
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

An Empirical Study of Algorithms for Point
Feature Label Placement

Jon Christensen, Joe Marks, Stuart Shieber

TR94-12 December 1994

Abstract

A major factor affecting the clarity of graphical displays that include text labels is the degree to
which labels obscure display features (including other labels) as a result of spatial overlap. Point-
feature label placement (PFLP) is the problem of placing text labels adjacent to point features on
a map or diagram so as to maximize legibility. This problem occurs frequently in the production
of many types of informational graphics, though it arises most often in automated cartography.
In this paper we present a comprehensive treatment of the PFLP problem, viewed as a type of
combinatorial optimization problem. Complexity analysis reveals that the basic PFLP problem
and most interesting variants of it are NP-hard. These negative results help inform a survey
of previously reported algorithms for PFLP; not surprisingly, all such algorithms either have
exponential time complexity or are incomplete. To solve the PFLP problem in practice, then,
we must rely on good heuristic methods. We propose two new methods, one based on a discrete
form of gradient descent, the other on simulated annealing, and report on a series of empirical
tests comparing these and the other known algorithms for the problem. Based on this study, the
first to be conducted, we identify the best approaches as a function of available computation time.
Key Words and Phrases: label placement, automated cartography, stochastic methods, simulated
annealing.

ACM Transactions on Graphics, Vol. 14, No. 3, July 1995, pp. 203-232.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Revision History:–

1. First version, TR94-12, June 20, 1994.

Technical Report 94-12 1 June 20, 1994

1 Introduction

Tagging graphical objects with text labels is a fundamental task in the design of many types of informational
graphics. This problem is seen in its most essential form in the field of cartography, where text labels must
be placed on maps while avoiding overlaps with cartographic symbols and other labels, though it also arises
frequently in the production of other graphics (e.g., scatterplots). Although several techniques have been
reported for automating various label-placement tasks, the positioning of labels is still performed manually
in many applications, even though it can be very tedious. (Cook and Jones (1990) report that cartographers
typically place labels at the rate of only 20 to 30 labels per hour, with map lettering contributing up to half of
the time required for producing high-quality maps.) Determining an optimal positioning of the labels is, con-
sequently, an important problem.

In cartography, three different label-placement tasks are usually identified: labeling of area features
(such as oceans or countries), line features (such as rivers or roads), and point features (such as cities or
mountain peaks) (Imhof, 1962; 1975). While it is true that determining the optimal placement of a label for
an isolated point feature is a very different task from determining the optimal placement of a label for an iso-
lated line or area feature, the three placement tasks share a common combinatorial aspect when multiple fea-
tures are present. The complexity arises because the placement of a label can have global consequences due
to label-label overlaps. This combinatorial aspect of the label-placement task is independent of the nature of
the features being labeled, and is the fundamental source of difficulty in automating label placement. We
therefore concentrate on point-feature label placement (PFLP) without loss of generality; in Section 5 of the
paper we describe how our results generalize to labeling tasks involving line and area features.

The PFLP problem can be thought of as a combinatorial optimization problem. Like all such problems,
two aspects must be defined: a search space and an objective function.

Search space. An element of the search space can be thought of as a function from point features to
label positions, which we will call a labeling. The set of potential label positions for each point feature there-
fore characterizes the PFLP search space. For most of the published algorithms, the possible label positions
are taken, following cartographic standards, to be a finite set, which is enumerated explicitly. Figure 1 shows
a typical set of eight possible label positions for a point feature. Each box corresponds to a region in which
the label may be placed. Alternatively, a continuous placement model may be used, for example by specify-
ing a circle around the point feature that the label must touch without intersecting.

In certain variants of the PFLP problem, we allow a labeling not to include labels for certain points (pre-
sumably those that are most problematic to label, or least significant to the labeling application). When this
option is included, the PFLP problem is said to include point selection.

Objective function. The function to be optimized, the objective function, should assign to each element
of the search space (a potential labeling of the points) a value that corresponds to the relative quality of that
labeling. The notion of labeling quality has been studied by cartographers, most notably by Imhof (1962;
1975). However, Imhof’s analysis is descriptive, not prescriptive; coming up with an appropriate definition
of the objective function for a general label-placement problem (that is, one that includes point, line, and

Figure 1: A set of potential label positions and their relative desirability. Lower values indicate more desirable positions.

12

3 4
57

6

8

June 20, 1994 2 Technical Report 94-12

area features) is a difficult task. Labeling quality can depend on many factors, including detailed “world
knowledge” and characteristics of human visual perception. Many of the label-placement algorithms
reported in the literature therefore incorporate sophisticated objective functions. A popular approach has
been to use a rule-based paradigm to encode the knowledge needed for the objective function (Ahn and
Freeman, 1984; Freeman and Ahn, 1987; Jones, 1989; Cook and Jones, 1990; Doerschler and Freeman,
1992). For the PFLP problem, however, a relatively simple objective function suffices. Our formulation of
the objective function is due to Yoeli (1972)1. In Yoeli’s scheme, the quality of a labeling depends on the fol-
lowing factors:

• The amount of overlap between text labels and graphical features (including other text labels);

• A priori preferences among a canonical set of potential label positions (a standard ranking is shown
in Figure 1); and

• The number of point features left unlabeled. (This criterion is pertinent only when point selection is
incorporated into the PFLP problem.)

Figure 2 provides an illustration of these factors. By specifying how to compute a numerical score for each
of the criteria above, an objective function can be defined. Such a function assigns to each labeling a number
that indicates its relative quality. We will assume that low scores correspond to better labelings, so that the
goal of the search is to minimize the objective function.

The PFLP problem is a combinatorial optimization problem defined by its search space and objective
function; a solution to the problem is comprised of a search algorithm that attempts to find a relatively good
element of the search space. A natural issue to raise, before exploring possible search algorithms, is the
intrinsic complexity of this search problem. In Section 2 we summarize some previous results that show that
the problem and many of its interesting variants are NP-hard. Thus, any complete search algorithm will be
intractable, any tractable algorithm incomplete.2

This characterization is borne out by previously published algorithms, which fall into two classes:
exhaustive search algorithms and local search algorithms. We review these algorithms in Section 3. As
expected, the exhaustive algorithms are computationally profligate, and the local search algorithms are
incomplete, in that they tend to find local, rather than global minima.

We also present two new algorithms for the PFLP problem in Section 3. The first is a local search tech-
nique based on a discrete form of gradient descent. Although it is also incomplete, its performance on prob-
lems with high label density and its efficiency make it attractive under certain circumstances. The second

1. A recent study conducted by Wu and Buttenfield (1991) addresses the issue of placement preference for point-feature labels in
more detail.

2. This holds, of course, only if P ≠ NP, as is commonly believed.

(a) (b)

Figure 2: Good (a) and bad (b) labelings of the same map.

Hydeville

Fitchburg

Holden

Concord

Halifax

Holbrook

Hemlocks

Curzon

Acton

Cheapside

Brier

Hancock

Gates

Harwich

Goshen

Hayward

Ayer

Billerica
Furnace

Hull

Hortonville

Avon

Hudson Cochituate

Griswoldville

Gibbs

Florence

Cuttyhunk

Holyoke

Hyannis
Grafton

Cambridge Cambridge
Hydeville

Fitchburg

Holden

Concord

Halifax

Holbrook

Hemlocks

Curzon

Acton

Cheapside

Brier

Hancock

Gates

Harwich

Goshen

Hayward

Ayer

Billerica

Furnace

Hull

Hortonville
Avon

Hudson Cochituate

Griswoldville

Gibbs

Florence

Holyoke

Hyannis

Grafton

Technical Report 94-12 3 June 20, 1994

technique is a stochastic algorithm based on simulated annealing. An extensive empirical comparison of all
the algorithms, the first comparative study of label-placement heuristics, is presented in Section 4;3 it illus-
trates the advantages of the new methods and provides recommendations for selecting a labeling algorithm.

2 The Computational Complexity of PFLP

In this section, we review some recent results on the inherent complexity of PFLP that have implications for
algorithm design. To demonstrate the inherent complexity of the problem (and, subsequently, to compare
various algorithms for the task), we must decide upon a particular instance of search space and objective
function. We begin with a relatively simple version of the problem. Once this simplified problem is shown to
be NP-hard, it is straightforward to demonstrate that more complicated variants of the problem are also NP-
hard. Our initial statement of the PFLP problem relies on the following simplifying assumptions:

Search space: discrete placement model comprising four equally favored candidate positions — those
numbered 1 through 4 in Figure 1 — is used.

