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Abstract

Tree insertion grammar (TIG) is a tree-based formalism that makes use of tree substi-
tution and tree adjunction. TIG is related to tree adjoining grammar. However, the
adjunction permitted in TIG is su�ciently restricted that TIGs only derive context
free languages and TIGs have the same cubic-time worst-case complexity bounds for
recognition and parsing as context free grammars. An e�cient Earley-style parser for
TIGs is presented.

Any context free grammar (CFG) can be converted into a lexicalized tree inser-
tion grammar (LTIG) that generates the same trees. A constructive procedure is pre-
sented for converting a CFG into a left anchored (i.e., word initial) LTIG that preserves
ambiguity and generates the same trees. The LTIG created can be represented very
compactly by taking advantage of sharing between the elementary trees in it. Other
methods for converting CFGs into a left anchored form, e.g., the methods of Greibach
and Rosenkrantz, do not preserve the trees produced and result in very large output
grammars.

For the purpose of experimental evaluation, the LTIG lexicalization procedure was
applied to eight di�erent CFGs for subsets of English. The LTIGs created were smaller
than the original CFGs. Using an implementation of the Earley-style TIG parser that
was specialized for left anchored LTIGs, it was possible to parse more quickly with these
LTIGs than with the original CFGs.
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1 Introduction

Most current linguistic theories give lexical accounts of several phenomena that used to be
considered purely syntactic.1 The information put in the lexicon is thereby increased in both
amount and complexity.

In this paper, we study the problem of lexicalizing context-free grammars and show that it
enables faster processing. In previous attempts to take advantage of lexicalization, a variety of
lexicalization procedures have been developed that convert context free grammars (CFGs) into
equivalent lexicalized grammars. However, these procedures typically su�er from one or more
of the following problems.

� Lexicalization procedures such as those developed by Greibach [9] and Rosenkrantz [19]
often produce very large output grammars|so large that they can be awkward or even
impossible to parse with.

� Procedures that convert CFGs into lexicalized CFGs provide only a weak lexicalization,
because while they preserve the strings derived, they do not preserve the trees derived.
Parsing with the resulting grammar can be fast, but it does not produce the right trees.

� Strong lexicalization that preserves the trees derived is possible using context sensitive
formalisms such as tree adjoining grammar (TAG) [13, 20]. However, these context sensi-
tive formalisms entail much larger computation costs than CFGs|O(n6)-time in the case
of TAG, instead of O(n3) for CFG.

Tree insertion grammar (TIG) is a compromise between CFG and TAG that combines the
e�ciency of the former with the strong lexicalizing power of the latter. As discussed in Section 2,
TIG is the same as TAG except that adjunction is restricted so that it is no longer a context
sensitive operation.

Like CFG, TIG can be parsed in O(jGjn3)-time. Section 3 presents an Earley-style parser
for TIG that maintains the valid pre�x property.

Section 4 presents a procedure that converts CFGs into lexicalized tree insertion grammars
(LTIGs) generating the same trees. The procedure produces a left anchored LTIG|one where
for each elementary tree, the �rst element that must be matched against the input is a lexical
item.

Section 5 presents a number of experiments evaluating TIG. Section 5.1 shows that the
grammars generated by the LTIG procedure can be represented very compactly. In the exper-
iments performed, the LTIG grammars are smaller than the CFGs they are generated from.
Section 5.2 investigates the practical value of the grammars created by the LTIG procedure as a
vehicle for parsing CFGs. It reports a number of experiments comparing a standard Earley-style
parser for CFGs with the Earley-style TIG parser of Section 3, adapted to take advantage of
the left anchored nature of the grammars created by the LTIG procedure. In these experiments
parsing using LTIG is typically 5 to 10 times faster.

The original motivation behind the development of TIG was the intuition that the natural-
language grammars currently being developed using TAG do not make full use of the capabilities
provided by TAG. This suggests a di�erent use for TIG|as a (partial) substitute for TAG, see
Section 6.

1Some of the linguistic formalisms illustrating the increased use of lexical information are, lexical rules in LFG
[14], GPSG [7], HPSG [17], Combinatory Categorial Grammars [28], Karttunen's version of Categorial Grammar
[15], some versions of GB theory [4], and Lexicon-Grammars [10].
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2 Schabes & Waters

2 Tree Insertion Grammar

Tree insertion grammar (TIG) is a tree generating system that is a restricted variant of tree-
adjoining grammar (TAG) [13, 20]. As in TAG, a TIG grammar consists of two sets of trees:
initial trees, which are combined by substitution and auxiliary trees, which are combined which
each other and the initial trees by adjunction. However, both the auxiliary trees and the
adjunction allowed are di�erent than in TAG.

De�nition 1 (TIG) A tree insertion grammar (TIG) is a �ve-tuple (�;NT; I;A;S), where �
is a set of terminal symbols, NT is a set of nonterminal symbols, I is a �nite set of �nite initial
trees, A is a �nite set of �nite auxiliary trees, and S is a distinguished nonterminal symbol.
The set I [A is referred to as the elementary trees.

In each initial tree the root and interior|i.e., non-root, non-leaf|nodes are labeled by
nonterminal symbols. The nodes on the frontier are labeled with terminal symbols, nonterminal
symbols, and the empty string ("). The nonterminal symbols on the frontier are marked for
substitution. By convention, substitutability is indicated in diagrams by using a down arrow
(#). The root of at least one elementary initial tree must be labeled S.

In each auxiliary tree the root and interior nodes are labeled by nonterminal symbols.
The nodes on the frontier are labeled with terminal symbols, nonterminal symbols, and the
empty string ("). The nonterminal symbols on the frontier of an auxiliary tree are marked for
substitution, except that exactly one nonterminal frontier node is marked as the foot. The foot
must be labeled with the same label as the root. By convention, the foot of an auxiliary tree is
indicated in diagrams by using an asterisk (�). The path from the root of an auxiliary tree to
the foot is called the spine.

Auxiliary trees in which every nonempty frontier node is to the left of the foot are called left

auxiliary trees. Similarly, auxiliary trees in which every nonempty frontier node is to the right
of the foot are called right auxiliary trees. Other auxiliary trees are called wrapping auxiliary
trees.2

The root of each elementary tree must have at least one child. Frontier nodes labeled with "
are referred to as empty. If all the frontier nodes of an initial tree are empty, the tree is referred
to as empty. If all the frontier nodes other than the foot of an auxiliary tree are empty, the tree
is referred to as empty.

The operations of substitution and adjunction are discussed in detail below. Substitution
replaces a node marked for substitution with an initial tree. Adjunction replaces a node with
an auxiliary tree.

To this point, the de�nition of a TIG is essentially identical to the de�nition of a TAG.
However, the following di�ers from the de�nition of TAG.

TIG does not allow there to be any elementary wrapping auxiliary trees or elementary empty
auxiliary trees. This ensures that every elementary auxiliary tree will be uniquely either a left
auxiliary tree or a right auxiliary tree. Wrapping auxiliary trees are neither. Empty auxiliary
trees are both and cause in�nite ambiguity.

TIG does not allow a left (right) auxiliary tree to be adjoined on any node that is on the
spine of a right (left) auxiliary tree. Further, no adjunction whatever is permitted on a node �
that is to the right (left) of the spine of an elementary left (right) auxiliary tree T . Note that
for T to be a left (right) auxiliary tree, every frontier node subsumed by � must be labeled
with ".

2In [23] these three kinds of auxiliary trees are referred to di�erently as right recursive, left recursive, and
centrally recursive, respectively.
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Figure 1: Example TIG trees.

TIG allows arbitrarily many simultaneous adjunctions on a single node in a manner similar
to the alternative TAG derivation de�ned in [26]. This is speci�ed in terms of two sequences,
one of left auxiliary trees and the other of right auxiliary trees, which specify the order the
strings corresponding to the trees are combined.

A TIG derivation starts with an initial tree rooted at S. This tree is repeatedly extended
using substitution and adjunction. A derivation is complete when every frontier node in the
tree(s) derived is labeled with a terminal symbol. By means of adjunction, complete derivations
can be extended to bigger complete derivations.

As in TAG, but in contrast to CFG, there is an important di�erence in TIG between a
derivation and the tree derived. By means of simultaneous adjunction, there can be several
trees created by a single derivation. In addition, there can be several di�erent derivations for
the same tree.

To eliminate useless ambiguity in derivations, TIG prohibits adjunction: at nodes marked
for substitution, because the same trees can be created by adjoining on the roots of the trees
substituted at these nodes; at foot nodes of auxiliary trees, because the same trees can be
created by simultaneous adjunction on the nodes the auxiliary trees are adjoined on; and at
the roots of auxiliary trees, because the same trees can be created by simultaneous adjunction
on the nodes the auxiliary trees are adjoined on.

Figure 1, shows �ve elementary trees that might appear in a TIG for English. The trees
containing `boy' and `saw' are initial trees. The remainder are auxiliary trees.

As illustrated in Figure 2, substitution inserts an initial tree T in place of a frontier node �
that has the same label as the root of T and is marked for substitution.

Adjunction inserts a copy of an auxiliary tree T into another tree at a node � that has the
same label as the root (and therefore foot) of T . In particular, � is replaced by a copy of T and
the foot of the copy of T is replaced by the subtree rooted at �.

The adjunction of a left auxiliary tree is referred to as left adjunction. This is illustrated
in Figure 3. The adjunction of a right auxiliary tree is referred to as right adjunction (see
Figure 4).

A

A A

Figure 2: Substitution.
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Figure 4: Right adjunction.
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Figure 5: Simultaneous left and right adjunction.
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Figure 6: Wrapping adjunction.
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Tree Insertion Grammar 5

Simultaneous adjunction is fundamentally ambiguous in nature and typically results in the
creation of several di�erent trees. The order in the sequences of left and right auxiliary trees
�xes the order of the strings being combined. However, unless one of the sequences is empty,
variability is possible in the trees that can be produced. The TIG formalism speci�es that every
tree is produced that is consistent with the speci�ed order.

Figure 5 illustrates the simultaneous adjunction of one left and one right auxiliary tree on a
node. The string corresponding to the left auxiliary tree must precede the node and the string
corresponding to the right auxiliary tree must follow it. However, two di�erent trees can be
derived|one where the left auxiliary tree is on top and one where the right auxiliary tree is on
top. Similarly, the simultaneous adjunction of two left and two right auxiliary trees leads to 6
derived trees.

