X and Y . The
vertex-swap operation is also the primitive perturbation operator used in applications of
simulated annealing to graph bisection [12, 13]. In spite of the folk wisdom that simulated
annealing is capable of avoiding the local minima that often plague greedy heuristics like the
KL algorithm, Johnson et al. [10] found that the relative performance of the two algorithms
depends on the nature of the graphs being bisected: simulated annealing has an advantage
on sparse, relatively uniform graphs, but KL is better for graphs with structure.2

Recently, more aggressive attempts have been made to exploit the structure that is often
found in graphs of practical signi�cance. The common theme of these attempts is clustering:
by grouping together vertices in tightly connected subgraphs, clusters of vertices can be
treated as individual supernodes during the application of standard heuristics like KL or
simulated annealing. The various incarnations of the clustering idea appear to show a marked
superiority over the original KL algorithm [1, 2, 3, 5, 8, 9, 14, 15, 16], though the degree of
superiority is unclear because the reported empirical results tend to sell the KL algorithm
short, as we will argue below.

The algorithm we describe in this paper can be considered a synthesis of ideas from
previous work: it includes a very simple implicit clustering heuristic, employs a stochastic
search strategy (like simulated annealing or a genetic algorithm [7]), and uses the KL algo-
rithm for �nal re�nement of the computed bisections. When compared fairly with the KL
algorithm (i.e., giving each algorithm equal time and ensuring that a large sample of KL
runs is considered), the new algorithm exhibits signi�cant superiority on a variety of test
graphs.

In the following sections we describe the algorithm, present an empirical analysis of its
behavior, and conclude with a discussion of future work.

1More general classes of graph-partitioning problems arise when V can be divided into more than two

subsets, when the strict equality constraint on the sizes of the subsets is relaxed, and when weights are

associated with the vertices and edges to be used in the constraint-satisfaction and cut-set-size computations.

2The conclusions that Johnson and his colleagues drew from their thorough empirical analysis are more

complicated and informative than this simple pr�ecis suggests, but the statement is approximately true.

MERL-TR-94-18 November 1994

2

Our algorithm is based on a simple seed-growth heuristic.3 We start with two disjoint,
equal-sized subsets of the vertex set to seed the two partitions, and add the remaining
vertices one at a time into alternate partitions, at each step choosing the vertex to be added
in a greedy manner. When adding to partition X we choose a vertex a that minimizes
cut(fag; Y) � cut(fag;X); intuitively, we minimize the number of edges added to the cut
set separating X and Y while maximizing the number of edges barred from future addition
to the cut set. Thus the notion of clustering is implicit in this heuristic, as compared to
heuristics in which explicit clusters are computed and manipulated [1, 2, 3, 5, 8, 9, 14, 15, 16].

More formally, the algorithm can be given by the following pseudocode. (All underlined
quantities are parameters of the heuristic that can be varied. The values given in the paper
are those that gave the best empirical results in an initial set of experiments.)

Input: An undirected graph G = (V;E). jV j is assumed to be even.

Output: A partition of V into subsets X and Y of size jV j
2
.

Procedure:

1. Let the seed sets sx and sy be randomly chosen disjoint subsets of V such that
jsxj = jsyj = b 0:01 jV j c.

2. X sx;Y sy.

3. Repeat substeps (a) and (b) until all the vertices in V have been assigned to X
or Y :

(a) Find an unassigned vertex a 2 V such that cut(fag; Y) � cut(fag;X) is
minimal.
X X [fag.

(b) Find an unassigned vertex b 2 V such that cut(fbg;X)� cut(fbg; Y) is min-
imal.
Y Y [fbg.

One application of the seed-growth heuristic is not likely to be particularly useful (on
average it will be worse than a single application of the KL algorithm), but the O(jV j+ jEj)
seed-growth heuristic|which is roughly an order of magnitude faster than an e�cient imple-
mentation of the KL algorithm on standard test graphs|can be rendered e�ective by running
it many times as part of a general search procedure. One such search procedure, a form of
parallel hill climbing, is given here, though others (e.g., simulated annealing and genetic
algorithms) might also be used e�ectively in combination with the seed-growth heuristic.
The KL algorithm is used as a postprocess to achieve �nal re�nement of the best bisections
found by the search procedure.