Objective function: The objective function to be minimized is the number of point features labeled
with one or more overplots. Point selection is not allowed.

This simplified PFLP problem is an optimization problem. In order to apply the theory of NP-complete-
ness to PFLP (Garey and Johnson, 1979), we formulate a corresponding decision problem. For any given
PFLP problem instance, we can ask the question: Is there an admissible labeling, a labeling with a score of
zero, in which no labels overlap and no point features are obscured? The NP-completeness of this admissi-
ble-labeling problem has been established independently by at least three different teams of researchers
(Kato and Imai, 1988; Marks and Shieber, 1991; Formann and Wagner, 1991).

An algorithm for the PFLP optimization problem could always be used to solve the admissible-labeling
problem: find an optimal labeling and check to see whether the cost is 0. Thus the PFLP optimization prob-
lem is at least as difficult as the admissible-labeling problem; in other words, the admissible-labeling result
implies that optimal PFLP is NP-hard.

If label sizes are held steady, increasing the scale of a map makes more room for labels. This observa-
tion leads to the following question: How much must the scale be increased to permit an admissible labeling
for a given PFLP problem instance? Formann and Wagner have developed an efficient algorithm for this
problem that is guaranteed to find an admissible labeling with a map scale no more than twice optimal (For-
mann and Wagner, 1991). In spite of the apparent intractability of the basic problem, some simple restric-
tions can reduce the complexity dramatically. For example, a placement model that allows only two
potential positions for each label results in a problem that is solved easily in polynomial time (Formann and
Wagner, 1991). Similarly, the restricted set of problem instances in which no potential label position over-
laps more than one other potential label position can also be solved efficiently.4 Unfortunately, these polyno-
mially solvable subcases are too simple to be of much practical interest.

The recent complexity results make it clear that PFLP is almost certainly intractable. Thus the failure of
previous researchers to find an exact, tractable algorithm for PFLP is not surprising — it is extremely
unlikely that anyone will ever discover such an algorithm. Instead, research efforts should be directed
towards powerful heuristic methods that do not have guaranteed performance bounds, but that may work
acceptably in practice. Several such algorithms are described and compared in the next section.

3. Brief summaries of this work have appeared elsewhere (Christensen 1993; 1994).
4. Developing an efficient algorithm for this artificial problem is left as an exercise for the interested reader.

June 20, 1994 4 Technical Report 94-12

3 Algorithms for PFLP

Previously proposed PFLP algorithms fall into two main classes: those that perform a potentially exhaustive
global search for an acceptable or optimal labeling, and those that perform search on a local basis only.

3.1 Exhaustive search versus local search

Exhaustive search algorithms for constraint satisfaction are often categorized as either brute-force or heuris-
tic, depending on the manner in which backtracking is performed (Korf, 1988). As an example of brute-
force backtracking, consider an algorithm that enumerates points in a prescribed order and places each label
in a position which is currently unobstructed. If, as the algorithm proceeds, a point cannot be labeled (either
because there are no positions without conflict, or because all available positions have been tried), the algo-
rithm returns to the most recently labeled point and considers the next available position. The algorithm con-
tinues in this way until an acceptable labeling is identified or until the entire search space has been
exhausted. A variety of modifications can be made to this algorithm in the hope of improving its perfor-
mance.

Guided depth-first search with backtracking has formed the basis for numerous reported algorithms for
label placement (Ahn and Freeman, 1984; Mower, 1986; Freeman and Ahn, 1987; Noma, 1987; Freeman,
1988; Jones, 1989; Cook and Jones, 1990; Ebinger and Goulette, 1990; Doerschler and Freeman, 1992;
Consorti et. al, 1993). While these algorithms perform acceptably for relatively small problems, in practice
the exponential nature of the search space quickly overcomes the heuristics for even moderately sized prob-
lems, making the approach of exhaustive search impractical as a general solution to the PFLP problem.
Although the complexity results demonstrate that any exhaustive method is inevitably intractable, we men-
tion these algorithms because tractable, nonexhaustive variants can be constructed from them. (See Section
3.2.) The widespread use of exhaustive search techniques for the combinatorial aspects of the label-place-
ment problem is indeed something of a mystery, given the availability of much better algorithms. Zoraster
(1991) notes that part of the problem might be the inappropriate use of expert-system technology: whereas a
rule-based approach is useful in general label placement for computing potential label positions and for eval-
uating candidate labelings, it suggests, misleadingly, that rule-based techniques — exhaustive search is easy
to implement in a rule-based system — are useful for all aspects of label placement.

3.2 Greedy algorithms

A more practical approach to search results from avoiding the unbounded backtracking strategy of the
exhaustive methods altogether. By limiting the scope of the search, more efficient algorithms can be devised.
Of course, these algorithms may not find optimal solutions, but the hope is that a suitable trade-off between
labeling quality and computational cost can be found.

Instead of undoing previously computed label placements, as in guided depth-first search with back-
tracking, any point whose label cannot be placed can be treated summarily: the point can be left out if point
selection is allowed (Langran and Poiker, 1986), or it can be labeled even though a label overlap or feature
obscuration results. (A third option, that of appealing to a human oracle for assistance, is noted by Yoeli
(1972) as a practical alternative.) Such a “greedy algorithm” for PFLP yields behavior that is tractable for a
much more realistic space of problems, although the lack of backtracking certainly impairs the quality of the
solutions that are found. For a greedy algorithm to be at all effective in identifying reasonable labelings, it is
essential that heuristics for guiding the search, such as those mentioned in Section 3.1, be used. Even then,
there is typically much improvement that can be made to the resulting labelings, as will be shown subse-
quently.

3.3 Discrete gradient descent

The quality of labelings produced by a greedy algorithm can be improved dramatically if the labelings are
repaired subsequently by local alteration. This is the motivation for the gradient-descent algorithms pre-
sented below. A gradient-descent method is defined relative to a set of operations that determine how an
existing labeling can be altered by specifying ways in which one or more labels can be repositioned simulta-
neously. The basic idea of gradient descent is to choose from among the set of available operations the one

Technical Report 94-12 5 June 20, 1994

that yields the most immediate improvement. By repeatedly applying the operation that most improves the
labeling (or, equivalently, the operation that causes the most movement in the direction of the objective-
function gradient), a new labeling can be computed that is significantly superior to the original. Again we
present a straw man to exemplify the idea. Let the set of operations comprise those that move a single label
arbitrarily from one potential position to another. An outline of the resulting algorithm, which we call dis-
crete gradient descent is given below:

1. For each feature, place its label randomly in any of the available candidate positions.

2. Repeat until no further improvement is possible:

(a) For each feature, consider moving the label to each of the alternative positions.

(b) For each such repositioning, calculate the change in the objective function which would
result if the label were moved.

(c) Implement the single label repositioning that results in the most improvement. (Ties are
resolved randomly.)

 In practice the algorithm precomputes a table of costs associated with each possible repositioning.
After each label positioning, only elements of the table that touch the old or new label positions are recom-
puted.

Local minima

Clearly, the major weakness of the discrete gradient-descent algorithm is its inability to escape from local
minima of the objective function. Figure 3 shows a typical example of a local minimum. In this case, the
conflict can be resolved by moving the lower feature’s label to its bottom-left position and the upper fea-
ture’s label to its upper-right position. Unfortunately, making any single move has no effect on the value of
the objective function, and, because the algorithm only accepts changes which show an immediate improve-
ment, the algorithm is unaware of the possibility of accepting a neutral move in order to make an improve-
ment. Adjusting the algorithm to allow it to make moves that do not affect the objective function might
remedy this particular example, but is not sufficient in general. In the example of Figure 4, the current value
of the objective function could be improved from 4 (Figure 4a) to 3 (Figure 4b) by moving the four middle
labels to their left-most positions. However any one of these moves will initially result in an uphill step and
an intermediate score of 5. To limit the incidence of such local minima, more sophisticated gradient descent
heuristics have been devised. Nevertheless, as we will see, the discrete-gradient descent method performs
surprisingly well given its naivete.