The adjunction of a wrapping auxiliary tree is referred to as wrapping adjunction. This is
illustrated in Figure 6. The key force of the restrictions applied to TIG in comparison with
TAG are that they prevent wrapping adjunction from occurring, by preventing the creation of
wrapping auxiliary trees.3

Wrapping adjunction is context sensitive in nature because two strings that are mutually
constrained by being in the same auxiliary tree are wrapped around another string. In contrast,
every operation allowed by a TIG inserts a string into another string. (Simultaneous adjunction
merely speci�es multiple independent insertions. Simultaneous left and right adjunction is not
an instance of wrapping, because TIG does not allow there to be any constraints between the
adjoinability of the trees in question.)

There are many ways that the TIG formalism could be extended. First, adjoining constraints
could be used to prohibit the adjunction of particular auxiliary trees (or all auxiliary trees) at
a node.

Second, one can easily imagine variants of TIG where simultaneous adjunction is more
limited. One could allow only one canonical derived tree. One could allow at most one left
auxiliary tree and one right auxiliary tree as we did in [23]. One could forbid multiple adjunction
altogether. We have chosen unlimited simultaneous adjunction here primarily because it allows
more e�cient parsing.

Third, one can introduce stochastic parameters controlling the probabilities with which
particular substitutions and adjunctions occur (see [24]).

Fourth, and of particular importance in the current paper, one can require that a TIG be
lexicalized.

De�nition 2 (LTIG) A lexicalized tree insertion grammar (LTIG)4 (�;NT; I;A; S) is a TIG
where every elementary tree in I [ A is lexicalized. A tree is lexicalized if at least one frontier
node is labeled with a terminal symbol.

An LTIG is said to be left anchored if every elementary tree is left anchored. An elementary
TIG tree is left anchored if the �rst nonempty frontier element other than the foot, if any, is a
lexical item. All the trees in Figure 1 are lexicalized; however, only the ones containing seems,
pretty, and smoothly are left anchored.

3Using a simple case by case analysis, one can show that given a TIG, it is not possible to create wrapping
auxiliary trees. A proof of this fact is presented in Appendix A.

4In [23] a formalism almost identical to LTIG is referred to as lexicalized context free grammar (LCFG). A
di�erent name is used here to highlight the importance of the non-lexicalized formalism, which was not given a
name in [23].
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6 Schabes & Waters

2.1 CFG, TIG and TAG

In this section we briey compare CFG, TIG and TAG, noting that TIG shares a number of
properties with CFG on one hand and TAG on the other.

To start with, note that any CFG can be trivially converted into a TIG that derives the
same trees by converting each rule R into a single-level initial tree. If the right hand side of R
is empty, the initial tree created has a single frontier element labeled with ". Otherwise, the
elements of the right hand side of R become the labels on the frontier of the initial tree, with
the nonterminals marked for substitution.

Similarly, any TIG that does not make use of adjoining constraints can be easily converted
into a TAG that derives the same trees; however, adjoining constraints may have to be used in
the TAG. The trivial nature of the conversion can be seen by considering the three di�erences
between TIG and TAG.

First, TIG prohibits elementary wrapping auxiliary trees. From the perspective of this
di�erence, a TIG is trivially a TAG without the need for any alterations.

Second, TIG prohibits adjunction on the roots of auxiliary trees and allows simultaneous
adjunction while TAG allows adjunction on the roots of auxiliary trees and prohibits simulta-
neous adjunction. From the perspective of this di�erence in approach, a TIG is also trivially
a TAG without alteration. To see this, consider the following. Suppose that there are a set of
auxiliary trees T that are allowed to adjoin on a node � in a TIG. Simultaneous adjunction in
TIG allows these auxiliary trees to be chained together in every possible way root-to-foot on �.
The same is true in a TAG where the trees in T are allowed to adjoin on each other's roots.

Third, TIG imposes a number of detailed restrictions on the interaction of left and right
auxiliary trees. To convert a TIG into a TAG deriving the same trees and no more, one has to
capture these restrictions. In general, this requires the use of adjoining constraints to prohibit
the forbidden adjunctions.

It should be noted that if a TIG makes use of adjoining constraints, then the conversion of
the TIG to a TAG can become signi�cantly more complex or even impossible, depending on
the details of exactly how the adjoining constraints are allowed to act in the TIG and TAG.

TIG generates context-free languages. Like CFG, TIG generates context-free languages.
In contrast, TAG generates so called tree adjoining languages (TALs) [12].

The fact that any context-free language can be generated by a TIG follows from the fact
that any CFG can be converted into a TIG. The fact that TIGs can only generate context-free
languages follows from the fact that any TIG can be converted into a CFG generating the same
language as shown in the following theorem.

Theorem 1 If G = (�; NT;I; A; S) is a TIG then there is a CFG5 G0 = (�; NT 0; P; S) that
generates the same string set.

Proof: The key step in converting a TIG into a CFG is eliminating the auxiliary trees.
Given only initial trees, the �nal conversion to a CFG is trivial.

Step 1: For each nonterminal Ai in NT , add two more nonterminals Yi and Zi. This
yields the new nonterminal set NT 0.

Step 2: For each nonterminal Ai, include the following rules in P : Yi ! " and Zi ! ".

5As usual, a context free grammar (CFG) G is a four-tuple (�;NT;P; S) where � is a set of terminal symbols,
NT is a set of nonterminal symbols, P is a �nite set of �nite production rules that rewrite nonterminal symbols
to, possibly empty, strings of terminal and nonterminal symbols, and S is a distinguished nonterminal symbol
that is the start symbol of any derivation.
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Tree Insertion Grammar 7

Step 3: Alter every node � in every elementary tree in I and A as follows: Let Ai be the
label of �. If and only if left adjunction is possible at �, add a new leftmost child of �
labeled Yi and mark it for substitution. If and only if right adjunction is possible at �,
add a new rightmost child of � labeled Zi and mark it for substitution.

Step 4: Convert every auxiliary tree t in A into an initial tree as follows: Let Ai be the
label of the root � of t. If t is a left auxiliary tree, add a new root labeled Yi with two
children: � on the left and on the right, a node labeled Yi and marked for substitution.
Otherwise add a new root labeled Zi with two children: � on the left and on the right,
a node labeled Zi and marked for substitution. Relabel the foot of t with ", turning t
into an initial tree.

Step 5: Every elementary tree t is now an initial tree. Each one is converted into a rule
in P as follows. The label of the root of t becomes the left hand side of R. The labels
on the frontier of t with any instances of " omitted become the right hand side of R.

Every derivation in G maps directly to a derivation in G0 that generates the same
string. Substitution steps map directly. Adjunctions are converted into substitutions via
the new non-terminals Yi and Zi. The new roots and their rightmost children labeled
Yi and Zi created in Step 3 allow arbitrarily many simultaneous adjunctions at a node.
The right linear ordering inherent in these structures encodes the ordering information
speci�ed for a simultaneous adjunction. 2

It should be noted that while G0 generates the same strings as G, it does not generate the
same trees. It is interesting to consider two examples of this.

First, simultaneous adjunction can lead to the creation of many di�erent trees. In contrast,
the rules in Step 2 generate only one tree for a simultaneous adjunction. This works because
all the trees created by simultaneous adjunction correspond to the same string, and the rules
in Step 2 generate this same string.

Second, the substitutions in G0 that correspond to adjunctions in G create trees that are
very di�erent from the trees generated by G. For instance, if a left auxiliary tree T has structure
to the right of its spine, this structure ends up on the left rather than the right of the node
\adjoined on" in G0. However, this does not alter the strings that are generated, because by
the de�nition of TIG the structure to the right of the spine of T must be entirely empty.

The construction in the theorem above does not work to convert TAGs into CFGs, because
the construction involving Yi and Zi does not work for wrapping auxiliary trees. The reason
for this is that a wrapping auxiliary tree has nonempty structure on both the left and the right
of its spine.

TIG generates context-free path sets. The path set of a grammar is the set of all paths
from root to frontier in the trees generated by the grammar. The path set is a set of strings
over � [NT [ f"gg. CFGs have path sets that are regular languages (RLs) [29]. In contrast,
TAGs have path sets that are context-free languages (CFLs) [33].

The fact that the path sets generated by a TIG cannot be more complex than context-free
languages follows from the fact that TIGs can be converted into TAGs generating the same
trees. The fact that TIGs can generate path sets more complex than regular languages is
shown by the following example.

Consider the TIG in Figure 7. The path set L generated by this grammar contains a variety
of paths including Sx (from the elementary initial tree), SASBAx and SAa (from adjoining
the elementary auxiliary tree once on the initial tree), and so on. By relying on the fact that
the intersection of two regular languages must be regular, it is easy to show that L is not a
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S

x

S

A

S

B

S*

a

Figure 7: A TIG with a context-free path set.

regular language. In particular, consider:

L \ fSAg�SfBSg�x = fSAgnSfBSgnx

This intersection corresponds to all the paths from root to x in the trees that are generated
by recursively embedding the elementary auxiliary tree in Figure 7 into the middle of its spine.
Since this intersection is not a regular language, L cannot be a regular language.
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3 An Earley-Style Cubic-Time Parser For TIG

Since TIG is a restricted case of tree-adjoining grammar (TAG), standard O(n6)-time TAG
parsers [16, 21, 31, 32] can be used for parsing TIG. Further, they can be easily optimized
to require at most O(n4)-time when applied to a TIG. However, this still does not take full
advantage of the context-freeness of TIG.

A simple O(n3)-time bottom-up recognizer for TIG in the style of the CKY parser for CFG
can be straightforwardly constructed following the approach shown in [23].

As shown below, one can obtain a more e�cient left-to-right parsing algorithm for TIG that
maintains the valid pre�x property and requires O(n3) time in the worst case, by combining
top-down prediction as in Earley's algorithm for parsing CFGs [6] with bottom-up recognition.
The algorithm is a general recognizer for TIGs, which requires no condition on the grammar.
This parser is the more remarkable because for TAG the best parser known that maintains the
valid pre�x property requires in the worst case more time than parsers that do not maintain
the valid pre�x property (O(n9)-time versus O(n6)) [21].

Notation. Suppose that G = (�; NT; I; A; S) is a TIG and that a1 � � �an is an input string.
The Greek letters �, �, and � are used to designate nodes in elementary trees. Subscripts are
used to indicate the label on a node, e.g., �X . Superscripts are sometimes used to distinguish
between nodes.

A layer of an elementary tree is represented textually in a style similar to a production
rule, e.g., �X!�Y �Z . For instance, the tree in Figure 8 is represented in terms of four layer
productions as shown on the right of the �gure.