3This heuristic bears some resemblance to the epitaxial-growth heuristic of Donath [3].

MERL-TR-94-18 November 1994

3

Input: An undirected graph G = (V;E).

Output: A partition of V into subsets X and Y of size jV j
2
.

Procedure:

1. Randomly choose a set P of 100 pairs (sx; sy) of seed sets using Step 1 of the
seed-growth heuristic.

2. Compute the corresponding bisection (X;Y) for each seed-set pair (sx; sy) 2 P

using Steps 2 and 3 of the seed-growth heuristic.

3. Repeat substeps (a) through (e) 5; 000 times:

(a) Randomly pick a seed-set pair (sx; sy) 2 P .

(b) Randomly select a vertex in one of sx or sy and replace it with another
randomly chosen seed vertex from V � sx[sy; call the resulting seed-set pair
(s0

x; s
0
y).

(c) Compute the corresponding bisection (X 0; Y 0) using Steps 2 and 3 of the
seed-growth heuristic.

(d) If cut(X 0; Y 0) < cut(X;Y) then replace (sx; sy) in P with (s0
x; s

0
y).

(e) Every 1; 000th iteration perform the following steps:

i. Use the cut-set sizes of the corresponding bisections (i.e., the values of
cut(X;Y)) to rank order the seed-set pairs (sx; sy) in P .

ii. Replace the bottom 50 seed-set pairs in P with copies of the top 50 seed-
set pairs in P .

4. Use the cut-set sizes of the corresponding bisections to rank order the seed-set
pairs (sx; sy) in P .

5. For the top 20% of seed-set pairs (sx; sy) in P apply the KL algorithm to (X;Y);
return the best bisection found.

Because this algorithm combines parallel hill climbing (PHC), the seed-growth (SG)
heuristic, and the KL algorithm, we will refer to it as PHC/SG+KL.

Heuristic algorithms for graph partitioning like the one described here cannot be evaluated in
a purely analytic fashion; empirical analysis is the only way to ascertain such an algorithm's
utility. Unfortunately, empirical analysis of algorithm performance is often done poorly,
which sometimes leads to erroneous conclusions. In the following subsection we discuss
two common errors that are often committed in the empirical analysis of graph-partitioning
algorithms. We then present empirical results for our algorithm.

MERL-TR-94-18 November 1994

4

KL: 20 runs X: 20 runs % improvement
over KL

Graph min avg min avg min avg
19ks 1131 1701.90 1154 1391.40 -2.03 18.24
5655 633 866.90 608 698.70 3.95 19.40
8870 70 118.15 69 95.10 1.43 19.51

PrimGA1 312 384.10 293 345.65 6.09 10.01
PrimGA2 1262 1716.30 915 1405.50 27.50 18.11
Test02 1177 1296.60 1195 1242.10 -1.53 4.20
Test03 906 2590.30 843 1503.60 6.95 41.95
Test04 1216 1316.35 1201 1245.55 1.23 5.38
Test05 2119 4524.55 1866 2113.95 11.94 53.28
Test06 1203 1580.10 1192 1285.95 0.91 18.62

bm1 302 385.10 229 327.80 24.17 14.88

Table 1: Kernighan-Lin and Algorithm X: an empirical comparison. Algorithm X runs �ve
times more slowly than the Kernighan-Lin (KL) algorithm.

3.1 Caveats

Consider the evidence presented in Table 1. (This example is based on an empirical
analysis reported by Wei and Cheng [16].) The table contains the average and minimum
cut-set sizes of 11 graph bisections, computed from 20 runs of the KL algorithm and 20 runs
of Algorithm X.4 Although Algorithm X is �ve times more expensive than the KL algorithm,
one might be tempted to conclude that the extra expense is indeed worthwhile, because its
performance appears to be signi�cantly better. However, the di�erence in performance is
due solely to the extra time a�orded Algorithm X, because Algorithm X merely returns the
best of �ve runs of the KL algorithm! The moral is clear: Given the high variance of the
distribution of results generated by the KL algorithm, any analysis that does not give equal
time to KL will result in an inappropriate comparison.