3.4 Approximating the gradient with overlap vectors

Hirsch (1982) presents a more sophisticated gradient descent method for PFLP. Hirsch’s algorithm uses a
continuous placement model in which each point feature has an infinite set of potential label positions. The
potential positions for a point touch, but do not intersect, a circle centered about the point; labels are allowed
to slide continuously around a circle (see Figure 5a). When the label touches at the highest, lowest, left-
most, or right-most points of the circle, it is considered to be in a special zone and is allowed to slide back
and forth along the point of tangency (see Figure 5b).

Figure 3: A local minimum of the discrete gradient-descent algorithm. The candidate label positions are marked with boxes, and
the selected label positions are shaded.

June 20, 1994 6 Technical Report 94-12

Initially each label is placed in the special zone to the right of its point. Each label is then tested for
overlaps with other labels and intersections with the circular boundaries of other points. For each conflict an
overlap vector is computed based on the x and y extents of the overlap or intersected area. Each overlap vec-
tor is split between the two conflicting features and represents the movement required to eliminate a particu-
lar conflict. The sum of overlap vectors associated with each label is then calculated to give an aggregate
vector that represents (in an intuitive sense) a good direction in which to move the label so as to eliminate
the overlaps and intersections. In Figure 5c the overlap vectors are drawn in light gray, and the aggregate
vectors in black. (For labels involved in only one conflict the single overlap vector and the aggregate vector
are the same.)

Once an aggregate overlap vector has been calculated for each label, the algorithm seeks to move each
label in the general direction of this vector in an effort to generate a labeling with fewer overlaps. The heu-
ristic technique employed involves two styles of movement, a gradual movement around the circle and a
more abrupt movement which shifts the label directly to the point on the circle indicated by the overlap vec-
tor. Thus there are only two operations available for altering a labeling, but each operation is applied to all
point features on a given round of application so that many labels may change positions simultaneously. The
gradual-style movement involves a series of heuristic rules that specify whether the label should be reposi-
tioned exactly as the aggregate vector indicates, whether only one component of the aggregate vector should
be used to reposition the label (e.g., if it is in a special zone), or whether the label should simply be moved to
the nearest special zone in the direction of the aggregate vector (e.g., if the vector indicates the label should
be positioned outside of the current quadrant). Hirsch suggests alternating between the two movement
styles, with more frequent application of the gradual-style movement.

Figure 4: Another local minimum of the discrete gradient-descent algorithm (a) and an optimal configuration (b). The candidate
label positions are marked with boxes, and selected label positions are shaded. Obstructed label positions are shaded dark.

(a) (b) (c)

Figure 5: Some example potential label positions for Hirsch’s algorithm (a), along with the special zones (b), and an example of
overlap vectors (c)

(a)

(b)

Technical Report 94-12 7 June 20, 1994

The intuition behind the algorithm is best explained by an analogy with a physical system. The individ-
ual overlap vectors represent a “force” of repulsion between overlapping objects, the sum an aggregate
force. Thus, through gradual movements, the system settles into a local minimum of the “energy” of the sys-
tem. The overlap vectors approximate the gradient in the energy space. To allow some ability to exit from
local minima, the abrupt movements are designed to allow a jump from one energy state to another, hope-
fully lower one.

There are two sources of problems for Hirsch’s algorithm. First, since the overlap vectors provide only
an approximation of the gradient, they are subject to error. Second, like the discrete gradient-descent algo-
rithm, Hirsch’s algorithm is susceptible to getting stuck in local minima.

Gradient approximation errors

A typical dilemma is due to the summation of overlap vectors. When multiple labels overplot a single label,
the magnitude of the calculated aggregate vector will often be unnecessarily large, leading to problems of
overshooting during gradual-style movements.

Note also that Hirsch’s overlap vectors each exhibit two degrees of freedom, whereas the labels are con-
strained to lie tangent to their associated circles. The result is that even in those cases where the accumulated
overlap vector represents a favorable direction of movement, the particular manner in which a label is repo-
sitioned is often quite fragile. If a large component of the overlap vector points radially outward, for exam-
ple, the location of the repositioned label is somewhat arbitrary.

Local minima

Hirsch’s algorithm, like the discrete gradient-descent algorithm, can also get stuck in local minima. The
nature of these minima is closely related to the specific heuristics the algorithm employs in response to vari-
ous overlap situations. Figure 6 shows a problematic configuration. During applications of gradual-style
movement, the label is adjusted slightly up and down until it is centered between, but still conflicting with,
the two labels above and below. During applications of the abrupt-style movement, the horizontal compo-
nent of the overlap vector dominates, and the label cycles between the left and right placements, missing the
acceptable positions above and below the feature.

(a) (b)

(c)

Figure 6: A local minimum of Hirsch’s algorithm. The algorithm oscillates between configurations (a) and (b), unable to discover
the preferred configuration (c).

June 20, 1994 8 Technical Report 94-12

Compensating for the placement model

In order to compare the performance of Hirsch’s algorithm against other PFLP algorithms, several issues
relating to the placement model need to be addressed. The presence of a circular buffer surrounding each
point feature handicaps the algorithm, disallowing free space that other algorithms are able to exploit and
forcing labels outward, increasing their effective dimensions. We considered two methods to compensate for
this. First, we experimented with adjusting the label sizes for Hirsch’s algorithm. We decreased the dimen-
sions of each label such that the combined area of the placement circle and reduced label was equivalent to
the area of the unmodified label. Second, we simply set the radius of the placement circle to zero. We found
the latter method to perform slightly better on average, and included this variant of the algorithm in our com-
parisons.5A related issue involves the continuous nature of the placement model. Since this allows a larger
and therefore less-constrained search space, this probably gives Hirsch’s algorithm an advantage. Although
this discrepancy is harder to resolve, a fairer comparison could be obtained by running the discrete algo-
rithms with a 16 or 20-position placement model, as opposed to the four-position model used in the experi-
ments. However, the results described in Section 4 render this point irrelevant.

3.5 Mathematical programming for PFLP

 Next, we turn to an algorithm introduced by Zoraster (1986; 1990) that addresses the optimization nature of
PFLP directly by applying mathematical programming techniques to its solution.6 Zoraster begins by formu-
lating PFLP as a 0-1 integer programming (ZOLP) problem:7

• Given labels and possible positions for each label, each potential label position is repre-

sented by a variable , , and . (Point selection is achieved by specifying a

special label “position” that indicates a deselected point.)

• Each has value 0 or 1, indicating the absence or presence, respectively, of a label in that posi-

tion.

• One set of constraints expresses the requirement that each point be labeled exactly once:

 for .

• Given pairwise overlaps between possible label positions, a second set of constraints expresses

the requirement that no two labels overlap: for each potential overlap, .

• The objective function is , where is a weighting that represents placement

preferences.

Because ZOLP is itself NP-hard (Karp, 1972; Sahni, 1974), a complete, efficient algorithm for the
PFLP problem recast in this way is still not possible, but heuristic techniques for ZOLP can now be applied
to the PFLP problem. Zoraster combines Lagrangian relaxation, subgradient optimization, and several prob-
lem-specific heuristics in his solution. The primary insight of Zoraster’s algorithm is to relax the overplot
constraints and include them as additional penalty terms in the objective function. This gives:

• Minimize

5. This is perhaps not surprising given the algorithm’s predilection for label placements within special zones. Gradual-style
movements tend to relocate labels into special zones, whereas only application of the abrupt movement style is able to move a label out
of a special zone. Since the algorithm finishes with a series of 15 gradual-style movements, in practice nearly all labels finish in special
zones.

6. This algorithm is in commercial use in the oil industry to label drilling maps (Zoraster, 1990).
7. Cromley (1986) has experimented independently with a slightly different ZOLP formulation of the label-placement problem.

K k

i k, i Nk≤ ≤ k K≤ ≤

i k,

Xi k,

k

∑ 1= k K≤ ≤

Q

q sq, Xr'q s'q,+ ≤ q Q≤ ≤

Wi k, X×
Nk

∑∑ i k,

Wi k, Xi k,×
k

∑ Xrq sq, Xr'q s'q, –+(
Q

∑+

Technical Report 94-12 9 June 20, 1994

• Still subject to for

In this modified objective function, the are Lagrangian multipliers, one for each pairwise overplot
constraint. Note that for a given set of Lagrangian multipliers, the minimum value of the objective function
is easily identified by choosing the label-position variable with the smallest objective-function coefficient
for each point feature. Although Lagrangian methods for ZOLP can be arbitrarily sophisticated, Zoraster’s
basic algorithm is a straightforward implementation of standard techniques (Fisher, 1981):

1. Compute and store the objective-function coefficient for each potential label position.

2. Generate a current labeling (CL) by picking the label position with the lowest objective-function
coefficient for each point feature.