The predicate Init(�X) is true if and only if �X is the root of an initial tree. The predicate
LeftAux(�X) is true if and only if �X is the root of an elementary left auxiliary tree. The
predicate RightAux(�X) is true if and only if �X is the root of an elementary right auxiliary
tree. The predicate Subst(�X) is true if and only if �X is marked for substitution. The predicate
Foot(�X) is true if and only if �X is the foot of an auxiliary tree.

Chart states. The Earley-style TIG parser collects states into a set called the chart, C. A
state is a 3-tuple, [p; i; j] where: p is a position in an elementary tree as described below; and
0 � i � j � n are integers indicating a span of the input string.

During parsing, elementary trees are traversed in a top-down, left-to-right manner that
visits the frontier nodes in left-to-right order, see Figure 9. Positions, which are depicted as
dots in Figure 9, are used to represent the state of this traversal.

S

A

a

B

A

D↓ b

S*

�1S!�2A �
4
B

�2A!�3a

�4B!�5A �
8
S

�5A!�6D �7b

LeftAux(�1S)

Subst(�6D)

Foot(�8S)

Figure 8: An auxiliary tree and its textual representation.
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S

A B

A S*a

D b

• • •

• • •

• • •

• •

Figure 9: Left-to-right tree traversal

In a manner analogous to dotted rules for CFG as de�ned by Earley [5], being at a particular
position with regard to a particular node, divides the subtree rooted at the node into two parts:
a left context consisting of children that have been already been matched and a right context

that still needs to be matched.
Positions are represented by placing a dot in the production for the corresponding layer.

For example, the fourth position reached in Figure 9 is represented as �1S!�2A��
4
B . In dotted

layer productions, the Greek letters �, �, and  are used to represent sequences of zero or more
nodes.

The indices i; j record the portion of the input string that is spanned by the left context.
The fact that TIG forbids wrapping auxiliary trees guarantees that a pair of indices is always
su�cient for representing a left context. As traversal proceeds, the left context grows larger
and larger.

Correctness condition. Given an input string a1 � � �an, for every node �X in every elemen-
tary tree in G, the Earley-style TIG parsing algorithm guarantees that:

� [�X!���; i; j] 2 C if and only if there is some derivation in G of some string beginning
with a1 � � �aj where ai+1 � � �aj is spanned by:

{ A sequence of zero or more left auxiliary trees simultaneously adjoined on �X plus

{ The children of �X corresponding to � plus

{ if � = ", zero or more right auxiliary trees simultaneously adjoined on �X .

The algorithm. Figure 10 depicts the Earley-style TIG parsing algorithm as a set of inference
rules. Using the deductive parser developed by Shieber, Schabes, and Pereira [27], we were able
to experiment with the TIG parser represented directly in this form (see Section 5).

The �rst rule (1) initializes the chart by adding all states of the form [�S!��; 0; 0], where
�S is the root of an initial tree. The initial states encode the fact that any valid derivation
must start from an initial tree whose root is labeled S.

The addition of a new state to the chart can trigger the addition of other states as speci�ed
by the inference rules in Figure 10. Computation proceeds with the introduction of more and
more states until no more inferences are possible. The last rule (13) speci�es that the input is
recognized if and only if the �nal chart contains a state of the form [�S!��; 0; n], where �S is
the root of an initial tree.
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Tree Insertion Grammar 11

Initialization

Init(�S) ` [�S!��; 0; 0] (1)

Left Adjunction

[�A!��; i; j] ^ LeftAux(�A) ` [�A!�; j;j] (2)

[�A!��; i; j]^ [�A!�; j; k] ^ LeftAux(�A) ` [�A!��; i; k] (3)

Scanning

[�A!���a �; i; j] ^ a = aj+1 ` [�A!� �a��; i; j+1] (4)

[�A!���a �; i; j] ^ a = " ` [�A!� �a��; i; j] (5)

[�A!���B �; i; j]^ Foot(�B) ` [�A!� �B��; i; j] (6)

Substitution

[�A!���B �; i; j]^ Subst(�B) ^ Init(�B) ` [�B!�; j;j] (7)

[�A!���B �; i; j]^ [�B!�; j; k]^ Subst(�B) ^ Init(�B) ` [�A!� �B��; i; k] (8)

Subtree Traversal

[�A!���B �; i; j] ` [�B!�; j;j] (9)

[�A!���B �; i; j]^ [�B!�; j; k] ` [�A!� �B��; i; k] (10)

Right Adjunction

[�A!��; i; j] ^ RightAux(�A) ` [�A!�; j;j] (11)

[�A!��; i; j]^ [�A!�; j; k]^ RightAux(�A) ` [�A!��; i; k] (12)

Final Recognition

[�S!��; 0; n]^ Init(�S) ` Acceptance (13)

Figure 10: An Earley-style recognizer for TIG, expressed using inference rules.

The scanning, and substitution rules recognize terminal symbols and substitutions of trees.
They are similar to the steps found in Earley's parser for CFGs [6].

The scanning rules match fringe nodes against the input string. Rule 4, recognizes the
presence of a terminal symbol in the input string. Rules (5 & 6) encode the fact that one can
skip over nodes label with " and foot nodes without having to match anything.

The substitution rules are triggered by states of the form [�A!���B �; i; j] where �B is
a node at which substitution can occur. Rule (7) predicts a substitution. It does this top
down only if an appropriate pre�x string has been found. Rule (8) recognizes a completed
substitution. It is a bottom-up step that concatenates the boundaries of a fully recognized
initial tree with a partially recognized tree.

The subtree traversal rules control the recognition of subtrees. Rule (9) predicts a subtree
if and only if the previous siblings have already been recognized. Rule (10) completes the
recognition of a subtree.

Rules (9 & 10) are closely analogous to rules (7 & 8). They can be looked at as recognizing
a subtree that is required to be substituted at a particular spot as opposed to a subtree that
may be substituted at a particular spot.

The left and right adjunction rules recognize the adjunction of left and right auxiliary trees.
The left adjunction rules are triggered by states of the form [�A!��; i; j]. Rule (2) predicts
the presence of a left auxiliary tree, if and only if a node that the auxiliary tree can adjoin on
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12 Schabes & Waters

has already been predicted. Rule (3) supports the bottom-up recognition of the adjunction of
a left auxiliary tree.

The fact that left adjunction can occur any number of times (including zero) is captured by
the fact that states of the form [�A!��; i; j] represent both situations where left adjunction
can occur and situations where it has occurred.

The right adjunction Rules (11 & 12) are analogous to the left adjunction rules, but are
triggered by states of the form [�A!��; i; j].

As written in Figure 10, the algorithm is a recognizer. However, it can be straightforwardly
converted to a parser by keeping track of the reasons why states are added to the chart.
Derivations (and therefore trees) can then be retrieved from the chart in linear time.

For the sake of simplicity, it was assumed in the discussion above that there are no adjunction
constraints. However, the algorithm can easily be extended to handle such constraints.

Computational bounds. The algorithm in Figure 10 requires space O(jGjn2) in the worst
case. In this equation n is the length of the input string and jGj is the size of the grammar
G. For the TIG parser, jGj is computed as the sum over all the non-leaf nodes � in all the
elementary trees in G of: one plus the number of children of �. The correctness of this space
bound can be seen by observing that there are only jGjn2 possible chart states [�X!���; i; j].

The algorithm takes O(jGj2n3) time in the worst case. This can informally be seen by noting
that the worst case complexity is due to the completion rules (3, 8, 10, & 12) because they
apply to a pair of states, rather than just one state. Since each of the completion rules requires
that the chart states be adjacent in the string, each can apply at most O(jGj2n3) times since
there are at most n3 possibilities for 0 � i � j � k � n.

3.1 Improving the E�ciency of the TIG Parser

As presented in Figure 10, the TIG parser is optimized for clarity rather than speed. There are
several ways that the e�ciency of the TIG parser can be improved.

Parsing that is linear in the grammar size. The time complexity of the parser can be
reduced from O(jGj2n3) to O(jGjn3) by using the techniques described in [8]. This improvement
is very important, because as a practical matter jGj is typically much larger than n. The speedup
can be achieved by altering the parser in two ways.

The prediction rules (2, 7, 9, & 11) can apply O(jGj2n2) times, because they are triggered by
a chart state and grammar node �; and for each of O(jGjn2) possible values of the former there
can be O(jGj) values of the latter. However, the new chart state produced by the prediction
rules does not depend on the identity of the node in the triggering chart element nor on the
value of i, but rather only on whether there is any chart element ending at j that makes the
relevant prediction. Therefore, the parser can be changed so that a prediction rule is triggered
at most once for any j and �. This reduces the prediction rules to a time complexity of only
O(jGjn).

The completion rules (3, 8, 10, & 12) can apply O(jGj2n3) times, because they are triggered
by pairs of chart states; and there can be O(jGj) possibilities for each element of the pair for
each i < j < k. However, the new chart state produced by the completion rules does not
depend on the identity of the node � in the second chart element, but rather only on whether
there is any appropriate chart element from j to k. Therefore, the parser can be changed so
that a completion rule is triggered at most once for any possible �rst chart state and k. This
reduces the completion rules to a time complexity of O(jGjn3).
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Eliminating equivalent states. Rules (5 & 6) merely move from state to state without
changing the span i; j. These rules reect facts about the grammar and the traversal that do
not depend on the input. These rules can be largely precompiled out of the algorithm by noting
that the following states are equivalent.

[�A!��X �; i; j] � [�A!�X��; i; j] if (X = " _ Foot(�X))^ :9�A LeftAux(�A)
[�A!���X �; i; j] � [�A!� �X��; i; j] if (X = " _ Foot(�X))

To take advantage of equivalent states during parsing, one skips directly from the �rst to the
last state in a set of equivalent states. This avoids going through the normal rule application
process and has the e�ect of reducing the grammar size.

For a state [�A!��X �; i; j] to be equivalent to [�A!�X��; i; j], it is not su�cient that
the �rst child of �X be empty or a foot node. It must also be the case that left adjunction
is not possible on �A. If left adjunction is possible on �A, the state [�A!��X �; i; j] must be
independently retained in order to trigger left adjunction when appropriate.

Sharing nodes in a TIG. An important feature of the parser in Figure 10 is that the
nth child of a node need not be unique and a subtree need not have only one parent. This
indicates that a subtree or a supertree appears several di�erent places in the grammar. The
only requirement when sharing nodes is that every possible way of constructing a tree that is
consistent with the parent-child relationships must be a valid elementary tree in the grammar.