The nature of the distribution of KL results provides a further opportunity for misleading
analysis. Figure 1 shows the distribution of 10,000 values returned by the KL algorithm for
graph bm1, which is derived from a circuit in the standard MCNC test suite. Suppose that
Algorithm Y also generates a distribution of results with better mean but smaller variance:
for instance, let us assume that it essentially always �nds a bisection with cut-set size between
250 and 300 for this graph. If one compares the best result from m runs of Algorithm Y
with the best result from n runs of the KL algorithm to determine which algorithm is better
(where m and n have been chosen to equate overall running times, of course), the answer
one gets will be a�ected by the magnitude of n. By inspection, roughly 1% of the values
in the histogram for KL are less than 250. A simple probabilistic analysis shows that n

4The graphs were derived from circuit hypergraphs that were made available for the Microelectronics
Center of North Carolina (MCNC) Layout Synthesis Workshop.

MERL-TR-94-18 November 1994

5

200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

C
ou

nt

Size of cut set

Figure 1: Histogram of values computed by the KL algorithm for graph bm1.

must be around 690 in order for KL to have at least a 50% chance of being declared the
better algorithm by virtue of �nding the best bisection. Therefore, if one can wait the
hour or so required for 1000 runs of KL|as is typical for most applications involving graph
partitioning|KL should be considered the better algorithm on the basis of this empirical
evidence: it will very likely �nd a bisection with a smaller cut set than Algorithm Y. When
absolute performance is what matters most, several tens or even hundreds of runs of the KL
algorithm may be required to do it justice; a statistical analysis of the distribution of results
for a given graph can be used to estimate an appropriate minimum number of runs, if such an
estimate is needed [15]. Conversely, any comparisons with KL that involve as few as 10 or 20
runs|especially against algorithms with good average performance but low variance|would
appear to be suspect, though such comparisons are not uncommon [2, 9, 16, 17].

3.2 Results

Table 2 contains an empirical comparison of the KL and PHC/SG+KL algorithms. The
algorithms were tested on 13 graphs, 11 of which were derived from hypergraphs in the
MCNC test suite, and two of which have been used for empirical testing in the operations-
research community.5

5These graphs are instances of G(1000; 0:0025) and U (1000; 0:04). Graphs in G(n; p) have n vertices,
and the probability that there is an edge between any given pair of vertices is p. Graphs in U (n; d) have n
vertices that are randomly distributed on a unit square, and an edge exists between any pair of vertices that
are distance d or less apart. One would expect the graphs in U , but not the graphs in G, to have exploitable
structure [10].

MERL-TR-94-18 November 1994

6

KL PHC/SG+KL
avg Time # of avg min avg min % impr.

Graph jV j deg (secs) runs cut-set size � cut-set size � over KL
19ks 2844 93.2 12368 512 1020.8 33.5 976.8 89.2 4.3%
5655 922 20.1 1289 702 603.2 4.3 595.4 0.5 1.3%
8870 502 9.7 377 728 52.8 1.3 52.0 0.0 1.5%

PrimGA1 834 11.3 1054 628 235.6 15.6 218.8 0.8 7.1%
PrimGA2 3014 18.0 13785 420 1051.6 77.5 574.6 31.2 45.4%
Test02 1664 100.1 4245 486 1172.8 11.9 1164.2 22.1 0.7%
Test03 1608 71.2 3981 608 821.8 8.1 804.4 0.5 2.1%
Test04 1516 137.1 3589 454 1191.2 2.2 1184.0 3.1 0.6%
Test05 2596 167.3 10409 420 1887.4 26.4 1813.0 2.4 3.9%
Test06 1752 114.7 4718 500 1194.4 3.6 1188.4 2.3 0.5%

bm1 882 10.7 1176 570 240.4 14.5 209.2 1.3 13.0%
G(1000; 0:0025) 1000 2.5 1538 234 98.2 3.0 93.8 1.5 4.5%
U(1000; 0:04) 1000 5.0 1507 380 28.6 5.7 4.2 0.4 85.3%

Table 2: Kernighan-Lin and PHC/SG+KL: an empirical comparison.