3. Initialize the active constraint set (ACS) to the empty set.

4. Repeat for 40 iterations or until a solution with no label conflicts is found:

(a) Identify all pairwise constraints that CL violates and add any new ones to ACS. (The
Lagrangian multiplier of each newly introduced constraint is zero initially, so adding a new
constraint to ACS does not affect the objective-function coefficients.)

(b) Make a local copy, CL', of CL.

(c) Repeat for x iterations, where x is the lower of 400 or the number of iterations required to
find a feasible solution with respect to the current ACS, plus an additional 100 iterations if a

feasible solution is found in the first 400 iterations:8

i. Update CL' by picking the label position with the lowest objective-function coefficient
for each point feature.

ii. Copy CL' to CL if it is better.

iii. If a constraint in ACS is overconstrained (i.e., both conflicting label positions are occu-
pied), the corresponding Lagrangian multiplier is increased, thus increasing the objec-
tive-function coefficients for the two label positions involved.

iv. If a constraint in ACS is underconstrained (i.e., both conflicting label positions are not
occupied), the corresponding Lagrangian multiplier is decreased, thus decreasing the
objective-function coefficients for the two label positions involved.

 5. Return CL.

Local minima

If the algorithm were implemented exactly as described above, it would perform quite poorly. The algorithm
exhibits two weaknesses: a pronounced sensitivity to local minima, and a tendency to fall into useless cyclic
behavior.

To address the worst of these deficiencies, Zoraster recommends a series of modifications to the basic
algorithm. The first heuristic he suggests is rescaling the size of the multiplier increments used in 4(c)iii and
4(c)iv. If a specified number of iterations have passed without improving the best solution seen, the algo-
rithm is assumed to be in a region surrounding a local minimum of the objective function. By reducing the
multiplier increments periodically, the algorithm is often able to identify improved minima.

In spite of the modifications mentioned above, the algorithm tends to cycle about local minima, con-
stantly re-evaluating a particular sequence of labelings. If two features have overlapping label positions, for

8. This inner loop constitutes the Lagrangian heuristic, with steps (iii) and (iv) constituting the subgradient optimization. Note
that the Lagrangian heuristic will be solving relatively simplified versions of the full problem initially, because very few constraints will
be included in ACS at first.

Xi k,

k

∑ 1= k K≤ ≤

q 0≥

June 20, 1994 10 Technical Report 94-12

example, and both are currently occupied, then the associated objective-function coefficients of both posi-
tions will be increased. This will make them less attractive over time and it is likely that both labels will be
simultaneously moved to alternate positions. On subsequent iterations, both positions will still overlap but
are now unoccupied so their associated coefficients will decrease. This will make both positions relatively
more attractive to their respective features and it often occurs that they will be simultaneously reoccupied.
This situation is illustrated in Figure 7. In order to avoid this particular type of cyclic behavior, Zoraster dis-
criminates in the overconstrained case, applying the multiplier to only one of the objective-function coeffi-
cients; the choice between coefficients is made by examining whether the algorithm is currently in an odd-
or even-numbered iteration. This heuristic proves to be crucial to the success of the algorithm but is some-
what disappointing as it has no motivation or analogue in the mathematical formulation.

A more insidious form of cycling can be caused by the intersection of more than two potential label
positions. Overplots will gradually be discouraged, yet resolved overplots will result in underconstrained
pairwise constraints, which in turn encourage surrounding labels to repopulate the contentious region. This
situation is illustrated in Figure 8. Since the center candidate position overplot represents an undercon-
strained constraint, the left and right labels will be encouraged to move into the conflicted area, despite the
fact that this will always introduce a conflict with the top label. As the number of label positions that overlap
increases beyond three, the problem is exacerbated since label positionings are encouraged in regions which
are often already dense with overplots. Zoraster attempts to address this deficiency by arbitrarily pinning
variables (i.e., fixing their values permanently) that are subject to four or more pairwise overplot constraints.
If no feasible solution has been identified after 400 iterations of the Lagrangian heuristic, variables that are
subject to more than three overplot constraints are pinned to zero. If after 600 iterations a feasible solution
has still not been identified, the current (infeasible) solution is returned to the top level of the algorithm. This
is equivalent to arbitrarily eliminating label positions in crowded areas of the map.

Another attempt to control the algorithm’s susceptibility to this weakness is the choice of multiplier
increments. Zoraster recommends an initial overconstrained stepsize of and an underconstrained stepsize
of . The relative magnitudes of the stepsizes loosely represent the ability of a violated constraint to dis-
courage subsequent reoccupation of a conflicted label position. Although Zoraster offers these values as
empirical constants based on his experiments with a variety of different maps, optimal values are probably

(a) (b) (c)

Figure 7: Stable and unstable configurations for Zoraster’s approach. The conflict in configuration (a) causes the filled regions of
the upper and left points to be disfavored, and the slack in the potential conflict between the lower and left points causes the
unfilled regions for those two points to be favored. This leads eventually to modifying the configuration as in (b). This
configuration, similarly, eventually leads back to the configuration in (a). The stable configuration (c) is never found.

Figure 8: An unstable configuration for Zoraster’s algorithm.

1
8

1
16

Technical Report 94-12 11 June 20, 1994

dependent on the density of the particular labeling problem. Indeed, we obtained better performance by
using slightly modified parameter values and by making other subtle changes to the algorithm, as discussed
elsewhere (Christensen, 1992).

3.6 Stochastic search

As we have seen, each of the local search methods can be trapped in local minima of the search space; the
inherent intractability of the problem makes this inevitable for any practical algorithm. Nonetheless, we may
still hope to improve upon the level of performance exhibited by these algorithms by examining more care-
fully the frailties that they exhibit.

The problems with the local search methods fall into two classes. First, there are systematic patterns on
which the various algorithms get into trouble by getting trapped in local minima. As the number and density
of points increases, the odds of seeing these patterns increase correspondingly, and performance may
degrade. Second, the particular operations that the algorithms incorporate do not allow for jumping out of a
local minimum once one is found. These two behaviors of systematicity and monotonicity are symptomatic
of problems for which stochastic methods tend to work well. Stochastic methods, such as simulated anneal-
ing (Kirkpatrick, Gelatt Jr., and Vecchi, 1983; Cerny, 1985) and genetic algorithms (Holland, 1975), attempt
to resolve the problems of systematicity and monotonicity by incorporating a probabilistic or stochastic ele-
ment into the search. Since the stochastic course of behavior is unpredictable, systematic artifacts of the
algorithm can be eliminated, and allowance can be made for a suitably limited, nonmonotonic ability to
jump out of local minima. It seems natural then to apply a stochastic method to the PFLP problem.

Simulated annealing for PFLP

Simulated annealing (Kirkpatrick, Gelatt Jr., and Vecchi, 1983; Cerny, 1985) is essentially a stochastic gra-
dient descent method that allows movement in directions other than that of the gradient. In fact, the solution
is sometimes allowed to get worse rather than better. Of course, such anarchic behavior is not tolerated uni-
formly. Rather, the ability of the algorithm to degrade the solution is controlled by a parameter T, called the
temperature, that decreases over time according to an annealing schedule. At zero temperature, such nega-
tive steps are disallowed completely, so that the algorithm reduces to a descent method (though not necessar-
ily along the gradient). At higher temperatures, however, a wider range of the space can be explored, so that
regions surrounding better local minima (and perhaps even the global minimum) may be visited. The fol-
lowing outline describes the essential characteristics of a simulated annealing algorithm for PFLP:

1. For each point feature, place its label randomly in any of the available potential positions.

2. Repeat until the rate of improvement falls below a given threshold:

(a) Decrease the temperature, , according to the annealing schedule.

(b) Pick a label and move it to a new position.

(c) Compute , the change in the objective function caused by repositioning the label.

(d) If the new labeling is worse, undo the label repositioning with probability .

The implementation of a standard simulated annealing algorithm involves four components: choice of
an initial configuration, an appropriate objective function, a method for generating configuration changes,
and an annealing schedule.

Initial configuration. As an alternative to starting with randomly placed labels, one could consider a
“piggyback” method where simulated annealing is applied as a post-process to the results of another algo-
rithm. In our experiments, however, this did not lead to either a significantly better solution or faster conver-
gence.

