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Abstract

Animators frequently choreograph complex motions for multiple objects that interact through
collision and obstruction. In such situations, the use of physically based dynamics to confer vi-
sual realism creates challenging computational problems. Typically forward simulation is well
understood, but the inverse problem of motion synthesis—that of synthesizing motions con-
sistent both with physical law and with the animatorś requirements—is generally tedious and
sometimes intractable. We show how N-body inverse problems can be formulated as optimiza-
tion tasks. We present a simply stated, but combinatorially formidable example that exhibits all
of the essential sources of complexity common to N-body motion synthesis, and show how it
can be solved approximately using heuristic methods based on evolutionary computation. Key
Words and Phrases: Animation, motion synthesis, heuristic methods, stochastic optimization,
evolutionary computation, billiard-ball problems.
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Simulating the dynamics of multibody physical systems is an established and
challenging research topic in computer graphics [1, 2, 3, 10, 11, 18]. However,
even if all the problems of physical modeling, collision detection, and e�cient
computation were to be solved satisfactorily, the resulting algorithms would
still leave tedious tasks in the hands of human animators. The best tools for
computer animation may not be those that just perform forward simulation
well, but those that can also solve the inverse problem of motion synthesis:
automatically �nding trajectories for animated objects that both achieve the
animator's goals and satisfy physical law (thus yielding visual plausibility).

Automatic motion synthesis for character animation has received con-
siderable attention recently [5, 19, 20, 25, 26], but the notion of automatic
motion synthesis for multibody systems, in which nonautonomous objects
interact through collision and obstruction, has been largely ignored. In this
paper we extend the Spacetime Constraints paradigm [26], originally devel-
oped for articulated-�gure animation, to include multibody motion synthe-
sis. The resulting class of problems is very broad. We present one simply
stated problem that exhibits all the essential characteristics of this class, and
describe an e�ective technique for solving it using heuristics based on evolu-
tionary computation. We believe that this work can serve as a starting point
for solving more interesting multibody motion-synthesis problems involving
rigid and deformable 3D objects.

Consider the following motion-synthesis problem, stated in terms of a set of
N-body spacetime constraints. N disks (think of them as air-hockey pucks)
are free to move without friction within a rectangular region of the plane.
All collisions are elastic and frictionless. Gravity is absent. Given initial
(t = 0) positions for the disks, the goal is to �nd initial velocities such
that the disks arrive as close as possible1 to the desired �nal (t = t�nal)

1Whereas the original Witkin-Kass Spacetime Constraints formulation calls for the
solution of an optimization problem with two explicit boundary conditions (the initial
and desired �nal con�gurations), our approach uses only the initial con�guration as a
boundary condition; deviation from the desired �nal con�guration is penalized by a term
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Figure 1: A sample 14-disk problem.

positions. (We employ an L
2, or sum-of-squares cost function to determine

solution quality.) A sample problem is illustrated in Figure 1. In their initial
positions, the disks describe a diamond shape; an arrow connects each disk
to its target location, indicated by a small circle. Collectively, the target
locations describe an `S' shape.

As it has been stated thus far, the problem is neither overconstrained
nor underconstrained; there are 2N control variables and 2N objective vari-
ables. The problem becomes overconstrained if some disks are declared to
be noncueable, i.e., unable to be given nonzero initial velocities. Note that
a noncueable disk can begin to move only if hit by another disk. An over-
constrained problem is shown in Figure 2, in which broken arrows connect
initial and target positions of noncueable disks.

This simple N-disk problem exhibits all of the essential sources of com-
plexity common to N-body spacetime-constrained problems:

� For visual realism, the objects move according to predetermined rules
of motion (here, physical law).2

in the objective function. For this reason, the formal statement of our problem di�ers
from that of Witkin and Kass|nonetheless, our overall goals are essentially identical.

2An alternative approach to motion synthesis for multiple moving bodies, exempli�ed
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Figure 2: An overconstrained 5-disk problem.

� Control is limited. (In this case the locus of control is instantaneous,
at time t = 0. Moreover, in the overconstrained version of the problem,
only some disks are controllable.)

� The objects can interact (here, collide) with each other, precluding any
general attempt to solve for their motions independently.