For each graph in the test suite the following data are presented:

1. Graph cardinality: The number of vertices in the graph (jV j).

2. Average degree: The average number of edges incident upon a vertex in the graph.

3. Running time: The running time, in seconds, of the PHC/SG+KL algorithm on a
Hewlett-Packard 735 workstation. (The running times range from a little under four
hours for graph PrimGA2 to a little over six minutes for graph 8870.)

4. Number of KL runs: The number of runs of the KL algorithm that will take an amount
of time equivalent to that required for the PHC/SG+KL algorithm.

5. Average minimum cut-set size for KL: The average minimum cut-set size found over
�ve tests of k runs each, where k is the number of runs required for time equivalence
with the PHC/SG+KL algorithm.

6. Standard deviation of minimum cut-set size for KL: The standard deviation of the
minimum cut-set size found over the �ve tests.

7. Average minimum cut-set size for PHC/SG+KL: The average minimum cut-set size
found over �ve runs of the PHC/SG+KL algorithm.

8. Standard deviation of minimum cut-set size for PHC/SG+KL: The standard deviation
of the minimum cut-set size found over the �ve tests.

MERL-TR-94-18 November 1994

7

9. Improvement over KL: The average improvement of the PHC/SG+KL algorithm over
the KL algorithm, expressed as a percentage of the average minimum cut-set size for
KL.

In all cases, PHC/SG+KL generates better solutions than the large-sample, time-equated
tests of KL. The advantage ranges from less than 1% to over 85%.

The results for PHC/SG+KL may appear modest relative to the results that have been
reported recently for various clustering heuristics.6 However, this is due in large part to the
better results we report for KL because of the large number of KL runs we use, on average
about 500. Recall that Table 1 shows the improvement one can get by taking the best of
100 runs of the KL algorithm versus the best of 20 runs; moreover, the best of 500 runs
is quite an improvement, on average, on the best of 100 runs. Thus, our results cannot be
directly compared to those previously published. We hope to replicate the results on other
algorithms in the near future so as to allow comparison of PHC/SG+KL with other methods.

An interesting aspect of the data is the variation in relative performance of the algo-
rithms: although PHC/SG+KL is superior to KL across the board, the degree of superiority
di�ers markedly. For some graphs (5655, 8870, Test02, Test03, Test04 and Test06)
the improvement is very small; for others (19ks, PrimGA1, Test05 and G(1000; 0:0025))
the improvement is small, but signi�cant; and for the remaining three graphs (PrimGA2,
bm1, and U(1000; 0:04)) the improvement is substantial. There is no obvious correlation be-
tween the degree of relative superiority of the PHC/SG+KL algorithm and the cardinality
or average degree of the graphs in question.

For hybrid algorithms that involve the KL algorithm, the following question naturally
arises: How much work is the KL part doing? In Table 3, an approximately time-equated
comparison of the KL and PHC/SG algorithms is presented. (PHC/SG is the PHC/SG+KL
algorithm without the KL re�nement post-pass in Step 5. The data in Table 3 were derived
from the same experimental tests described in Table 2, so the KL algorithm is given about
5% more time than the PHC/SG algorithm.) Perhaps surprisingly, the PHC/SG algorithm
still manages to outperform the KL algorithm on �ve of the graphs (8870, PrimGA1, PrimGA2,
bm1, and U(1000; 0:04)), substantially in some cases.

The PHC/SG+KL algorithm is undoubtedly an improvement over the KL algorithm, but
it remains to be seen how e�ective it is relative to other recently reported algorithms that
use explicit clustering heuristics. Furthermore, we can as yet o�er no analysis that would

6Unfortunately a direct comparison with other algorithms on the MCNC graphs based on published
�gures is not currently possible, because the common convention is to report cut-set size in terms of nets
(edges in a hypergraph) rather than edges in the graph derived from the original hypergraph, which is what
we have done here for consistency with other presentations [1, 8, 10]. Furthermore, we bisect the graph on
the basis of the number of vertices in each half of the bisection, not the weighted sum of the areas associated
with them.