Objective function. The choice of objective function affects the aesthetics of the layout, the quality of
the solution, and efficiency of the search. Because simulated annealing is a statistical method which relies on
a large number of evaluations for its success, the best objective functions are those for which can be

T

E∆

1.0 e E ⁄∆––=

E∆

June 20, 1994 12 Technical Report 94-12

computed easily. The objective functions we chose counted the number of obstructed labels (if point selec-
tion was disallowed) or the number of deleted labels plus the number of obstructed labels. If point selection
is allowed, we also considered an objective function which counts the number of pairwise overplots plus the
number of deleted labels. This change in objective function doesn’t noticeably change the performance of
the annealing algorithm, but has the advantage of being significantly faster to compute.

Configuration changes. We have experimented with two strategies for choosing which label to reposi-
tion: the label can be chosen randomly from the set of all labels, or it can be chosen randomly from the set of
labels that are currently experiencing a conflict. The second method isolates changes to those parts of the
map that have conflicts, causing the algorithm to converge faster. When cartographic preferences that distin-
guish label positions are included in the problem, this simplification is no longer acceptable because the
movement of unconflicted labels may affect the current value of the objective function. In our experiments
the more time-consuming method of choosing from all available features was used.

Annealing schedule. The initial value of T was selected so that when . At each temper-
ature a maximum of labels are repositioned, where is the number of point features. The temperature
is then decreased by 10 per cent. We employ a Metropolis-style algorithm, always accepting a suggested
configuration change if it leads to a lower cost. If more than successful configuration changes are made
at any temperature, the temperature is immediately decreased. This process is repeated for at most 50 tem-
perature stages. However, if the algorithm stay at a particular temperature for the full steps without
accepting a single label repositioning, then it stops with the current labeling as the final solution. We found
the particular choice of annealing schedule to have a relatively minor affect on the performance of the algo-
rithm as discussed in Section 4. This particular schedule was chosen to provide a reasonable trade-off
between efficiency and solution quality; longer annealing schedules result in slightly improved solutions.

4 Comparison Experiments

In order to compare the effectiveness of this wide variety of algorithms for PFLP, we implemented six algo-
rithms chosen from the set of non-exhaustive methods for PFLP. (Our experiments have shown that exhaus-
tive methods are intractable for maps with as few as 50 point features.) The algorithms evaluated included a
straw-man random-placement algorithm, in which label positions are assigned in a completely random fash-
ion. This algorithm serves as an effective lower bound on algorithm performance. A greedy algorithm that
serves as an efficient variant of the exhaustive methods described in Section 3.1 was also tested. The discrete
gradient-descent algorithm was implemented, in addition to the algorithms of Hirsch and Zoraster. Finally, a
stochastic algorithm utilizing simulated annealing was implemented. Each of the algorithms (except for Hir-
sch’s) was allowed four candidate placement positions for labels. All candidate positions were taken to be
equally desirable, i.e., preferences among different potential label positions were not considered (except
where otherwise noted).9 A complete discussion of the implementation details for all of the algorithms is
provided elsewhere (Christensen, 1992).

We began our comparison by testing the performance of each of the algorithms on randomly generated
data, with and without point selection, to establish an overall ranking. To determine whether the relative per-
formance of the algorithms was affected by the particular distribution, we then conducted similar tests on
naturally occurring point-feature data. Next we ran a series of experiments on two gradient-descent variants
in an attempt to improve on the best seen solutions. Finally we investigated the effects of varying the anneal-
ing schedule, and noted that the presence of cartographic preferences for candidate positions plays an impor-
tant role in the usefulness of varying the annealing schedule. For this we conducted four additional trials,
comparing the performance of three different annealing schedules while varying the use of point selection as
well as the inclusion of cartographic preferences.

In the first group of tests, n point features with fixed-size labels (30 x 7 units) were randomly placed on
a grid of size 792 by 612. (These dimensions were selected subjectively in an effort to identify a typical map

9. In many types of production-quality maps, overplots are often preferred to feature deletion (Ebinger and Goulette, 1990).

2
3
---= E∆ 1=

0n n

n

0n

Technical Report 94-12 13 June 20, 1994

scale for an 11 by 8.5 inch page size.) Tests were run for n = 50, 100, 150, …, 1500. For each problem size
tested, 25 layouts were generated, a score was calculated equal to the fraction of labels placed without over-
plots, and the results were averaged to give a composite result for the algorithm at that problem size. These
tests were then repeated with point selection allowed. For most of the algorithms (greedy, gradient descent,
Zoraster, and simulated annealing) this was a natural extension. For the Hirsch algorithm, however, there
was no straightforward method of allowing points to be deleted. In order to include Hirsch’s algorithm in the
point-selection comparisons, we developed a post-pass deletion heuristic which seeks to clear the map of
overplots with the fewest number of label deletions possible. This heuristic deletes the feature whose label
has the greatest number of conflicts with other (non-deleted) labels. This process is repeated until the map is
free from overplots. Although this algorithm is clearly non-optimal (it is straightforward to show that opti-
mal PFLP is reducible to the problem of optimal label deletion and therefore NP-hard), we found it to be an
acceptable heuristic in practice. The score was again the fraction of labels placed without conflict. Figure 9
shows the results of these experiments. As these graphs show, simulated annealing performs significantly
better across the full range of problems considered. Other perspectives on these results are shown in Figures
10 and 11. Figure 10 shows a particular random map of 750 point features labeled by the six basic algo-
rithms. Figure 11 illustrates the variance across different problem instances for 25 different trials of 750
point features.

Next, cartographic data for Massachusetts were used to test the algorithms on naturally occurring point-
feature distributions obtained from the GNIS state file for Massachusetts (United States Geological Survey
1990). The algorithms were again scored based on the number of unconflicted labels, both with and without
point selection. At each problem size, 25 layouts were generated by choosing randomly from the data file.
For example at n = 350, each problem instance was generated by choosing 350 point features randomly from
the GNIS data. Tests were run for n = 50, 100, 150, …, 500. Figure 12 shows the results of these tests.
Because the ratio of average label size to available map area is significantly larger for the Massachusetts
examples, and due to clustering of the point features, the performance of the algorithms deteriorates faster in
the graphs of Figure 12 relative to Figure 9. Nonetheless, the overall rankings were preserved.

Though the simulated annealing algorithm easily dominated the competing algorithms, we noted that
the discrete gradient-descent algorithm performed surprisingly well, especially at high densities, given its
simplicity. To investigate the promise of this approach in more detail, we implemented two related algo-
rithms, “2-opt” and “3-opt” discrete gradient-descent algorithms which consider the best sequence of two
and three repositionings at each iteration.10 A practical implementation of these algorithms is moderately

10. We use these terms because of the similarity of these methods to the k-opt methods proposed for the NP-complete Traveling
Salesman Problem (TSP). Variants of this method comprise the current best methods for the TSP (Johnson, 1990).

Figure 9: Results of empirical testing of six PFLP algorithms on randomly generated map data with point selection
prohibited and allowed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

Random Data without Selection

Simulated Annealing
Zoraster

Hirsch
Gradient Descent

Greedy
Random Placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

Random Data with Selection

Simulated Annealing
Zoraster

Hirsch
Gradient Descent

Greedy
Random Placement

June 20, 1994 14 Technical Report 94-12

complicated and requires a careful strategy for selective rescoring of repositionings at each iteration, sup-

Random Placement (564) Greedy Depth-First Placement (341)

Discrete Gradient Descent (222) Hirsch’s Algorithm (222)

Zoraster’s Algorithm (219) Simulated Annealing (75)

Figure 10: A sample map of 750 point features with labels placed by the six different algorithms. Labels printed in dark grey overplot other
labels or points. Labels printed in light gray are free of overplots. Numbers in parenthesis indicate the final value of the objective function
computed as the number of labels with overplots.

Technical Report 94-12 15 June 20, 1994

porting data structures for efficient search of a table of repositionings, and some clever record-keeping mea-
sures. Figure 9 shows the results of these new variants compared with the original discrete gradient-descent
algorithm, the simulated annealing algorithm and the random placement algorithm. Although the “2-opt”
and “3-opt” algorithms each improve on the performance of their predecessor, the degree of improvement
grows less in each case, hinting towards an asymptote around the performance of the simulated annealing
algorithm. Further, even with a very careful implementation, the computational requirements of the 2-opt
and 3-opt algorithms quickly become unreasonable as the number of candidate positions increases.