For example consider the trees in Figure 11. They can be represented individually as follows:

�1S!�2A �
4
B, �2A!�3a, �4B!�5A �

8
S , �5A!�6D �7b , LeftAux(�1S), Subst(�6D), Foot(�8S),

�1S!�2A �
4
B , �2A!�3a , �4B!�5A �

7
S , �5A!�6a , LeftAux(�1S), Foot(�7S)

However, taking maximum advantage of sharing within and between the trees, they can be
represented much more compactly as:

�1S!�2A �
4
B, �2A!�3a, �4B!f�5Aj�

2
Ag�

8
S , �5A!�6D �7b , LeftAux(�1S), Subst(�

6
D), Foot(�8S)

In the above, two kinds of sharing are apparent. Subtrees are shared by using the same
node (for example �A) on the right-hand side of more than one layer production. Supertrees
are shared by explicitly recording the fact that there are multiple alternatives for the nth child
of a some node. This is represented textually above using curly braces.

In the case of Figure 11, sharing reduces the grammar size jGj from 21 to 11. Depending
on the amount of sharing present in a grammar, an exponential decrease in the grammar size
is possible.

S

A

a

B

A

D↓ b

S*

S

A

a

B

A

a

S*

Figure 11: A pair of TIG trees.
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14 Schabes & Waters

Parsing left anchored LTIGs. The algorithm above can be extended to take advantage of
the fact that the elementary trees in an LTIG are lexicalized. This does not change the worst
case complexity, but is a dramatic improvement in typical situations, because it has the e�ect
of dramatically reducing the size of the grammar that has to be considered when parsing a
particular input string.

Space does not permit a discussion of all the ways lexical sensitivity can be introduced
into the TIG parser. However, one way of doing this is particularly important in the context
of this paper. The LTIG lexicalization procedure presented in Section 4 produces grammars
that have no left auxiliary trees and are left anchored|ones where for each elementary tree,
the �rst element that must be matched against the input is a lexical item. By means of two
simple changes in the prediction rules, the TIG parser can bene�t greatly from this kind of
lexicalization.

First, whenever considering a node �B for prediction at position j, it should only be pre-
dicted if its anchor is equal to the next input item aj+1. Other predictions cannot lead to
successful matches.

If sharing is being used, then one chart state can correspond to a number of di�erent
positions in di�erent trees. As a result, even though every tree has a unique left anchor, a
given chart state can correspond to a set of such trees and therefore a set of such anchors. A
prediction should be made if any of these anchors is the next element of the input.

Second, when predicting a node �B whose �rst child is a terminal symbol, it is known from
the above that this child must match the next input element. Therefore, there is no need to
create the state [�B!��a �; j; j]. One can instead skip directly to the state [�B!�a��; j; j+1].

Both of the changes above depend critically on the fact that there are no left auxiliary trees.
In particular, if there is a left auxiliary tree �B that can be adjoined on �B , then the next input
item may be matched by �B rather than �B ; and neither of the shortcuts above can be applied.
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4 TIG Strongly Lexicalizes CFG

In the following, we say that a grammar is lexicalized [20, 22] if every elementary structure
contains a terminal symbol called the anchor. A CFG is lexicalized if every production rule
contains a terminal. Similarly, a TIG is lexicalized if every tree contains a terminal symbol.

A formalism F 0 is said to lexicalize [13] another formalism F , if for every grammar G in F
that does not derive the empty string, there is a lexicalized grammar G0 in F 0 such that G and
G0 generate the same string set.

F 0 is said to strongly lexicalize F if for every �nitely ambiguous grammar G in F that does
not derive the empty string, there is a lexicalized grammar G0 in F 0 such that G and G0 generate
the same string set and tree set.

The restrictions on the form of G in the de�nitions above are motivated by two key prop-
erties of lexicalized grammars [13]. First, lexicalized grammars cannot derive the empty string,
because every structure introduces at least one lexical item. Thus, if a CFG is to be lexicalized,
it must not be the case that S

�

)".
Second, lexicalized grammars are �nitely ambiguous, because every rule introduces at least

one lexical item into the resulting string. Thus, if a grammar is to be strongly lexicalized, it
must be only �nitely ambiguous. In the case of a CFG, this means that the grammar cannot
contain either elementary or derived recursive chain rules X

�

)X .
As shown by Greibach [9] and Rosenkrantz [19], any CFG grammar that does not generate

the empty string can be converted into a lexicalized CFG. Moreover, this grammar can be left
anchored|one where the �rst element of the right hand side of each rule is a terminal symbol.
However, this is only a weak lexicalization, because the trees generated by the lexicalized
grammar are not the same as those generated by the original CFG.

CFGs can also be lexicalized by converting them into categorial grammars [2]. However,
these are again only weak lexicalizations because the trees produced are not preserved.

Strong lexicalization can be obtained using TAG, but only at the cost of O(n6) parsing [13,
20]. A key virtue of TIG is that it is both O(n3) parsable and strongly lexicalizes CFG.

4.1 A Strong Lexicalization Procedure

In the following, we give a constructive proof of the fact that TIG strongly lexicalizes CFG.
This can be done using a lexicalization procedure related to the lexicalization procedure used
to create Greibach normal form (GNF) as presented in [11].

Our procedure relies on the following four lemmas. The �rst lemma converts CFGs into a
very restricted form of TIG. The next three lemmas describe ways that TIGs can be transformed
without changing the trees produced.

Lemma 1 Any �nitely ambiguous CFG G = (�; NT;P; S) can be converted into a TIG G0 =
(�; NT;I; fg; S) such that: (i) there are no auxiliary trees; (ii) no initial tree contains any
interior nodes; (iii) G0 generates the same trees and therefore the same strings as G; (iv) there
is only one way to derive a given tree in G0.

Proof: We assume without loss of generality that G does not contain any useless pro-
duction.

The set I of initial trees inG0 is constructed by converting each rule R in P into a one-
level tree t whose root is labeled with the left-hand side of R. If R has n > 0 elements on
its right-hand side, then t is given n children, each labeled with the corresponding right-
hand-side element. Each child labeled with a nonterminal is marked for substitution. If
the right-hand side of R is empty, t is given one child labeled with ".
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16 Schabes & Waters

By construction, there are no auxiliary trees and no interior nodes in any initial tree.
There is an exact one-to-one correspondence between derivations in G and derivations
using the initial trees. Each rule substitution in G becomes a tree substitution in G0.
As a result, exactly the same trees are generated in both cases, and there is only one
way to generate each tree in G0, because there cannot be two ways to derive the same
tree in a CFG. 2

Lemma 2 Let G = (�;NT; I;A;S) be a TIG. Let t 2 I [A be an elementary tree whose root
is labeled Y and let � be a frontier element of t that is labeled X and marked for substitution.
Further suppose, that if t is an initial tree, X 6= Y . Let T 0 be the set of every tree t0 that can
be created by substituting an X-rooted tree u 2 I for �. De�ne G0 = (�; NT; I 0; A0; S) where
I 0 and A0 are created as follows.

If t 2 I then I 0 = (I � ftg) [ T 0 and A0 = A.
If t 2 A then I 0 = I and A0 = (A� ftg)[ T 0.

Then, G0 generates exactly the same trees as G. Further, if there is only one way to generate
each tree generated by G, then there is only one way to generate each tree generated by G0.

Proof: The transformation speci�ed by this lemma closes over substitution into � and
then discards t. Since t cannot be substituted into �, this only generates a �nite number
of additional trees.

Any complete derivation in G can be converted into exactly one derivation in G0 as
follows. A derivation consists of elementary trees and operations between them. Every
use of t in a complete derivation in G has to be associated with a substitution of some
u 2 I for �. Taken as a group, the two trees t and u, along with the substitution
operation between them, can be replaced by the appropriate new tree t0 2 T 0 that was
added in the construction of G0.

Since TIGs do not treat the roots of initial trees in any special way, there is no
problem converting any operation applied to the root of u into an operation on the
corresponding interior node of t0. Further, since it cannot be the case that t = u, there
is no ambiguity in the mapping de�ned above.

Any derivation in G0 can be converted into exactly one derivation in G by doing the
reverse of the conversion above. Each instance t0 of one of the new trees introduced is
replaced by an instance of t with the appropriate initial tree u 2 I being combined with
it by substitution.

Again since TIGs do not treat the roots of initial trees in any special way, there is
no problem converting any operation applied to an interior node of t0 that corresponds
to the root of u into an operation on the root of u.

Further, if there is only one way to derive a given tree in G, there is no ambiguity in
the mapping from derivations in G0 to G, because there is no ambiguity in the mapping
of T 0 to trees in G. The tree t0 must be di�erent from the other trees generated when
creating T 0, because t0 contains complete information about the trees it was created
from. The tree t0 must not be in I [ A. If it were, there would be multiple derivations
for some tree in G, one involving t0 and one involving t and u. Finally, t0 must be
di�erent from t, because it must be larger than t.

If there is only one way to derive a given tree in G, the mappings between derivations
in G0 and G are one-to-one and there is therefore only one way to derive a given tree
in G0. 2
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Lemma 3 Let G = (�; NT; I; A; S) be a TIG. Let t 2 I be an elementary initial tree whose
root is labeled with X 6= S. Further suppose that none of the substitution nodes, if any,
on the fringe of t are labeled X . Let U 0 be the set of every initial tree that can be created
by substituting t for one or more frontier nodes in an initial tree u 2 I that are labeled X

and marked for substitution. Let V 0 be the set of every auxiliary tree that can be created
by substituting t for one or more frontier nodes in an auxiliary tree v 2 A that are labeled
X and marked for substitution. De�ne G0 = (�; NT;I 0; A0; S) where I 0 = (I � ftg) [ U 0 and
A0 = A [ V 0.

Then, G0 generates exactly the same trees as G. Further, if there is only one way to generate
each tree generated by G, then there is only one way to generate each tree generated by G0.

Proof: The transformation speci�ed by this lemma closes over substitution of t and then
discards t. Since t cannot be substituted into itself, this only generates a �nite number
of additional trees. Since the root of t is not labeled S, t is not required for any purpose
other than substitution.

Any complete derivation in G can be converted into exactly one derivation in G0 as
follows. Since the root of t is not labeled S, every use of t in a complete derivation in G
has to be substituted into some frontier node � of some u 2 I[A. Taken as a group, the
two trees u and t, along with any other copies of t substituted into other frontier nodes
of u and the substitution operations between them, can be replaced by the appropriate
new tree u0 2 U 0 [ V 0 that was added in the construction of G0.