MERL-TR-94-18 November 1994

8

KL PHC/SG
avg min avg min % improvement

Graph cut-set size � cut-set size � over KL
19ks 1020.8 33.5 1093.2 101.4 -7.1%
5655 603.2 4.3 612.8 2.9 -1.6%
8870 52.8 1.3 52.0 0.0 1.5%

PrimGA1 235.6 15.6 230.0 4.2 2.4%
PrimGA2 1051.6 77.5 751.8 31.1 28.5%
Test02 1172.8 11.9 1209.0 15.9 -3.1%
Test03 821.8 8.1 827.6 9.5 -0.7%
Test04 1191.2 2.2 1218.4 11.7 -2.3%
Test05 1887.4 26.4 1968.6 41.1 -4.3%
Test06 1194.4 3.6 1222.6 12.5 -2.4%

bm1 240.4 14.5 217.4 4.0 9.6%
G(1000; 0:0025) 98.2 3.0 98.4 1.1 -0.2%
U(1000; 0:04) 28.6 5.7 4.2 0.4 85.3%

Table 3: Kernighan-Lin and PHC/SG: an empirical comparison.

indicate why PHC/SG+KL is much better than KL on some graphs but not on others. Our
agenda for future work therefore includes a thorough time-equated empirical comparison of
the most promising clustering-based heuristics for graph bisection, including PHC/SG+KL,
and an attempt to discover correlates between quantitative measures of a graph's structure
and the performance of di�erent algorithms.

Furthermore, we plan to generalize the PHC/SG+KL algorithm to other graph-partitioning
problems. In commonly encountered problems of practical signi�cance, more than two par-
titions are permitted, the requirement of exact equality of partition sizes is relaxed, and the
vertices and edges are weighted. The simple nature of the seed-growth heuristic should allow
for straightforward generalization to these cases, though its performance remains to be seen.

[1] T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the performance of the
Kernighan-Lin and simulated annealing graph bisection algorithms. In Proceedings of
the 26th ACM/IEEE Design Automation Conference, pages 775{778, 1989.

[2] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications
to circuit partitioning in VLSI design. In Proceedings of the 30th ACM/IEEE Design
Automation Conference, pages 755{760, Dallas, TX, June 1993.

[3] W. E. Donath. Logic partitioning. In B. Preas and M. Lorenzetti, editors, Physical
Design Automation of VLSI Systems, pages 65{86. Benjamin/Cummings, 1988.

MERL-TR-94-18 November 1994

9

[4] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitioning. In Proceedings of the 19th Design Automation Conference, pages 175{181,
Las Vegas, NM, 1982.

[5] J. Garbers, H. J. Pr�omel, and A. Steger. Finding clusters in VLSI circuits. In Proceedings
of the IEEE International Conference on Computer-Aided Design, pages 520{523, Santa
Clara, California, Nov. 1990.

[6] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete graph
problems. Theoretical Computer Science, 1(3):237{267, 1976.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, New York, 1989.

[8] M. K. Goldberg and M. Burstein. Heuristic improvement technique for bisection of VLSI
networks. In Proceedings of the IEEE International Conference on Computer Design,
pages 122{125, Port Chester, NY, 1983.

[9] L. Hagen and A. B. Kahng. A new approach to e�ective circuit clustering. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design, pages 422{427,
Santa Clara, California, Nov. 1992.

[10] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by sim-
ulated annealing: An experimental evaluation; part I, graph partitioning. Operations
Research, 37(6):865{892, Nov.-Dec. 1989.

[11] B. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 49(2):291{307, Feb. 1970.

[12] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of
Statistical Physics, 34:975{986, 1984.

[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671{680, May 1983.

[14] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.
IEEE Transactions on Computers, C-33:438{446, 1984.

[15] T.-K. Ng, J. Old�eld, and V. Pitchumani. Improvements of a mincut partition algo-
rithm. In Proceedings of the IEEE International Conference on Computer Design, pages
470{473, Santa Clara, CA, 1987.

[16] Y.-C. Wei and C.-K. Cheng. A two-level two-way partitioning algorithm. In Proceedings
of the IEEE International Conference on Computer-Aided Design, pages 516{519, Santa
Clara, CA, Nov. 1990.

[17] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical design. IEEE
Transactions on Computer-Aided Design, 10(7):911{921, July 1991.

MERL-TR-94-18 November 1994

	Title Page
	Title Page
	page 2

	A Stochastic Search Technique for Graph Bisection
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