The next set of experiments investigated the effect of the annealing schedule on the performance of the
simulated annealing algorithm. We found that for very simple objective functions, e.g., the original 4-posi-
tion model without placement preferences, most potential label repositionings have no effect on the value of
the objective function. For such spaces, a simple random descent (the equivalent of zero-temperature simu-
lated annealing) performs nearly as well as simulated annealing at medium and even long schedules. This is
seen in Figure 12. As the terrain of the search space becomes rougher, and involves a greater number of local
minima, the utility of the annealing schedule is increased. Figure 12 shows that in experiments involving a
4-position model with placement preferences, the performance of zero-temperature annealing drops roughly
to that of the discrete gradient-descent algorithm.11

Figure 11: Range of results generated for 25 different labeling problems involving 750 and 1500 point features. The worst
case of simulated annealing falls significantly above the best case of competing algorithms, even across different trials.

Figure 12: Results of empirical testing of six PFLP algorithms on GNIS data for Massachusetts with point selection
prohibited and allowed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anneal Hirsch Zoraster Gradient Greedy Random

Sc
or

e

Solution Variance: 750 Point Features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anneal Gradient Hirsch Greedy Zoraster Random

Sc
or

e

Solution Variance: 1500 Point Features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Sc
or

e

Number of Point Features

Massachusetts Data without Selection

Simulated Annealing
Zoraster

Hirsch
Gradient Descent

Greedy
Random Placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Sc
or

e

Number of Point Features

Massachusetts Data with Selection

Simulated Annealing
Zoraster

Hirsch
Gradient Descent

Greedy
Random Placement

June 20, 1994 16 Technical Report 94-12

Computational resources required for the various algorithms vary dramatically, but not unexpectedly.
As a rough indication of algorithm performance, Figure 16 depicts a scatterplot of running times for each of
the algorithms running on a DEC 3000/400 AXP workstation. To the extent that these running times are rep-
resentative of the intrinsic computational requirements of each algorithm, certain subsumption relationships
can be derived. In Figure 16a, for example, Zoraster’s algorithm lies to the lower right of the 3-opt discrete
gradient-descent algorithm, indicating that it is both slower and exhibits inferior solutions. The 3-opt algo-
rithm, in turn, is dominated by the simulated annealing algorithm. Eliminating algorithms which are sub-
sumed by the two algorithms leaves a “staircase” of algorithms which, depending on time vs. solution
quality requirements, would be preferred for a given task. At both densities shown, this staircase includes, in
order of increased computation time and solution quality: random placement, the greedy algorithm, the orig-

11. Note that the performance of the gradient-descent algorithm appears to have increased relative to the original experiments.
Because the original objective function yields a search space with many flat plateaus, the algorithm is often unable to find the edge of a
plateau and terminates; the modified objective function yields virtually no plateaus and the algorithm is able to continue further before
reaching a local minimum. A second reason for the improvement is the inclusion of preferences in the score metric. Since the score con-
siders a larger dynamic range, the scale of the graph along the y-axis is more compressed, resulting in a closer grouping of the algo-
rithms. (Notice the relatively higher performance of random placement as compared with the previous trials.)

Figure 13: Results of empirical testing of discrete gradient-descent algorithms on randomly generated map data.

Figure 14: Comparison of annealing schedules against a gradient-descent algorithm without cartographic preferences.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

Random Data without Selection

Simulated Annealing
Gradient Descent (3-opt)
Gradient Descent (2-opt)
Gradient Descent (1-opt)

Random Placement
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

Random Data with Selection

Simulated Annealing
Gradient Descent (3-opt)
Gradient Descent (2-opt)
Gradient Descent (1-opt)

Random Placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

SA Schedule: No Selection, No Preferences

SA (longer schedule)
SA (standard schedule)
SA (zero temperature)

Gradient Descent
Random Placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

SA Schedule: Selection, No Preferences

SA (longer schedule)
SA (standard schedule)
SA (zero temperature)

Gradient Descent
Random Placement

Technical Report 94-12 17 June 20, 1994

inal gradient-descent algorithm, the 2-opt gradient-descent algorithm, and the simulated annealing algo-
rithm.

5 Conclusions

The point-feature-label placement problem is a graphics-design problem of practical importance and noted
difficulty. Analysis of the computational complexity of the problem bears out its inherent difficulty; the
search for good heuristic solutions thus becomes important. In this paper, we have proposed two new algo-
rithms for PFLP — variants of discrete gradient descent and simulated annealing — for PFLP, and compared
them with previously proposed algorithms. This empirical testing, which constitutes the first such compara-
tive study, provides the basis for a graphic comparison of the time-quality tradeoff in label-placement algo-
rithms, demonstrating that certain algorithms — 3-opt gradient descent, Zoraster’s, and Hirsch’s algorithm,
for instance — are subsumed by others in both speed and quality. The experiments also argue for the use of
simulated annealing over the alternatives when overall solution quality is critical. For time-critical applica-
tions, the annealing schedule can often be shortened or eliminated altogether while still providing reasonable
solutions. This result stands in contrast to previous empirical investigations of simulated annealing, which

Figure 15: Comparison of annealing schedules against a gradient-descent algorithm with cartographic preferences. (Note
that the lines corresponding to zero-temperature annealing and gradient descent lie very close together).

Figure 16: Running times for 10 different trials of 750 point features and 1500 point features (note the logarithmic scale of the x axis).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

SA Schedule: No Selection, Preferences

SA (longer schedule)
SA (standard schedule)
SA (zero temperature)

Gradient Descent
Random Placment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 150 300 450 600 750 900 1050 1200 1350 1500

Sc
or

e

Number of Point Features

SA Schedule: Selection, Preferences

SA (longer schedule)
SA (standard schedule)
SA (zero temperature)

Gradient Descent
Random Placement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

Sc
or

e

CPU Seconds

750 Point Features

Random
Greedy

Gradient Descent
Hirsch

Gradient Descent (2-opt)
Simulated Annealing

Gradient Descent (3-opt)
Zoraster

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

Sc
or

e

CPU Seconds

1500 Point Features

Random
Greedy

Gradient Descent
Hirsch

Gradient Descent (2-opt)
Simulated Annealing

Gradient Descent (3-opt)
Zoraster

June 20, 1994 18 Technical Report 94-12

have shown that for a few NP-hard problems simulated annealing is competitive with customized heuristic
techniques, but typically only when allowed to run for very long periods of time (Johnson et al., 1989;
1991). Simulated annealing has the additional advantage of being one of the easiest algorithms to imple-
ment. Table 1 gives the number of lines of code for each of the algorithms under our implementation, as an
admittedly rough indication of implementation complexity.12

Unlike much of the previous work on label placement, the approach we have suggested cleanly sepa-
rates the combinatorial-optimization aspect of the problem from the candidate-position modeling aspect.
This way of stating the problem allows for the search algorithms discussed here to be used with more
advanced cartographic positioning models. Modifying the algorithm to generate new sets of potential label
positions, which is necessary to permit the labeling of line and area features, is accomplished easily, pro-
vided adequate models of line-feature (Ebinger and Goulette, 1990) and area-feature labeling (Carstensen,
1987; van Roessel, 1989) are available. Figure 17 shows a sample map involving all three feature types, as
labeled by the simulated annealing algorithm (Edmonds et al., 1994). Changing the objective function to
allow for a priori placement preferences, sophisticated point selection, and complex interactions between
labels and map symbology is also possible.

6 Acknowledgments

The research reported in this paper was funded in part by a contract with U S WEST Advanced Technolo-
gies, by Presidential Young Investigator Award IRI-9157996 from the National Science Foundation, and by
a grant from Digital Equipment Corporation. Andy Breeding, an information analyst at Digital Equipment
Corporation, assisted us in the compilation of the bibliography. Thanks also to Tom Ngo and Shawn
Edmondson for additional support.

12. Our implementation makes extensive use of function pointers to provide dynamic reconfiguration of the basic aspects of each
algorithm. As a result, however, these numbers are undoubtedly higher than those which would occur in more straightforward imple-
mentations.

Algorithm Lines of C code

Random Placement 20

Greedy 79

Gradient Descent (1-opt) 210

Simulated Annealing 239

Zoraster 346

Hirsch 381

Gradient Descent (2-opt) 1807

Gradient Descent (3-opt) 2284

Table 1: Lines of source code for label placement algorithms

Technical Report 94-12 19 June 20, 1994

(a)

(b)

Figure 17: A map involving line, area, and point features labeled by the simulated annealing algorithm. The initial random
labeling is shown in (a). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c).