Analyses of similar problems [4, 14, 15, 21] have shown that simple physi-
cal systems like those considered here can exhibit chaotic behavior, and that
the corresponding optimization problems can have daunting computational
complexity|they may not even be computable! Nevertheless, general in-
tractability results do not imply the di�culty of every instance in a class of
problems: we have developed an algorithm that is capable of approximately
solving nontrivial instances of the N-disk motion-synthesis problem. This
algorithm is described in the next section.

by the DANCER system of Lomas and Todd [16], is to relax the requirement of physically
correct dynamics by blending in the inuence of inverse kinematics.
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Motivating considerations

Our strategy in designing the overall architecture of our algorithm was to
exploit properties of N-disk motion-synthesis that are likely to be common
to other classes of N-body motion synthesis.

One such property is that the search problem, though cast in terms of
continuous variables, is of a discrete character. That is, signi�cantly improv-
ing a candidate solution often requires changing the pattern of disk-disk and
disk-wall collisions, and local gradient information is of little use in choos-
ing from among the possible patterns. This consideration led us to employ
stochastic search, which does not rely on gradient information.

Another feature is that the problem has a limiting case in which it is com-
pletely decomposable: when the disk radii approach zero, the probability of
disk-disk collision becomes negligible and each ball's motion can be synthe-
sized independently. Moreover, this decomposability diminishes gradually as
the disk radii are increased. Among stochastic search techniques, the genetic
algorithm (GA) is best suited for such nearly decomposable problems [12].
Our algorithm is based on a standard form of GA, the steady-state GA [7, 9].

A third feature|the feature that our customization of the GA is tailored
speci�cally to exploit|is that the form of the decomposition is mostly known
in advance. When a problem is said to be decomposable, what is generally
meant is that the objective function is approximately equal to a sum of
terms, each of which depends on a small subset of the independent variables
in a candidate solution. According to dogma [12], a GA implicitly discovers
the mapping between terms and variables. With N-disk motion synthesis,
however, much of the computational e�ort spent discovering this mapping
would be wasted, since it is known in advance that the �nal position of a
disk, and therefore the contribution of that disk to the L2 error function, is
determined largely by the initial velocity imparted to that disk. We exploit
this known information about the problem's structure by introducing the
concept of a trial solution's signature, described below.
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Related work in multiobjective optimization

N-body motion synthesis is an example of multiobjective optimization: sev-
eral goals exist, and success in meeting a subset of the goals does not obviate
the need to meet the remaining goals. In such cases, it is often insu�cient
merely to combine the goals into a single objective function because the op-
timum of the function might be a solution in which only a subset of the goals
are satis�ed. Because of its potential for maintaining multiple candidate
solutions in parallel, the GA has been explored as a basis for solving this
general class of problems.

An early practical attempt at solving these problems in a general manner,
called the Vector-Evaluated GA (VEGA) [23], di�ered from a standard GA
in that each generation of individuals was constructed by pooling equal-sized
subpopulations, each formed by selecting individuals according to a di�erent
one of the objective functions. It was later shown [22] that this strategy is
equivalent to combining the multiple objectives linearly, albeit with weighting
coe�cients that depend on the contents of the population.

A more re�ned strategy for multiobjective optimization was proposed by
Goldberg [9] and later implemented independently by Fonseca and Fleming
[8] and by Horn et al. [13]. It involved the concept of domination: one
solution is said to be dominated by another if the latter is better than the
former in terms of all objectives. Nondomination is closely related to our
concept of subsumption: one solution is said to be subsumed by another if
the set of goals met by the latter is a superset of the goals met by the former.
The strategy proposed by Goldberg also employed the biologically inspired
concept of niching, which is related to our use of \Senate-like" representation,
de�ned below. In niching, the objective function used to evaluate a given
solution is inuenced by the presence of similar solutions in the population.
The biological metaphor is that similar solutions compete for like resources,
which prevents any one species from �lling the population.

Compared to our algorithm, none of the existing approaches completely
exploits the third feature of N-body problems described above, namely that
an approximate 1:1 mapping between the independent variables of the search
and the multiple goals present in the objective function is known in advance.
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Form of the algorithm

The pseudocode below is su�ciently generic to describe both our algorithm
and the standard steady-state GA:

Initialize population of trial solutions
do

Generate a new trial solution
Insert it into the population, possibly
deleting a current member of the population

while the best solution encountered is not bettered in K iterations

Despite super�cial similarities, our algorithm cannot be considered a GA
because it accomplishes in a greedy manner much of what is done in random
fashion by a GA. In particular, our algorithm does not rely for its success on
the validity of the Schema Theorem (the \fundamental theorem" for GAs)
[12]. Many of the evolutionary phenomena that commonly cause a GA to
converge on highly suboptimal solutions are absent in our algorithm.