Since TIGs do not treat the roots of initial trees in any special way, there is no
problem converting any operation applied to the root of t into an operation on the
corresponding interior node of u0. Further, since it cannot be the case that t = u, there
is no ambiguity in the mapping de�ned above.

Any derivation in G0 can be converted into a derivation in G by doing the reverse
of the conversion above. Each instance u0 of one of the new trees introduced is replaced
by one or more instances of t substituted into the appropriate tree u 2 I [A.

Again since TIGs do not treat the roots of initial trees in any special way, there is
no problem converting any operation applied to the interior node of u0 that corresponds
to the root of t into an operation on the root of t.

Further, if there is only one way to derive a given tree in G, there is no ambiguity in
the mapping from derivations in G0 to G, because there is no ambiguity in the mapping
of u0 to trees in G. The tree u0 must be di�erent from the trees that are generated by
substituting t in other trees u, because u0 contains complete information about the trees
it was created from. The tree u0 must not be in I[A. If it were, there would be multiple
derivations for some tree in G, one involving u0 and one involving u and t. Finally, u0

must be di�erent from t, because it must be larger than t.
If there is only one way to derive a given tree in G, the mappings between derivations

in G0 and G are one-to-one and there is therefore only one way to derive a given tree in
G0. 2

Lemma 4 Let G = (�; NT; I; A; S) be a TIG and X 2 NT be a nonterminal. Let T � I be the
set of every elementary initial tree t such that the root of t and the leftmost nonempty frontier
node of t are both labeled X . Suppose that every node labeled X where adjunction can occur is
the root of an initial tree in I . Suppose also that there is no tree in A whose root is labeled X .
Let T 0 be the set of right auxiliary trees created by marking the �rst nonempty frontier node of
each element of T as a foot rather than for substitution. De�ne G0 = (�; NT; I � T;A[ T 0; S).
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18 Schabes & Waters

Then, G0 generates exactly the same trees as G. Further, if there is only one way to generate
each tree generated by G, then there is only one way to generate each tree generated by G0.

Proof: Note that when converting the trees in T into trees in T 0, every initial tree
is converted into a di�erent auxiliary tree. Therefore there is a one-to-one mapping
between trees in T and T 0. Further, since there are no X-rooted trees in A, A\T 0 = fg.

Since in G, every node labeled X where adjunction can occur is the root of an initial
tree in I , it must be the case that in G0, every node labeled X where adjunction can
occur is the root of an initial tree in I 0, because the construction of T 0 did not create
any new nodes labeled X where adjunction can occur. Therefore, the only way that
any element of T 0 can be used in a derivation in G0 is by adjoining it on the root of
an initial tree u. The e�ect of this adjunction is exactly the same as substituting the
corresponding t 2 I in place of u and then substituting u for the �rst nonempty frontier
node of t.

Any complete derivation in G can be converted into exactly one derivation in G0 as
follows. Every instance of a tree in T has to occur in a substitution chain as follows.
The chain consists of some number of instances t1, t2, : : : , tm of trees in T with each tree
substituted for the leftmost nonempty frontier node of the next. The top of the chain
tm is either not substituted anywhere (i.e., only if X = S) or substituted at a node that
is not the leftmost nonempty node of a tree in T . The bottom tree in the chain t1 has
some tree u 62 T substituted for its leftmost nonempty frontier node. Since there are no
X-rooted trees in A, there cannot be any adjunction on the root of u or on the roots of
any of the trees in the chain. The chain as a whole can be replaced by the simultaneous
adjunction of the corresponding trees t0

1
, t0

2
, : : : , t0m in T 0 on the root of u, with u used

in the same way that tm was used.
Any derivation in G0 can be converted into a derivation in G by doing the reverse of

the conversion above. Each use of a tree in T 0 must occur as part of the simultaneous
adjunction of 1 or more auxiliary trees on the root of some initial tree u, because there
are no other nodes at which this tree can be adjoined. Since the trees in T 0 are the
only X-rooted trees in A0, all the trees being simultaneously adjoined must be instances
of trees in T 0. The simultaneous adjunction can be replaced with a substitution chain
combining the corresponding trees in T , with u substituted into the tree at the bottom
of the chain and the top of the chain used however u was used.

Further, if there is only one way to derive a given tree in G, there is no ambiguity in
the mapping from derivations in G0 to G, because there is no ambiguity in the mapping
of the t0i to trees in G. If there is only one way to derive a given tree in G, the mappings
between derivations in G0 and G are one-to-one and there is therefore only one way to
derive a given tree in G0. 2

After an application of Lemmas 2{4, a TIG may no longer be in reduced form; however,
it can be brought back to reduced form by discarding any unnecessary elementary trees. For
instance, in Lemma 2, if � is the only substitution node labeled X and X 6= S, then when t is
discarded, every X-rooted initial tree can be discarded as well.

Using the above lemmas, an LTIG corresponding to a CFG can be constructed as follows.

Theorem 2 If G = (�; NT;P; S) is a �nitely ambiguous CFG that does not generate the
empty string, then there is an LTIG G0 = (�; NT;I 0; A0; S) generating the same language and
tree set as G with each tree derivable in only one way. Furthermore, G0 can be chosen so that
all the auxiliary trees are right auxiliary trees and every elementary tree is left anchored.
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Proof: To prove the theorem, we �rst prove a somewhat weaker theorem and then extend
the proof to the full theorem. We assume for the moment that the set of rules for G
does not contain any empty rules of the form A! ".

The proof proceeds in four steps. At each step none of the modi�cations made to the
grammar change the tree set produced nor introduce more than one way to derive any
tree. Therefore, the degree of ambiguity of each string is preserved by the constructed
LTIG.

An ordering fA1; : : : ; Amg of the nonterminals NT is assumed.

Step 1: Using Lemma 1, we �rst convert G into an equivalent TIG (�; NT;I; fg;S),
generating the same trees. Because G does not contain any empty rules, the set of
initial trees created does not contain any empty trees.

Step 2: In this step, we modify the grammar of Step 1 so that every initial tree t 2 I

satis�es the following property 
. Let the label of the root of t be Ai. The tree t must
either:

(i) be left anchored, i.e., have a terminal as its �rst nonempty frontier node; or
(ii) have a �rst nonempty frontier node labeled Aj where i < j.

We modify the grammar to satisfy 
 inductively for increasing values of i.
Consider the A1-rooted initial trees that do not satisfy 
. Such trees must have their

�rst nonempty frontier node labeled by A1. These initial trees are converted into right
auxiliary trees as speci�ed by Lemma 4. The applicability of Lemma 4 in this case is
guaranteed since, after Step 1, there are no auxiliary trees, no interior nodes, and TIG
prohibits adjunction at frontier nodes.

We now assume inductively that 
 holds for every Ai rooted initial tree t where
i < k.

� Step 2a: Consider the Ak-rooted initial trees that fail to satisfy 
. Each one must
have a �rst nonempty frontier node � labeled with Aj where j � k. For those where
j < k, we generate a new set of initial trees by substituting other initial trees for �
in accordance with Lemma 2.

By the inductive hypothesis, the substitutions speci�ed by Lemma 2 result in trees
that are either left anchored, or have �rst nonempty frontier nodes labeled with Al
where l > j. For those trees where l < k, substitution as speci�ed by Lemma 2 is
applied again.

After at most k � 1 rounds of substitution, we reach a situation where every Ak-
rooted initial tree that fails to satisfy 
 has a �rst nonempty frontier node labeled
by Ak .

� Step 2b: The Ak-rooted initial trees where the �rst nonempty frontier node is la-
beled with Ak are then converted into right auxiliary trees as speci�ed by Lemma 4.
The applicability of Lemma 4 in this situation is guaranteed by the following. First,
there cannot have previously been any Ak-rooted auxiliary trees, because there were
none after Step 1, and every auxiliary tree previously introduced in this induction
has a root labeled Ai for some i < k. Second, there cannot be any internal nodes
in any elementary tree labeled Ak, because there were none after Step 1, and all
subsequent substitutions have been at nodes labeled Ai where i < k.

Steps 2a and 2b are applied iteratively for each i, 1 < i � m until every initial tree
satis�es 
.
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Step 3: In this step, we modify the set of initial trees further until every one is left
anchored. We modify the grammar to satisfy this property inductively for decreasing
values of i.

According to property 
, every Am-rooted initial tree is left anchored, because there
are no higher indexed nonterminals.

We now assume inductively that every Ai rooted initial tree t where i > k, t is left
anchored.

The Ak rooted initial-trees must be left anchored, or have leftmost nonempty frontier
nodes labeled with Aj , where j > k. When the label is Aj , we generate new initial
trees using Lemma 2. These new rules are all left anchored, because by the induction
hypothesis, all the trees u substituted by Lemma 2 are left anchored.

The above is repeated for each i until i = 1 is reached.

Step 4: Finally, consider the auxiliary trees created above. Each is a right auxiliary tree.
If an auxiliary tree t is not left anchored, then the �rst nonempty frontier element after
the foot is labeled with some nonterminal Ai. There must be some nonempty frontier
element after the foot of t because G is not in�nitely ambiguous. We can use Lemma 2
yet again to replace t with a set of left anchored right auxiliary trees. All the trees
produced must be left anchored because all the initial trees resulting from Step 3 are
left anchored.

Empty rules: The auxiliary assumption that G does not contain empty rules can be
dispensed with as follows.

If G contains empty rules, then the TIG created in Step 1 will contain empty trees.
These trees can be eliminated by repeated application of Lemma 3 as follows.

Let t be an empty tree. Since G does not derive the empty string, the label of the
root of t is not S. The tree t can be eliminated by applying Lemma 3. This can lead
to the creation of new empty trees. However, these can be eliminated in turn using
Lemma 3. This process must terminate because G is �nitely ambiguous.

Mark all the interior nodes in all the initial trees created by Lemma 3 as nodes
where adjunction cannot occur. With the inclusion of these adjoining constraints, the
procedure above works just as before. 2

In the worst case, the number of elementary trees created by the LTIG procedure above can
be exponentially greater than the number of production rules in G. This explosion in numbers
comes from the compounding of repeated substitutions in Steps 2 & 3.

However, as noted at the end of Section 3, counting the number of elementary trees is
not an appropriate measure of the size of an LTIG. The compounding of substitutions in the
LTIG procedure causes there to be a large amount of sharing between the elementary trees.
Taking advantage of this sharing can counteract the exponential growth in the number of rules
completely. In particular, if the CFG does not have any empty rules or sets of mutually left
recursive rules involving more than one nonterminal, then the size of the LTIG created by the
procedure of Theorem 2 will be smaller than the size of the original CFG.

