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Abstract

This paper describes a general purpose queue architecture for an ATM switch capable of support-
ing both real-time and non-real-time communication. The central part of the architecture is a kind
of searchable, self-timed FIFO circuit into which are merged the queues of all virtual channels in
the switch. Arriving cells are tagged with numerical values indicating the priorities, deadlines, or
other characterizations of the order of transmission, then they are inserted into the queue. Entries
are selected from the queue both by destination and by tag, with the earliest entry being selected
from among a set of equals. By this means, the switch can schedule virtual channels indepen-
dently, but without maintaining separate queues for each one. This architecture supports a broad
class of scheduling algorithms at ATM speeds, so that guaranteed qualities of service can be
provided to real-time applications. It is programmable because the tag calculations are done in
microprocessors at the interface to each physical link connected to the switch.
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Abstract

This paper describes a general purpose queue architecture for an ATM switch capable of support-
ing both real-time and non-real-time communication. The central part of the architecture is a kind
of searchable, self-timed FIFO circuit into which are merged the queues of all virtual channels in
the switch. Arriving cells are tagged with numerical values indicating the priorities, deadlines, or
other characterizations of the order of transmission, then they are inserted into the queue. Entries
are selected from the queue both by destination and by tag, with the earliest entry being selected
from among a set of equals. By this means, the switch can schedule virtual channels indepen-
dently, but without maintaining separate queues for each one. This architecture supports a broad
class of scheduling algorithms at ATM speeds, so that guaranteed qualities of service can be
provided to real-time applications. It is programmable because the tag calculations are done in
microprocessors at the interface to each physical link connected to the switch.

Problem Statement

A modern high speed network needs to support hard real-time applications such as plant control,
continuous media such as audio or video, as well as ordinary data communications. In order to
do this, it is necessary to be able to schedule the real-time communications to meet quality of
service goals and to protect them from the unpredictable demands of the non-real-time commu-
nications, all the while providing the remaining bandwidth to the non-real-time communications.
There are two parts to the real-time scheduling problem:– an off-line part dealing with the setting
up of connections (admission control); and an on-line part involving the actual scheduling of in-
dividual messages, packets, or cells as they arrive. A large body of theory about real-time
scheduling has yielded many results predicting that certain combinations of off-line and on-line
scheduling algorithms can guarantee certain qualities of service if certain a priori conditions are
satisfied.

In real-time ATM networks, the challenge is the on-line part, i.e., cell-by-cell scheduling. For a
network operating at 622 megabits per second, an ATM switch must make a scheduling decision
for each physical link within each cell cycle of 680 nanoseconds. In the general case, there will
be n virtual channels with cells awaiting transmission, each of which has its own scheduling
requirements. Therefore, each decision involves selecting the first cell from the virtual channel
with the highest priority, earliest deadline, most frequent rate, or other parameter.

† Address: Mitsubishi Electric Research Laboratories, 1050 E. Arques Avenue, Sunnyvale, CA 94086
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Figure 1 Shared-buffer ATM Switch Architecture

This scheduling decision can be reduced to a comparison to select the minimum or maximum
from among a set of n numerical values. There is no way around this n-way comparison. It is the
fundamental complexity of real-time scheduling, and it must be done once during every
scheduling interval. Obviously, if n is very small, it is not difficult. But if n is large, as is likely to
be the case in a network with many real-time channels with widely varying characteristics, the
comparison becomes a significant part of the design of the switch.

Shared-buffer Switch Architecture

At Mitsubishi Electric, ATM switches use a shared buffer architecture, an unfolded view of
which is shown in Figure 1. The central fabric of the switch is a 2k-port memory, where k is the
number of physical links connected to the switch. During each cell cycle, k  cells arrive at the k
input sides of the physical links, shown on the left, and are concurrently written into the shared
cell buffer memory. At the same time, k cells are read from the same memory for transmission to
the k output sides of the links. Scheduling is merely a matter of selecting which cells to transmit
at which time.

The advantage of this architecture over the more common input- or output-buffered switches is
that less total memory is required because it can be statistically multiplexed among the physical
links. The total bandwidth of the memory must be 2 * k * B cells per second, where B is the
bandwidth of the individual links. This is only slight more stringent than the buffers of input- and
output-buffered switches, which require k  separate buffers with bandwidth ( k + 1 ) * B each in
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order to be non-blocking. Therefore, the shared-buffer architecture makes better use of the
physical resources of the switch [Oshima92].

Selectable Queue Circuit

One way to do cell-by-cell scheduling is to use a self-timed FIFO with a search circuit such as
that described in [Kondoh94] and illustrated in Figure 2. This circuit contains a linear array of
registers, as many as there are cell buffers in the memory. Each register contains a cell address, a
priority value, and a k-bit destination vector in which one bit represents each physical link. A
value of one in a position of the destination vector means that the cell addressed by the entry
waiting to be transmitted to that link. During each cell cycle, the circuit is searched k times, once
for each link. Each search finds the first entry containing a one bit in the corresponding position
of the destination vector — i.e., nearest the head of the queue (at the bottom of Figure 2). The
cell address is retrieved, the cell at the buffer address is transmitted, and the bit of destination
vector is reset. When all of the destination vector bits of an entry are zero, the entry is deemed to
be vacant. Then the internal, self-timed circuitry propagates all subsequent entries forward to fill
up vacant spaces. In this sense, it acts like a traditional FIFO circuit. New entries are always
added to the tail of the queue (shown at the top in the Figure).
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Figure 2: Self-time FIFO with search circuit

To support real-time communication, we use a modification of this circuit in which selection
takes account of the priority information encoded in numerical tags. Instead of merely selecting
the first entry with a particular destination bit set, this circuit selects the entry with both the
smallest tag value and a destination bit of one. A block diagram of the circuit is shown in Figure
3.