The di�erences between our algorithm and a GA revolve around the use
of signature information. In the following subsections we de�ne signature
information, then describe in detail how it is used in each of the italicized
operations (initialize, generate, and insert).

Signature information

The signature of a trial solution is a bit vector in which each bit represents
whether or not one of the objects in the multibody motion behaves in accor-
dance with the animator's goals, within some prede�ned margin of error. In
the context of the N-disk problem, let the target neighborhood of a disk be a
circle of radius R centered on the disk's target location.3 A trial solution is
said to be i-acceptable if disk i is in its target neighborhood at time t = t�nal.
Bit i in a solution's signature is set if and only if the solution is i-acceptable.
Also, the order of a solution is the number of bits set in its signature. As we
shall see below, both signature and order are used to index trial solutions.

3In the runs presented here, R was set arbitrarily to 75 distance units. The disks
themselves have radius r = 20 in the 14-disk problem and r = 10 in the 5-disk problem,
and the bounding square is 800� 800.
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Our heuristics are based on the assumption that for any cueable disk i,
the i-acceptability of a solution depends solely on the initial velocity of disk i.
This assumption of independence is correct in the limiting case in which the
disks have in�nitesimal radius and therefore do not interact, but deteriorates
as disk radius increases. For a problem with N in�nitesimal disks, all of
which are cueable, our algorithm is expected to converge very rapidly to a
perfect solution.4 When these conditions are relaxed, the performance of our
algorithm is expected to degrade gracefully.

The initialize operation

A candidate solution is represented by an array of initial velocities, one for
each cueable disk. Two methods for setting the initial velocity of a cueable
disk are common to the initialize and generate procedures. Directed random-

ize chooses an initial velocity such that the cueable disk, were it to travel
without colliding with any other disk, would arrive precisely at its target
location at t = t�nal without colliding with any walls.5 Uniform randomize

chooses an initial velocity such that the cueable disk, were it to travel without
colliding with any other disk, would have a uniform probability of arriving
at any point within the rectangular boundary, possibly after bouncing o� up
to �ve walls.

The initialize procedure is designed to generate a diverse initial pop-
ulation with a roughly equal number of i-acceptable solutions for each i.
Random trial solutions are added to the population, which is initially empty.
Each random trial solution S is generated as follows: for each cueable disk, an
initial velocity is chosen either by directed randomize or by uniform random-

ize, each with equal probability. S is rejected if its order is zero; otherwise,
it is inserted. If, as a result, the population's membership or the number of
solutions with the same signature as S exceeds a prede�ned limit (200 and
10, respectively, in our runs), the worst solution with the same signature as

4We tested this assertion on a variant of the problem in Figure 1 in which each disk
has a very small radius. The algorithm found a perfect solution after just 54 iterations of
the generate-insert loop.

5The notion of directed randomization could be generalized in several ways, (e.g., by
having cueable disks bounce o� one or more walls on the way to their target locations, or
by deliberately aiming cueable disks at noncueable ones in overconstrained problems like
the one in Figure 2), but we have not yet explored generalizations of the basic idea.
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S (possibly S itself) is deleted to make room.6 The process continues until,
for every i, the number of i-acceptable solutions in the population meets or
exceeds a prede�ned limit (5, in our runs)|or, if this diversity criterion is
never met, after a predetermined number of iterations.7

The generate operation

The generate procedure builds a new trial solution by executing one of the
following four operations, each with equal probability: creep, directed ran-

domize, uniform randomize, or crossover. The �rst three operations employ
signature information solely to encourage even coverage of the search space.
An existing population member (called the parent) is chosen such that every
order o (1 � o � N) that is represented in the population has an equal
probability of being chosen, and every signature of order o that is repre-
sented is as likely to be chosen as any other signature of order o. Thus,
minority high-order signatures are given \Senate-like" representation during
parent selection.8 To generate the new trial solution (called the child), the
initial velocity of one randomly selected cueable disk is perturbed slightly (in
the case of creep), subjected to directed randomize, or subjected to uniform

randomize.
The crossover operation, one of the hallmarks of a GA, requires the selec-

tion of two parents. The �rst is chosen as just described. Signatures are used
in a slightly di�erent manner to choose the second parent: a \Senate-like"
distribution is again used, except that the only solutions with a chance of

6For this reason, the limit on the population's membership (200 in this case) should be
set to a number greater than the product of the limit on the number of solutions with a
given signature (10 in this case) and the number of bits in a signature (14 in the case of
the 14-disk problem). Otherwise, there can be some i for which no i-acceptable solution
is found before the population-membership limit is violated. Thereafter, all i-acceptable
solutions created by the initialize operation will be rejected.