On the other hand, if a grammar has many sets of mutually left recursive rules involving more
than one nonterminal, even taking advantage of sharing cannot stop an exponential explosion
in the size of the LTIG. In the worst case, a grammar with m nonterminals can have m! sets of
mutually left recursive rules, and the result LTIG will is enormous.

Example. Figure 12 illustrates the operation of the LTIG procedure. Step 1 of the procedure
converts the CFG at the top of the �gure to the TIG on the shown on the second line.
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CFG
A1 ! A2A2

A2 ! A1A2 j A2A1 j a

Step 1

↓ ↓ ↓ ↓ a↓ ↓

Step 2 ↓ ↓ ↓

* ↓

* ↓ a

Step 3 ↓

a

↓

* ↓

* ↓ a

Step 4 (�nal LTIG)

↓

a

↓

*

a

*

↓

a

a

Figure 12: Example of the operation of the LTIG procedure.

In Step 2, no change is necessary in the A1 initial tree. However, the �rst A2 initial tree has
the A1 initial tree substituted into it. After that, the �rst two A2 initial trees are converted
into auxiliary trees as shown on the third line of Figure 12.

In step 3, the A1 initial tree is lexicalized by substituting the remaining A2 initial tree into
it. Step 4 creates the �nal LTIG by lexicalizing the auxiliary trees. The A1 initial tree is
retained under the assumption that A1 is the start symbol of the grammar.

TIG Strongly Lexicalizes LTIG. It has been shown [13, 20] that TAG extended with
adjoining constraints not only strongly lexicalizes CFG, but itself as well. We conjecture that
our construction can be extended so that given any TIG as input, an LTIG generating the
same trees could be produced. As in the case for TAG, adjoining constraints forbidding the
adjunction of speci�c auxiliary trees on speci�c nodes can be required in the resulting LTIG.

4.2 Comparison of the LTIG, Greibach, and Rosenkrantz Procedures

The LTIG procedure of Theorem 2 is related to the procedure traditionally used to create GNF
(see e.g., [11]). In particular, the main part of the GNF procedure operates in three steps that
are similar to Steps 2, 3, & 4. However, there are three important di�erences between the
procedures.
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CFG
A1 ! A2A2

A2 ! A1A2 j A2A1 j a

Step 2
A1 ! A2A2

A2 ! aZ2 j a

Z2 ! A1 j A2A2 j A2A2Z2 j A1Z2

Step 3
A1 ! aA2 j aZ2A2

A2 ! aZ2 j a
Z2 ! A2A2 j A1 j A2A2Z2 j A1Z2

GNF
A1 ! aA2 j aZ2A2

A2 ! aZ2 j a

Z2 ! aA2 j aA2Z2 j aZ2A2 j aZ2A2Z2

Figure 13: Example of the operation of the GNF procedure.

First, the LTIG procedure maintains both the ambiguity of the original grammar and the
exact trees produced. In contrast, the GNF procedure can reduce the ambiguity of the grammar
and in general, introduces radical changes in the trees produced.

Second, in lieu of Step 1, the GNF procedure converts the input into Chomsky normal
form. This eliminates in�nite ambiguity and empty rules, and puts the input grammar in a
very speci�c form.

The elimination of in�nite ambiguity is essential, because the GNF procedure will not
operate if in�nite ambiguity is present. The elimination of empty rules is also essential, because
empty rules in the input to the rest of the GNF procedure lead to empty rules in the output.

However, the remaining changes caused by putting the input in Chomsky normal form are
irrelevant to the basic goal of creating a left anchored output. A more compact left anchored
grammar can typically be produced by eliminating in�nite ambiguity and empty rules without
making the other changes necessary to put the input in Chomsky normal form. In the following
discussion we assume a modi�ed version of the GNF procedure that takes this approach.

The third important di�erence between the LTIG and GNF procedures is the way they
handle left recursive rules. The LTIG procedure converts them into right auxiliary trees. In
contrast, the GNF procedure converts them into right recursive rules. That is to say, the GNF
procedure converts rules of the form Ak ! Ak� j � into rules of the form Ak ! �j�Zk and
Zk ! �j�Zk.

Figure 13 illustrates the operation of the GNF procedure when applied to the same CFG
as in Figure 12. Since the input grammar is �nitely ambiguous and has no empty rules, it can
be operated on as is.

The step of the GNF procedure corresponding to Step 2 of the LTIG procedure converts
the CFG at the top of Figure 13 into the rules shown in the second part of the �gure. No
change is necessary in the A1 rule. However, the �rst A2 rule has the A1 rule substituted into
it. After that, the left recursive A2 rules are converted into right recursive rules utilizing a new
non-terminal Z2.

The step of the GNF procedure corresponding to Step 3 of the LTIG lexicalizes the A1 rule
by substituting the A2 rules into it.

The �nal step of the GNF procedure lexicalizes the Z2 rules as shown at the bottom of
Figure 13. An important thing to notice is that this lexicalization only results in 4 Z2 rules,
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A1 ! aZ2A2

A2 ! aZ2

Z2 ! aZ2A2Z2 j "

Figure 14: The LTIG of Figure 12 converted into a CFG.

rather than the 8 one would expect, because the 8 possible ways of substituting an A1 or A2

rule into the �rst position of a Z2 rule only yield 4 distinct rules. For example, substituting
A1 ! aA2 into Z2 ! A1 yields the same result as substituting A2 ! a into Z2 ! A2A2.
This kind of collapsing of identical rules derived in di�erent ways is the reason why the GNF
procedure can reduce the ambiguity of a grammar.

It is interesting to note that if the LTIG created in Figure 12 is converted into a CFG
as speci�ed in Theorem 1, this results in the rules in Figure 14. Ambiguity is lost in this
transformation, because both auxiliary trees turn into the same rule. If the empty rule in
Figure 14 is eliminated by substitution, the exact same grammar as at the bottom of Figure 13
results.

We conjecture that there is, in general, an exact correspondence between the output of the
LTIG procedure and the GNF procedure. In particular, if (a) the LTIG procedure is applied to a
CFG in Chomsky normal form, (b) the LTIG is converted into a CFG as speci�ed by Theorem 1,
and (c) any resulting empty rules are eliminated by substitution, the result is always the same
CFG as the GNF procedure produces. Eliminating empty rules by substitution can yield an
exponential increase in the number of rules. Therefore, the output of the LTIG procedure can
have exponentially fewer elementary trees than there are rules in the corresponding GNF.

The LTIG procedure can be looked at as making essentially the same transformation as
the GNF procuedures, but doing so in a way that (a) records exactly where each new rule
comes from so that ambiguity is preserved and the original parse trees can be recovered, and
(b) represents the new rules in a way that allows them to be compactly represented by taking
full advantage of their very repetitive structure.

The Rosenkrantz procedure. Another interesting point of comparison with the LTIG pro-
cedure is the CFG lexicalization procedure of Rosenkrantz [19]. This operates in a completely
di�erent way than Greibach's procedure|simultaneously eliminating all leftmost derivation
paths of length greater than one, rather than shortening derivation paths one step at a time
via substitution and eliminating left recursive rules one nonterminal at a time.

One consequence of the simultaneous nature of the Rosenkrantz procedure is that one needs
not select an order of the nonterminals. This contrasts with the Greibach and LTIG procedures
where the order chosen can have a signi�cant impact on the number of elementary structures
in the result.

As with the GNF procedure, ambiguity can be reduced and the trees derived are changed.
However, the trees are changed even more radically than is the case with the GNF procedure.

Also like the GNF procedure, one typically begins the Rosenkrantz procedure by converting
the input to Chomsky normal form. This is necessary to remove in�nite ambiguity and empty
rules. However, it is also needed to remove chain rules, which would otherwise lead to non-
lexicalized rules in the output. The conversion to Chomsky normal form makes a lot of other
changes as well, which are largely counterproductive if one wants to construct a left anchored
grammar.

A key advantage of the Rosenkrantz procedure is that unlike the Greibach and LTIG pro-
cedures, the output it produces cannot be exponentially larger than the input. In particular,
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the growth in the number of rules is at worst O(m5), where m is the number of nonterminals.
However, as a practical matter, the Rosenkrantz procedure produces grammars that are much
less compact than those created by the LTIG procedure, see Section 5.1.

It would be develop a formalism and procedure that bares the same relationship to the
Rosenkrantz procedure that TIG and the LTIG procedure bare to the GNF procedure. Given
the fundamental advantages of the Rosenkrantz over the GNF procedure, this might lead to a
result that was superior to the LTIG procedure.

4.3 Variants of the LTIG Procedure

The LTIG procedure above creates a left anchored LTIG that uses only right auxiliary trees.
As shown in Section 5.2, this is a quite advantageous form. However, other forms might be
more advantageous in some situations. Many variants of the LTIG procedure are possible.

For example, everywhere in the procedure, the word `right' can be replaced by `left' and
vice versa. This results in the creation of a right anchored LTIG that uses only left auxiliary
trees. This could be valuable when processing a language with a fundamentally left recursive
structure.

A variety of steps can be taken to reduce the number of elementary trees produced by the
LTIG procedure. To start with, the choice of an ordering fA1; : : : ; Amg for the nonterminals
is signi�cant. In the presence of sets of mutually left recursive rules involving more than one
nonterminal (i.e., sets of rules of the form fA! B�; B ! A�g), choosing the best ordering of
the relevant nonterminals can greatly reduce the number of trees produced.

If one abandons the requirement that the grammarmust be left anchored, one can sometimes
reduce the number of elementary trees produced dramatically. The reason for this is that instead
of being forced to lexicalize each rule in G at the �rst position on its right hand side, one is free
to choose the position that minimizes the total number of elementary trees eventually produced.
However one must be careful to meet the requirements imposed by TIG while doing this. In
particular, one must create only left and right auxiliary trees as opposed to wrapping auxiliary
trees. The search space of possible alternatives is so large that it is not practical to �nd an
optimal LTIG; however, by means of simple heuristics and hill climbing, signi�cant reductions
in the number of elementary trees can be obtained.

Finally, one can abandon the requirement that there be only one way to derive each tree in
the LTIG. This approach is discussed in [25]. In the presence of sets of mutually left recursive
rules involving more than one nonterminal, allowing increased ambiguity can yield signi�cant
reduction in the number of trees.