Flovoguland

B
ig K

u R
iver

D
utu

 R
iv

er

Gusho River

Hakisutu R.

Nabuko River
Yuvu River

Pozo
sa

ko R
iv

er

R
io

 M
ic

h
i

K
u
 R

d
.

W
uphusho R

d.

V
ik

o
s
tiru

 R
d
.

Shuriyovi Road

Scrutu Road

Babrurotown

Bajoditown

Bakifli

Bishoru

Bivofiki

Bozashu

Braflapha City

Brapa City

Brashowo

Brikha

Broquiflo

Brurudatown

Brusuka

Bruvo

Buchustu

Bumuthitown

Chibruphuyu

Chifo

Chitho

Chofo

Chotri

Chubabriville

Chuhana

Chuzuga

Datown DeVille

Di City

Do

Dochasho

Dojovuho

Doronitown

Faquakhutriville

Fika

Flaflutown

Flamurikhutown

Flipu City

Flitown

Flucho

Flushukhuza

Fo

Foro

Fotro

Fuqette

Fuzufla

Gaflutho

Gapuni City

Godasto

Gomuscri

Gotabra City

Guliville

Gupo City

Hatown

Hidazabri

Hifo
Hodi City

Horuhi City

Hu

Ji City

Jihawa

Jiscro

Jitoro

Joni City

Jowafiquo

Juhu

Kada

Kapha

Khago

Khakhitown

Kharascra

Khitho

Kho

Khomido

Khumusha

Zupholi

Khutriville

Kipolatown

Kiscraga

Kitru

Lastopa

Lavojutown

Li City

Li

Lodo

Lukhi

Maduhavotown

Mapokhitown

Masto

Mibu

Muhoshosti

Mujo City

Mupha

Muya

New Ba

New Do

New Gaboni

New Huma

New Mo

New Mupadi

New NazoscraNew Nivubro

New Ru

New Ruzogohei New Scrikhi

New Scrivuta

New Scrostomitri

New Si

New Tarulu

New Thokoflati

New Tri

New Wuphostiba

New Yaqua

New Yoma

New Zodobru

Nodotown

Nuchu

Pahavoville

Pakhowaville

Phayu

Pho

Phudibru

Pokhu

Pupo

Puthi

Quachozato City

Quavi City

Quibufoka

Quitown

Quivokha

Quotown

Ra

Rasti

Raville

Roji

Roshu

Rothunu

Rukhu

Saflobrajotown

Shamatu

ScramoScrasha City

Scrawi

Scri

Scri

Scri

Scrikhu City

Scrochiflokha

Scrojo

Scroyitown

Scrushastatho

Scruyipotown

Shatruville

Shazachutown

Shosisiville

Shuwobu

Siju

Sipo

Soupofo

Stazo

Stishatho

Stiville

Stobobri

Stotha

Stozimi

Stu

Stukhotown

Stuwo

Stuzukofoville

Sudutown

Sula

Takhudutown

Thathotown

Thiflu

Thisuquotown

Tho

Tivisho

Toscra

Tra

Trovalaka

Trubrotu City

Truville

Tulo

Va

Visa City

Wa

Wafijuhi

Wasta

Wiyura

Wobopa City

Wofatoville

Woqua

Wowusi

Yibroti

Yokitritown

Yosho

Yufa City

Yuru

Zadini

Zatro

Zifoyu

Ziqua
Ziquawa

Zistu

Zitro

Zoshophu

Zosto

Zota

Zugoyabri

Flovoguland

B
ig K

u R
iver

D
ut

u
R
iv

er

G
u
sh

o
 R

iv
e
r

Hakisutu R.

N
a
b
u
k
o
 R

iv
e
r

Yuvu River

P
o
zo

sa
k
o
 R

iv
e
r

R
io

 M
ic

h
i

K
u
 R

d
.

W
u

p
h

u
sh

o
 R

d
.V

ik
o
s
tiru

 R
d
.

Shuriyovi Road

Scrutu Road

Babrurotown

Bajoditown

Bakifli

Bishoru

Bivofiki

Bozashu

Braflapha City

Brapa City

Brashowo

Brikha

Broquiflo

Brurudatown

Brusuka

Bruvo

Buchustu

Bumuthitown

Chibruphuyu

Chifo

Chitho

Chofo

Chotri

Chubabriville

Chuhana

Chuzuga

Datown
DeVille

Di City

Do

Dochasho

Dojovuho

Doronitown

Faquakhutriville

Fika

Flaflutown

Flamurikhutown

Flipu City

Flitown

Flucho

Flushukhuza

Fo

Foro

Fotro

Fuqette

Fuzufla

Gaflutho

Gapuni City

Godasto

Gomuscri

Gotabra City

Guliville

Gupo City

Hatown

Hidazabri

Hifo

Hodi City

Horuhi City

Hu

Ji City

Jihawa

Jiscro

Jitoro

Joni City

Jowafiquo

Juhu

Kada

Kapha

Khago

Khakhitown

Kharascra

Khitho

Kho

Khomido

Khumusha

Zupholi

Khutriville

Kipolatown

Kiscraga

Kitru

Lastopa

Lavojutown

Li City

Li

Lodo

Lukhi

Maduhavotown

Mapokhitown

Masto

Mibu

Muhoshosti

Mujo City

Mupha

Muya

New Ba

New Do

New Gaboni

New Huma

New Mo

New Mupadi

New Nazoscra

New Nivubro

New Ru

New Ruzogohei
New Scrikhi

New Scrivuta

New Scrostomitri

New Si

New Tarulu

New Thokoflati

New Tri

New Wuphostiba

New Yaqua

New Yoma

New Zodobru

Nodotown

Nuchu

Pahavoville

Pakhowaville

Phayu

Pho

Phudibru

Pokhu

Pupo

Puthi

Quachozato City

Quavi City

Quibufoka

Quitown

Quivokha

Quotown

Ra

Rasti

Raville

Roji

Roshu

Rothunu

Rukhu

Saflobrajotown

Shamatu

ScramoScrasha City

Scrawi

Scri

Scri

Scri

Scrikhu City

Scrochiflokha

Scrojo

Scroyitown

Scrushastatho

Scruyipotown

Shatruville

Shazachutown

Shosisiville

Shuwobu

Siju

Sipo

Soupofo

Stazo

Stishatho

Stiville

Stobobri

Stotha

Stozimi

Stu

Stukhotown

Stuwo

Stuzukofoville

Sudutown

Sula

Takhudutown

Thathotown

Thiflu

Thisuquotown

Tho
Tivisho

Toscra

Tra

Trovalaka

Trubrotu City

Truville

Tulo

Va

Visa City

Wa

Wafijuhi

Wasta

Wiyura

Wobopa City

Wofatoville

Woqua

Wowusi

Yibroti

Yokitritown

Yosho

Yufa City

Yuru

Zadini

Zatro

Zifoyu

Ziqua

Ziquawa

Zistu

Zitro

Zoshophu

Zosto

Zota

Zugoyabri

June 20, 1994 20 Technical Report 94-12

(c)

Figure 17: A map involving line, area, and point features labeled by the simulated annealing algorithm. The initial random
labeling is shown in (a). An intermediate configuration of the algorithm is shown in (b). The final labeling is shown in (c).

Flovoguland

B
ig K

u R
iver

D
u
tu

 R
iv

e
r

G
u
sh

o
 R

iv
e
r

Hakisutu R.

N
a
b
u
k
o
 R

iv
e
r

Yuvu River

P
o
z
o
s
a
k
o
 R

iv
e
r

Rio Michi

K
u
 R

d
.

W
uphusho R

d.

V
ik

o
s
tiru

 R
d
.