7In the two example problems illustrated in Figures 1 and 2, the diversity criterion was
satis�ed quickly in the initialization process, which produced average initial population
sizes of 58.4 and 64.4, respectively.

8In the US Senate, each state is allocated two senators, regardless of population. In
the US House of Representatives, the number of congressmen allocated to each state is
proportional to population. With a \House-like" distribution, underrepresented solutions
(for example, the only i-acceptable solution for a given i or the only nearly perfect solution)
would rarely be selected as parents.
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being selected are those with signature s2 such that the number of bits set
in s1js2 (the \logical or" of s1 and s2) is the maximum possible. Signatures
are used a third time in combining the two parents to \genetically engineer"
a child: the initial velocity of cueable disk i is taken from the parent that is
i-acceptable if exactly one such parent exists; otherwise, from either parent
at random.

The insert operation

In the last procedure to consider, insert, signature information is used to
avoid the deleterious proliferation of identical or nearly identical trial so-
lutions, which is common in GAs. The signature of a child produced by
generate is compared with the signature(s) of its parent(s). If the child's
signature is the same as that of exactly one parent, the child replaces that
parent, unless the parent is the best solution encountered so far and the
child is not an improvement. (This is the strategy of elitism [7]: the best
solution in the population is guaranteed not to be deleted.) If the child is a
product of crossover and has the same signature as both parents, then the
same procedure is used, except that one of the parents, selected at random,
is considered for displacement.

If a parent is not displaced, either because of elitism or because the child's
signature di�ers from its parent's (or parents'), the child is inserted into
the population, replacing the worst solution with the same signature if the
number of solutions with that signature exceeds a speci�ed limit, just as in
the initialize procedure.

If the number of solutions with the same signature is below the limit,
then the insertion of the child can cause the overall population size to grow.
Because the number of distinct signatures is 2N , the potential for population
growth is great, and this can be harmful: the bigger the population, the less
time spent considering the most promising trial solutions. Some mechanism
is therefore needed to limit this growth. Our solution is to delete every
solution with the lowest-order signature that is subsumed by higher-order
solutions, where we de�ne subsumption to mean that every bit i that is set
in the solution's signature is also set in some higher-order solution. (The only
exception to this rule is that the all solutions with the same signature as the
best solution in the population are exempt from deletion: this is another
manifestation of elitism.) This culling strategy is triggered whenever the
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population size exceeds the prede�ned limit.

The two test problems

For the problem depicted in Figure 1, our algorithm found initial velocities
that lead to the disk trajectories shown in Figure 3. The disks are too large for
all to move in straight lines from initial to target positions without colliding
and thus disrupting the motion,9 but the algorithm �nds a collision-free
motion after considering fewer than 106 trial solutions. Some disks bounce o�
three walls in the solution shown. To give some indication of how di�cult this
particular problem is, we can derive a crude lower bound on the size of the
search space: a standard mathematical trick involving image targets reveals
that in the absence of collisions between disks, the number of candidate
solutions in which disks bounce against at most two walls is greater than 914,
or 2� 1013.

Results for the overconstrained problem in Figure 2, in which disk-disk
collisions must be exploited to achieve satisfactory results, are depicted in
Figure 4. This solution is also the best found after consideration of fewer
than 106 trial solutions.

The cost curves in Figures 5 and 6 illustrate the typical progress of the
GA over time by showing the cost of the best solution encountered so far
as a function of the number of trial solutions considered. An initial phase
of rapid improvement is followed by long periods of very slow improvement
that are punctuated by sharp, discrete decreases in cost. The changes in
the nature and rate of progress over time suggest that the search algorithm
might bene�t from also being changed over time (e.g., by increasing the use
of creep as the generate operation in the latter half of the process), but this
is an idea we have not yet pursued.

9Recall that no disk can be inuenced after time t = 0. If the timing of the initial
impulses could be varied, the two test problems considered here would be somewhat easier.
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Figure 5: Six cost curves for the 14-disk problem.
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Figure 6: Six cost curves for the 5-disk problem.
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Algorithm variants

Although the di�erences between our algorithm and a more standard GA
center around a common simple theme, in terms of implementation our al-
gorithm is signi�cantly more elaborate than a GA. It is therefore reasonable
to ask whether the added complication is of any signi�cant practical value.
To test the hypothesis that our algorithm is unnecessarily intricate, we con-
cocted seven simpler variants, each of which disables one or more signi�cant
aspects of the original algorithm. The seven derivative algorithms result from
the following simpli�cations:

� Uniform Probability for Parent Selection (B): In the generate opera-
tion, all trial solutions in the population are made equally likely to
be selected as parents, instead of the signature-based selection scheme
described above.