Exploring ways to create LTIGs with small numbers of elementary trees is interesting;
however, it may not be of practical signi�cance, because there are so many opportunities for
sharing between the elementary trees in the LTIGs created by the LTIG procedure, that the
grammar size jGj is often exponentially smaller than the number of elementary trees. Further,
if an increased number of elementary trees is accompanied by increased sharing, this can lead
to a decrease in the grammar size, rather than an increase.
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5 Experimental Results

The experiments below use eight grammars for fragments of English as test cases, see Figure 15.
The �rst four grammars are the test CFGs used by Tomita [30]. The next three grammars are
derived from the Treebank corpus [3] of hand-parsed sentences from the Wall Street Journal.
Each \Treebank n" grammar corresponds to the n most commonly occurring tree levels in
the corpus that form a CFG with no useless productions. The eighth grammar is a CFG
grammar used in the natural language processing component of a simple interactive computer
environment. It supports conversation with an animated robot called Mike [18].

The grammars are all �nitely ambiguous and none generates the empty string. The Tomita
III grammar contains an empty rule. The relative size and complexity of the grammars is
indicated at the top of Figure 15. The size jGj is computed as appropriate for a Earley-style
CFG parser|i.e., as the number of possible dotted rules, which is the sum over all the rules of:
one plus the number of elements on the right-hand side of the rule.

The bottom of Figure 15 summarizes the left and right recursive structure of the test
grammars. The grammars have very few sets of mutually left recursive rules involving more
than one nonterminal. In contrast, all but the smallest grammars have many sets of mutually
right recursive rules involving signi�cant numbers of di�erent nonterminals. This reects the
fact that English is primarily right recursive in nature.

Due to the unbalanced recursive nature of the test grammars, left anchored lexicalizations
are much more compact than right anchored ones. For languages that are primarily left recursive
in nature, the situation would be reversed.

The experiments below are based on parsing a corpus of randomly generated sentences. For
each test grammar, four sentences were generated of each possible length from 1{25. The top
of Figure 16 shows the average number of parses of these sentences versus sentence length. The

Nonterminals Terminals Rules Size

Tomita I 5 4 8 22
Tomita II 13 9 43 133
Tomita III 38 54 224 679
Tomita IV 45 32 394 1,478
Treebank 200 11 31 200 689
Treebank 500 14 36 500 1,833
Treebank 1000 16 36 1,000 3,919
Mike 25 102 145 470

Left Cycles of Length Right Cycles of Length
1 2 > 2 1 2-9 > 9

Tomita I 2 0 0 0 1 0
Tomita II 7 0 0 8 3 0
Tomita III 10 0 0 11 2,260 12,595
Tomita IV 13 0 0 11 3,453 5,964
Treebank 200 5 0 0 5 15 0
Treebank 500 9 1 0 9 945 44
Treebank 1000 11 2 0 10 14,195 5,624
Mike 0 0 0 1 1 0

Figure 15: Properties of the Grammars used as test cases.
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1-5 6-10 11-15 16-20 21-25

Tomita I 1 4 25 174 3,696
Tomita II 1 2 3 50 46
Tomita III 1 2 6 66 58
Tomita IV 1 11 25 140 624
Treebank 200 1 1 3 8 36
Treebank 500 1 4 20 218 1,721
Treebank 1000 2 36 1,376 23,106 279,656
Mike 1 1 1 1 1

1-5 6-10 11-15 16-20 21-25

Tomita I 23 51 88 135 205
Tomita II 145 308 461 698 898
Tomita III 304 577 1,026 1,370 1,788
Tomita IV 827 1,436 2,311 3,192 4,146
Treebank 200 526 1,054 1,500 2,171 2,717
Treebank 500 1,193 2,762 4,401 6,712 8,566
Treebank 1000 3,795 8,301 15,404 23,689 32,633
Mike 124 163 264 334 435

Figure 16: Properties of the sentences used as test cases versus sentence length.
Top: average ambiguity. Bottom: average chart size.

ambiguity varies by 5 orders of magnitude across the test corpus.

The bottom of Figure 16 shows the average number of chart states created when parsing
the test sentences using a standard Earley-style CFG parser. As is to be expected, the number
of chart states rises strongly with the complexity of the grammars varying by two orders of
magnitude. The number of chart states also grows with the length of the sentences, but not
much faster than linearly.

5.1 The Size of LTIG Grammars

The top of Figure 17 shows the number of elementary initial and auxiliary trees in grammars
created by the LTIG procedure given the various test grammars. Because most of the test
grammars do not have sets of mutually left recursive rules involving more than one nonterminal,
the order chosen for the nonterminals typically has no e�ect on the output. However, for the
grammars where there is an e�ect, the ordering that lead to the smallest number of elementary
trees was automatically chosen.

The middle portion of the table summarizes the left anchored LTIGs created by the pro-
cedure of Theorem 2. The rightmost portion summarizes an unconstrained LTIGs created by
a hill climbing algorithm that attempts to minimize the number of elementary trees produced.
It can be seen that the left anchored LTIG corresponding to a CFG can have many more
elementary trees than an unconstrained LTIG.

The bottom of Figure 17 shows the sizes of the various LTIGS. The sizes are very much
smaller than the numbers of trees, because there is an extremely large amount of sharing
between the elementary structures in the LTIGs. In fact, there is so much sharing that the
LTIGs are smaller than the corresponding CFGs.
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CFG Left LTIG LTIG
Rules Initial Auxiliary Initial Auxiliary

Tomita I 8 6 2 5 1
Tomita II 43 905 7 87 8
Tomita III 224 1,790 45 522 51
Tomita IV 394 40,788 469 1,456 201
Treebank 200 200 648 77 284 76
Treebank 500 500 9,558 4,497 794 698
Treebank 1000 1,000 1,050,343 667,972 2,792 3,306
Mike 145 626 0 267 0

CFG Left LTIG LTIG

Tomita I 22 16 21
Tomita II 133 115 125
Tomita III 679 528 665
Tomita IV 1,478 1,263 1,438
Treebank 200 689 517 677
Treebank 500 1,833 1,427 1,801
Treebank 1000 3,919 3,146 3,839
Mike 470 356 470

Figure 17: Properties of LTIGS corresponding to the test grammars.
Top: numbers of elementary trees. Bottom: grammar size jGj.

It is interesting to note that the left anchored LTIGs are even smaller than the unconstrained
LTIGs. This is possible because of the small number of sets of mutually left recursive rules
involving more than one nonterminal in the test grammars. If there were many such sets, the
left anchored LTIGs could be much larger than the unconstrained ones; and it might be fruitful
to consider using a right anchored LTIG. If there were many sets of mutually left recursive rules
and many sets of mutually right recursive rules, then every LTIG might be large. Therefore,
the practical utility of LTIG is limited to languages that are fundamentally left recursive or
right recursive, but not both.

The GNF and Rosenkrantz procedures. As a basis for comparison with the LTIG proce-
dure, the GNF and Rosenkrantz procedures were implemented as well. To minimize the size of
the grammars produced by these latter procedures, the input grammars were not converted to
Chomsky normal form, but rather only modi�ed to the minimal extent required by the proce-
dures, see Section 4.2. This yielded savings that were almost always signi�cant and sometimes
dramatic. In the case of the GNF procedure, the order of nonterminals was chosen so as to
minimize the number of rules produced.

The top of Figure 18 compares the grammars produced by the three procedures in terms
of the number of elementary structures. Except for Treebank 200, the Rosenkrantz procedure
created fewer rules than the GNF procedure and on the larger grammars dramatically fewer.
The LTIG procedure created somewhat fewer elementary structures than the Rosenkrantz pro-
cedure, except that for Treebank 1000, the LTIG has 13 times more elementary structures than
the Rosenkrantz grammar. Assumedly, the large size of the LTIG for Treebank 1000 reects the
fundamentally exponential behavior of the LTIG procedure in comparison to the polynomial
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CFG Left LTIG Rosenkrantz GNF

Tomita I 8 8 16 19
Tomita II 43 912 861 10,848
Tomita III 224 1,835 3,961 4,931
Tomita IV 394 41,257 45,834 243,374
Treebank 200 200 725 2,462 1,723
Treebank 500 500 14,055 20,896 149,432
Treebank 1000 1,000 1,718,315 133,170 > 108

Mike 145 626 656 843

CFG Left LTIG Rosenkrantz GNF

Tomita I 22 16 54 68
Tomita II 133 115 3,807 100,306
Tomita III 679 528 16,208 29,622
Tomita IV 1,478 1,263 257,206 2,461,556
Treebank 200 689 517 11,104 9,546
Treebank 500 1,833 1,427 106,812 1,591,364
Treebank 1000 3,919 3,146 766,728 > 109

Mike 470 356 2,439 4,384

Figure 18: Comparison of the LTIG, Rosenkrantz, and GNF procedures.
Top: number of elementary structures. Bottom: grammar size.

behavior of the Rosenkrantz procedure.

The bottom of Figure 18 takes sharing into account and compares the sizes of the various
grammars. It reveals that the LTIGs are very much more compact than the other grammars,
particularly for the larger test grammars.

The entries in Figure 18 for the Treebank 1000 GNF grammar are only approximate, because
this grammar is too large to be practically computed given the facilities available to the authors.
We had to estimate the number of rules based on the number of substitutions called for by the
GNF procedure.

5.2 Parsing with LTIG

To evaluate parsing with LTIG, three experimental parsers were implemented using the de-
ductive engine developed by Shieber, Schabes, and Pereira [27]. The test grammars were
parsed using a standard Earley-style CFG parser. The grammars created by the Greibach and
Rosenkrantz procedures, were parsed using an Earley-style CFG parser adapted to take full
advantage of left anchored CFG grammars. The grammars produced by the LTIG procedure
were parsed with the parser of Section 3 extended in all the ways discussed in Section 3.1 so
that it takes full advantage of sharing and the left anchored nature of these LTIGs. Every
e�ort was extended to make the three parsers as identical as possible, so that any di�erences
in parsing would be due to the grammars used, rather than the parsers.

The top of Figure 19 compares the number of chart states required when parsing using
the various grammars. The numbers are averages over all the test sentences of the ratio of the
number of chart states created using various grammars to the chart states created when parsing
using the original CFG.

MERL-TR-94-13 June 1994



Tree Insertion Grammar 29

CFG Left LTIG Rosenkrantz GNF

Tomita I 1.00 0.69 0.94 0.95
Tomita II 1.00 0.31 0.39 2.14
Tomita III 1.00 0.09 0.08 0.13
Tomita IV 1.00 0.14 0.28
Treebank 200 1.00 0.12 0.15 0.53
Treebank 500 1.00 0.13 0.27
Treebank 1000 1.00 0.19
Mike 1.00 0.21 0.17 0.19

CFG Left LTIG Rosenkrantz GNF

Tomita I 1.0 1.0 1.0 1.0
Tomita II 1.0 1.0 1.0 1.0
Tomita III 1.0 1.0 0.7 0.7
Tomita IV 1.0 1.0 0.8
Treebank 200 1.0 1.0 1.0 0.9
Treebank 500 1.0 1.0 0.8
Treebank 1000 1.0 1.0
Mike 1.0 1.0 1.0 1.0

Figure 19: Parsing properties of LTIG, Rosenkrantz, and GNF grammars.
Top: relative chart sizes. Bottom: relative ambiguity.