A General Purpose Queue Architecture for an ATM Switch

September 30, 1994 4 Technical Report 94-17

This figure shows only one column of destination bits (corresponding to one physical link), a tag
register for each entry, comparators between adjacent entries, and a simplified selection circuit.
Not shown are the cell addresses or self-timed circuitry which causes entries to propagate from
the tail to the head of the queue. The comparators all operate in parallel. Each compares the value
of its tag register with the output of the previous comparator (towards the tail of the queue). If the
destination bit is one, it returns the smaller of these two values for use by the comparator of the
next entry (toward the head of the queue); otherwise, it simply propagates the value from the
previous entry to the next entry. Each comparator also outputs a single bit, which has a value of
one if and only if (a) the destination bit of that entry is one, and (b) the tag of that entry is not
greater than any tag propagated from entries toward the tail of the queue. The selection circuitry
on the right is identical to that of Figure 2 and finds the first such entry.
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Figure 3 Tag-based Selectable Queue Circuit

The queue circuit of Figure 3 is an extremely simplified one. For a practical circuit in a k-by-k
shared-buffer switch operating at 622 megabits per second, the circuit must search the queue k
times in each 680 nanosecond cell cycle. If k = 16, for example, each search must be completed
in about 40 nanoseconds. Even with look ahead, the ripple effect of the comparators takes too
long. Therefore, we actually partition the search into sections, each one producing a minimum
tag value. Then these compare the results of the sections hierarchically to select the minimum
overall tag value. Experience with an evaluation circuit reported by Kondoh, plus estimates
based on 0.8µ CMOS design rules, indicates that search can be completed in less than 30
nanoseconds for 512 queue entries with 16-bit tags.
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Implementation of Real-time Scheduling Algorithms

This scheduling mechanism is extremely flexible and general and can support a broad class of
real-time and non-real-time scheduling algorithms. The key feature is the ability to compute tags
for individual cells when they arrive at the switch. For example,

• In rate monotonic systems, tags represent intervals between periodic messages. Tasks re-
quiring messages with higher frequencies are assigned smaller tags. Tags can be pre-com-
puted when virtual channels are set up, then assigned by table look-up when cells arrive.

• In the Virtual Clock algorithm [Zhang91], tags represent the logical arrival times of cells.
These are computed by taking the actual arrival time of each cell, then adjusting them as
necessary to reflect early arrivals, etc.

• In the Earliest Deadline First algorithm [Zheng94], tags represent deadlines by which
time cells must be transmitted. They are calculated by adding pre-computed delay values
to logical arrival times.

In addition, round robin, weighted fair queuing, and other algorithms can be supported by defin-
ing appropriate tag-calculation functions to be applied to incoming cells arriving at the switch.
Moreover, multiple classes of traffic can be supported simultaneously by partitioning the space
of tag values and assigning tags in the different subspaces by different algorithms.

In some of the algorithms, such as Virtual Clock and Earliest Deadline First, tag values increase
monotonically for each virtual channel. Eventually, they will overflow the tag field of the regis-
ters in the queue. To cope with this, a control signal is provided which, when raised, causes each
tag to be treated as having one additional high order bit. The value of this bit is the opposite of
the actual high-order bit of the tag. Initially, all tags are zero. After a while, tags of newer entries
in the queue have high-order bits of one.

Assuming that there are enough bits in the tag fields and that all entries are chosen within a pre-
dictable period of time, it will be the case that all tags in the queue will have high order bits of
one. I.e., earlier entries will have been selected and transmitted and the tag values of new entries
will not have wrapped around back to zero again. At this point, the control signal is raised. When
the tag values eventually do wrap around back to zero, they will be treated as being larger than
the earlier queue entries with ones in the high-order bits of theirs tags. Later still, all entries with
ones in the high order bits of their tags will have been removed from the queue, at which time the
control signal can be lowered again. Note that this depends upon the tag values having enough
bits so that the interval between wrap around is greater than the lifetime of any entry in the
queue.

Summary

A queue architecture for a shared-buffer ATM switch has been described. This architecture sup-
ports real-time communication traffic by allowing cell-by-cell scheduling according to a wide
variety of scheduling algorithms. The central feature of the architecture is a tag-based FIFO
queue circuit containing entries for all cells to all destinations. It can be searched for the cell with
the smallest tag for a particular destination. In effect, it provides the necessary queuing without
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requiring separate queues for individual virtual channels. The queue circuit can be implemented
in VLSI and can control a 16-by-16 switch at 622 megabits per second.
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