� No Crossover Operation (C): Crossover is removed as one of the pos-
sible generate operations, leaving only creep, uniform randomize, and
directed randomize.

� No \Genetically Engineered" Crossover (D): Crossover is simpli�ed by
selecting velocities for the child from either parent randomly, instead of
considering signature information to choose from the parent with the
apparently better velocity value.

� No Signature Information (E): All aspects of the signature idea are
removed, which can be achieved easily by setting the radius R of the
target neighborhoods to 800, the width of the bounding square, in the
original algorithm. (This variant has no intrinsic mechanism to limit
the size of the initial population, so to facilitate comparisons with the
original algorithm and the other variants, an initial population size of
60 was used.)

� No Culling of Subsumed Solutions (F): Population growth is curtailed
in the insert operation by simply removing the worst trial solution in
the population whenever a new solution is inserted.

� No Elitism (G): No provision is made to ensure that the best solution
seen so far cannot be deleted from the population.
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Figure 7: Comparative performance of various simpli�ed algorithms for the
14-disk case. Algorithm A is the original algorithm; variants B{H are de-
scribed in the text. Algorithm performance is stated in terms of the L

2

metric. The chart shows the average, best, and worst solutions found in �ve
runs of 400,000 trial solutions each.

� No Directed Randomization (H): The initialize and generate operations
cannot use directed randomize.

The issue of algorithm simpli�cation is considered in more detail elsewhere
[24], but Figures 7 and 8 show that none of these simpli�cations can be em-
ployed without compromising performance on at least one of the two prob-
lems considered here.

Extending the Spacetime Constraints paradigm of Witkin and Kass [26] to
physical systems comprising multiple colliding bodies requires new inverse
techniques to complement existing forward-simulation algorithms. We have
considered one class of such problems, and demonstrated an e�ective heuristic
technique, based on evolutionary computation, for this class. Our technique,
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Figure 8: Comparative performance of various simpli�ed algorithms for the
5-disk case.

which is closely related to the GA, di�ers from it in its use of signature in-
formation. In particular, our algorithm does not rely for its success on the
so-called Schema Theorem [12], which is considered by many to be funda-
mental to the operation of a GA. Unlike a GA, our algorithm is expected to
converge very rapidly to a perfect solution in the limiting case in which the
moving bodies cannot interact. We speculate that variants of our algorithm
may be applicable to other N-body problems in which (a) some degree of
independence among the moving objects can be expected, and (b) methods
for solving the corresponding one-body motion-synthesis problem exist.

As a strawman proposal, we propose two 3D N-body motion-synthesis
problems as future challenges:

1. 10-pin bowling: The goal is to produce an animation in which a bowling
ball knocks down a speci�ed subset of the 10 pins arranged in the
standard format.

2. Multivehicle car crash: Several moving vehicles participate in a crash
in which the initial velocity and fate of each vehicle (i.e., whether and
how it tumbles, where it ends up, how many other vehicles it hits, etc.)
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is determined by the animation script.

Aside from the consequences of requiring more complex physical simulation
in 3D, these problems di�er from those considered in this paper in two sig-
ni�cant ways: the bowling problem has only one set of control variables,
those relating to the bowling ball; and cars must be modeled as partially
autonomous vehicles to achieve plausible e�ects. Both of these character-
istics invalidate some of the assumptions we have made in developing our
algorithm (e.g., crossover cannot be applied when there is only one velocity
vector|for the bowling ball|in a trial solution, and autonomic capabili-
ties are not considered by the current algorithm). However, we believe that
some of the ideas described here can be applied fruitfully to problems of this
kind,10 and we are optimistic that general N-body motion synthesis can be
made practically useful in the future.

10Further supporting evidence for this belief is provided by recent work in assembly
automation. \Shake-and-Make" assembly (more recently termed \mass aggregate assem-
bly") [17] is a technique for assembling objects by agitating the parts: the parts are
literally shaken together until assembly occurs! The corresponding optimization problem
is to shape and position the parts so that the agitation will achieve the desired assembly
most of the time. Chapman [6] has shown how a simple problem of this type, that of
designing the shape of a feeder track, can be solved using a genetic algorithm.
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