Chart states are used as a basis for comparison instead of parsing times, because they
can be more reliably and repeatably obtained than parsing times and because they allow the
easy comparison of parsers implemented using di�erent technologies. Chart states should be a
particularly accurate basis for comparison in this case, because the overhead per chart element
is essentially identical for the three parsers being compared.

The third column in the table at the top of Figure 19 shows that in all cases, parsing with
LTIG requires fewer chart states than parsing with the original CFG. Except for the Tomita
I grammar, which is a toy example, the reduction is by a factor of at least 3 and typically in
the range of 5{10. This bene�t is obtained without changing the trees produced and without
increasing the grammar size. The bene�t is as great or greater for large grammars like Tomita
IV and Treebank 1000 as for small ones like Tomita II and Mike.

As a general matter, the grammars generated by the Rosenkrantz and GNF procedures also
yield reductions in the number of chart states. However, the reduction is not as great as for
the LTIG, and is only obtained at the cost of changing the trees produced and signi�cantly
increasing the grammar size.

With the Rosenkrantz and GNF procedures, the size of the grammar can be a signi�cant
problem in two ways. First, it can be so large that even with left anchored parsing an unrea-
sonable large number of chart states is created. In Figure 19, this happens with the Greibach
grammar for Tomita II. Second, the grammar can be too large to parse with at all. Several of
the entries in Figure 19 are left blank, because using our experimental deduction-based parser,
it was not possible for us to parse with grammars larger than one hundred thousand or so. It
is not clear whether any practical parser could handle the grammar that the GNF procedure
creates for Treebank 1000.

The bottom of Figure 19 shows the average relative ambiguity of the grammars produced by
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1-5 6-10 11-15 16-20 21-25

Tomita I 0.43 0.60 0.69 0.76 0.86
Tomita II 0.28 0.30 0.30 0.34 0.35
Tomita III 0.06 0.08 0.10 0.10 0.11
Tomita IV 0.11 0.14 0.15 0.15 0.17
Treebank 200 0.08 0.11 0.12 0.14 0.14
Treebank 500 0.08 0.11 0.13 0.16 0.16
Treebank 1000 0.10 0.15 0.21 0.25 0.33
Mike 0.14 0.23 0.21 0.22 0.21

1 2-10 11-100 101-1000 > 1000

Tomita I 0.44 0.61 0.73 0.80 0.90
Tomita II 0.28 0.32 0.36
Tomita III 0.06 0.09 0.13
Tomita IV 0.11 0.13 0.16 0.18
Treebank 200 0.09 0.13 0.15
Treebank 500 0.07 0.12 0.15 0.18 0.20
Treebank 1000 0.08 0.13 0.17 0.22 0.30
Mike 0.20

Figure 20: Ratio of Left LTIG to CFG chart states.
Top: versus sentence length. Bottom: versus sentence ambiguity.

the three procedures when applied to the test sentences. Each number is the average ambiguity
of the sentences under the grammar in question divided by their ambiguity under the original
CFG. The LTIG always has the same ambiguity as the CFG. The other procedures often create
grammars with signi�cantly less ambiguity.

The tables in Figure 20 provide a more detailed analysis of the reduction in chart states
obtained via the LTIG procedure. As in the top of Figure 19, the numbers are ratios of the
number of chart states created by the LTIG parser to the number of chart states created by
the CFG parser, for sentences with the indicated properties.

The top of Figure 20 shows that the bene�t obtained by using LTIG declines with longer
sentences, but continues to be signi�cant. The bottom of Figure 20 shows that the bene�t
obtained by using LTIG also declines with higher ambiguity, but not dramatically. The missing
entries in the table stem from the fact that some of the grammars do not generate signi�cant
numbers of high ambiguity sentences.
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6 A Future Direction

In the preceding, TIG is primarily presented as an alternative to CFG. Another perspective
on TIG is as an alternative to TAG. To explore the possibilities in this regard, we investigated
the extent to which the lexicalized tree adjoining grammar (LTAG) for English being developed
at the University of Pennsylvania [1] is consistent with LTIG.

The current English LTAG consists of 392,001 elementary trees. These trees are all lexical-
ized and contain a total of 54,777 di�erent words. At �rst glance, it might seem impractical
to parse using such an enormous grammar expressed in any formalism. However, because the
elementary trees are lexicalized and there are so many terminal symbols, only a small fraction
of the elementary trees needs to be considered when parsing any one sentence. In particular,
there are on average only 7 elementary trees for each word. Therefore, only on the order of 100
elementary trees need be considered when parsing any one 10-20 word sentence.

In the context of this paper, the most striking aspect of the current English LTAG is that it
is very nearly an LTIG (see Figure 21). In particular, the current English LTAG contains almost
100,000 elementary left and right auxiliary trees but only 109 elementary wrapping auxiliary
trees. Further, the vast majority of the ways the auxiliary trees can be used are also consistent
with the restrictions imposed by TIG. The only exceptions are the small number of situations
where an elementary wrapping auxiliary tree can be adjoined and the even smaller number of
situations where an elementary left auxiliary tree can be adjoined on the spine of an elementary
right auxiliary tree and vice versa.

Figure 21 is suggestive, but it has several shortcomings. To start with, by counting things,
the �gure implicitly assumes that every elementary tree and every interaction between them
is equally important. It is entirely possible that some of the non-LTIG adjunctions occur very
frequently and/or are linguistically essential.

More importantly, the �gure considers only simple, unconstrained adjunction. However,
the current English LTAG makes use of adjoining constraints and the propagation of attributes
during parsing. These mechanisms would both have to be modi�ed if the LTAG were converted
into an LTIG, due to the need to switch from adjoining on the roots of auxiliary trees to
multiple simultaneous adjunction. It is argued in [26] that multiple adjunction is linguistically
well motivated in a number of situations. However, there are other situations where multiple
adjunction presents signi�cant di�culties.

Given the above, there is no reason to believe that it would be easy to convert the current
English LTAG entirely into an LTIG. However, there is every reason to believe that it would
be worthwhile to try. Given that no e�ort was expended to date and yet the grammar is close
to an LTIG, the grammar could probably be brought much closer to an LTIG. If complete
conversion is not possible, one could consider implementing a combined parser for TIG and
TAG that would apply TIG parsing to the TIG subset of a TAG and full TAG parsing to the
rest. For a grammar that was mostly a TIG, such a parser should be almost as fast as a TIG
parser.

Number Incompatible With LTIG

initial trees 294,568 0 0%
auxiliary trees 97,433 109 .11%
possible adjunctions 45,962,478,485 49,840,130 .11%

Figure 21: Most of the current LTAG for English is consistent with LTIG.
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7 Conclusion

A variety of lexicalization procedures for CFG have previously been developed. However, they
all have signi�cant disadvantages. The approaches of Greibach and Rosenkrantz, which produce
a CFG in Greibach Normal Form, are only weak lexicalization procedures since they do not
guarantee that the same trees are produced. In addition, these approaches often produce very
large output grammars. TAG allows strong lexicalization that preserves the trees derived;
however, because it uses a context sensitive operation, TAG entails much larger computation
costs than CFGs.

Tree insertion grammar (TIG) is a restricted form of tree adjoining grammar (TAG) that is
O(n3)-time parsable, generates context-free languages, and yet allows the strong lexicalization
of CFG. The main results of this paper are an e�cient Earley-style parser for TIG and a
procedure that converts any CFG into a left anchored lexicalized TIG (LTIG) that produces
the same trees with the same degree of ambiguity. By taking advantage of the sharing between
trees, these LTIGs can be represented very compactly.

Experiments with grammars for subsets of English show that the corresponding LTIGs are
often even smaller than the original CFG. Most importantly, by taking advantage of the left
anchored nature of the LTIG, it is possible to avoid on the order of 80% of the chart states
required when parsing with the original CFG. Given that the per-chart-state cost of TIG and
CFG parsers are essentially identical, this should translate directly into an 80% increase in
parsing speed.

A possible future use of TIG is as an alternative for TAG. TIG is not as powerful as TAG,
but it includes a number of the features of TAG. Further, at least in the current English LTAG,
the features of TAG that are included in TIG are used more often that the features that are not
included in TIG. As a result, it may be possible to use TIG instead of TAG in some situations,
thereby gaining O(n3) parsability.

The uses for TIG discussed in this paper all involve starting with an existing grammar and
converting it into a TIG. An important area for further investigation is using TIG as the original
formalism for constructing grammars, because TIG allows greater derivational freedom than
CFG. For instance, one can require that the grammar be lexicalized, without placing any limits
the parse trees produced. This can result in grammars that are better motivated linguistically
and/or faster to parse.
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A No wrapping trees can be built in TIG

In this appendix, we give a proof that given a TIG (�;NT; I;A;S), it is not possible to create
wrapping auxiliary trees.

Proof: The only elementary trees allowed are left auxiliary trees, right auxiliary trees
and initial trees. A case by case analysis reveals that every possible combination of these
kinds of trees yields a new tree in one of the three categories. Therefore, no derivation
can ever create a wrapping auxiliary tree.

Substitution of an initial tree in an initial tree yields an initial tree.
Adjunction of a left or right auxiliary tree in an initial tree yields an initial tree.
Substitution of an initial tree in a left (right) auxiliary tree yields a left (right)

auxiliary tree, because by de�nition the node marked for substitution must be left (right)
of the foot and therefore all the new frontier nodes must be added left (right) of the
foot.

Adjunction of a left (right) auxiliary tree S in a right (left) auxiliary tree T yields
a right (left) auxiliary tree, because by de�nition the node adjoined upon must be to
the right (left) of the spine of T and therefore all the new frontier nodes must be added
right (left) of the foot of T .

Adjunction of a left (right) auxiliary tree S in a left (right) auxiliary tree T yields
a left (right) auxiliary tree, for the same basic reason as above except that the node
adjoined upon can be on the spine of T . However, since all the nonempty structure in
S is left (right) of the spine of S, even in this case, all the new nonempty frontier nodes
are added to the left (right) of the foot of T . 2
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