Shuriyovi Road

Scrutu Road

Babrurotown

Bajoditown

Bakifli

Bishoru

Bivofiki

Bozashu

Braflapha City

Brapa City

Brashowo

Brikha

Broquiflo

Brurudatown

Brusuka

Bruvo

Buchustu

Bumuthitown

Chibruphuyu

Chifo

Chitho

Chofo

Chotri

Chubabriville

Chuhana

Chuzuga

Datown
DeVille

Di City

Do

Dochasho

Dojovuho

Doronitown

Faquakhutriville

Fika

Flaflutown

Flamurikhutown

Flipu City

Flitown

Flucho

Flushukhuza

Fo

Foro

Fotro

Fuqette

Fuzufla

Gaflutho

Gapuni City

Godasto

Gomuscri

Gotabra City

Guliville

Gupo City

Hatown

Hidazabri

Hifo

Hodi City

Horuhi City

Hu

Ji City

Jihawa

Jiscro

Jitoro

Joni City

Jowafiquo

Juhu

Kada

Kapha

Khago

Khakhitown

Kharascra

Khitho

Kho

Khomido

Khumusha

Zupholi

Khutriville

Kipolatown

Kiscraga

Kitru

Lastopa

Lavojutown

Li City

Li

Lodo

Lukhi

Maduhavotown

Mapokhitown

Masto

Mibu

Muhoshosti

Mujo City

Mupha

Muya

New Ba

New Do

New Gaboni

New Huma

New Mo

New Mupadi

New Nazoscra

New Nivubro

New Ru

New Ruzogohei
New Scrikhi

New Scrivuta

New Scrostomitri

New Si

New Tarulu

New Thokoflati

New Tri

New Wuphostiba

New Yaqua

New Yoma

New Zodobru

Nodotown

Nuchu

Pahavoville

Pakhowaville

Phayu

Pho

Phudibru

Pokhu

Pupo

Puthi

Quachozato City

Quavi City

Quibufoka

Quitown

Quivokha

Quotown

Ra

Rasti

Raville

Roji

Roshu

Rothunu

Rukhu

Saflobrajotown

Shamatu

Scramo

Scrasha City

Scrawi

Scri

Scri

Scri

Scrikhu City

Scrochiflokha

Scrojo

Scroyitown

Scrushastatho

Scruyipotown

Shatruville

Shazachutown

Shosisiville

Shuwobu

Siju

Sipo

Soupofo

Stazo

Stishatho

Stiville

Stobobri

Stotha

Stozimi

Stu

Stukhotown

Stuwo

Stuzukofoville

Sudutown

Sula

Takhudutown

Thathotown

Thiflu

Thisuquotown

Tho

Tivisho

Toscra

Tra

Trovalaka

Trubrotu City

Truville

Tulo

Va

Visa City

Wa

Wafijuhi

Wasta

Wiyura

Wobopa City

Wofatoville

Woqua

Wowusi

Yibroti

Yokitritown

Yosho

Yufa City

Yuru

Zadini

Zatro

Zifoyu

Ziqua
Ziquawa

Zistu

Zitro

Zoshophu

Zosto

Zota

Zugoyabri

Technical Report 94-12 21 June 20, 1994

References

 Ahn, J. and H. Freeman. 1984. A program for automatic name placement. Cartographica, 21(2&3):101-
109, Summer & Autumn. Originally published in Proceedings of the Sixth International Symposium on
Automated Cartography (Auto-Carto Six), Ottawa/Hull, October 1983.

Carstensen, L. W. 1987. A comparison of simple mathematical approaches to the placement of spot symbols.
Cartographica,24(3):46-63.

Cerny, V. 1985. A thermodynamical approach to the travelling salesman problem: An efficient simulation
algorithm. Journal of Optimization Theory and Applications, 45:41-51.

Christensen, J., J. Marks, and S. Shieber. 1992. Labeling Point Features on Maps and Diagrams. Center for
Research in Computing Technology, Harvard University, TR-25-92, Dec.

Christensen, J., J. Marks, and S. Shieber. 1993. Algorithms for Cartographic Label Placement. Proceedings
of the American Congress on Surveying and Mapping ‘93, Feb.

Christensen, J., J. Marks, and S. Shieber. 1994. Placing Text Labels on Maps and Diagrams. Graphics Gems
IV. Academic Press, pages 497-504.

Cook, A. C. and C. B. Jones. 1990. A Prolog rule-based system for cartographic name placement. Computer
Graphics Forum, 9:109-126.

Consorti, V., L.P. Cordella, and M. Iaccarino. 1993. Automatic lettering of cadastral maps. Proceedings of
the International Conference on Document Analysis and Recognition, page 129-132, Tsukuba Science
City, Japan, October.

Cromley, R. G. 1986. A spatial allocation analysis of the point annotation problem. In Proceedings of the
Second International Symposium on Spatial Data Handling, pages 38-49, Seattle, Washington, July.
International Geographical Union and International Cartographic Association.

Dechter, R. and J. Pearl. 1985. Generalized best-first search strategies and the optimality of A*. Journal of
the Association of Computing Machinery, 32(3):505-536.

Doerschler, J. S. and H. Freeman. 1992. A rule-based system for dense-map name placement. Communica-
tions of the Association of Computing Machinery, 35(1):68-79, January.

Ebinger, L. R. and A. M. Goulette. 1990. Noninteractive automated names placement for the 1990 decennial
census. Cartography and Geographic Information Systems, 17(1):69-78, January.

Edmondson, S., J. Christensen, J. Marks, and S. Shieber. 1994. A General Cartographic Labeling Algorithm.
In preparation.

Fisher, M. L. 1981. The Lagrangian relaxation method for solving integer programming problems. Manage-
ment Science, 27:1-18.

Formann, M. and F. Wagner. 1991. A packing problem with applications to lettering of maps. In Proceed-
ings of the Seventh Annual Symposium on Computational Geometry, pages 281-288, North Conway,
New Hampshire, July. ACM.

Freeman, H. and J. Ahn. 1987. On the problem of placing names in a geographic map. International Journal
of Pattern Recognition and Artificial Intelligence, 1(1):121-140.

June 20, 1994 22 Technical Report 94-12

Freeman, H. 1988. An Expert System for the Automatic Placement of Names on a Geographical Map. Infor-
mation Sciences, 45:367-378.

Freuder, E. C. 1982. A sufficient condition for backtrack-free search. Journal of the Association of Comput-
ing Machinery, 29(1):24-32.

Garey, M. R. and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness. W. H. Freeman and Company, New York, New York.

Gaschnig, J. 1979. Performance Measurement and Analysis of Certain Search Algorithms. Ph.D. thesis,
Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Haralick, R. M. and G. L. Elliot. 1980. Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263-313.

Hirsch, S. A. 1982. An algorithm for automatic name placement around point data. The American Cartogra-
pher, 9(1):5-17.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

Imhof, E. 1962. Die Anordnung der Namen in der Karte. International Yearbook of Cartography, 2:93-129.

Imhof, E. 1975. Positioning names on maps. The American Cartographer, 2(2):128-144.

Johnson, D. S. 1990. Local optimization and the traveling salesman problem. In Proceedings of the 17th
Colloqium on Automata, Languages, and Programming, pages 446-461.Springer-Verlag.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon. 1989. Optimization by simulated annealing:
An experimental evaluation; part I, graph partitioning. Operations Research, 37(6):865-892.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon. 1991. Optimization by simulated annealing:
An experimental evaluation; part II, graph coloring and number partitioning. Operations Research,
39(3):378-406.

Jones, C. 1989. Cartographic name placement with Prolog. IEEE Computer Graphics and Applications,
9(5):36-47, September.

Karp, R. M. 1972. Reducibility among combinatorial problems. Complexity of Computer Computations.
Plenum Pres, New York, pages 85-103.

Kato, T. and H. Imai. 1988. The NP-completeness of the character placement problem of 2 or 3 degrees of
freedom. Record of Joint Conference of Electrical and Electronic Engineers in Kyushu, 1138. In Japa-
nese.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. Optimization by simulated annealing. Science,
220:671-680.

Korf, R. E. 1988. Search: A survey of recent results. In H. E. Shrobe, editor, Exploring Artificial Intelli-
gence: Survey Talks from the National Conferences on Artificial Intelligence. Morgan Kaufmann, San
Mateo, California, pages 197-237.

Langran, G. E. and T. K. Poiker. 1986. Integration of name selection and name placement. In Proceedings of
the Second International Symposium on Spatial Data Handling, pages 50-64, Seattle, Washington, July.
International Geographical Union and International Cartographic Association.

Technical Report 94-12 23 June 20, 1994

Marks, J. and S. Shieber. 1991. The computational complexity of cartographic label placement. Technical
Report TR-05-91, Harvard University, March.

Mower, J. E. 1986. Name placement of point features through constraint propagation. In Proceedings of the
Second International Symposium on Spatial Data Handling, pages 65-73, Seattle, Washington, July.
International Geographical Union and International Cartographic Association.

Noma, E. 1987. Heuristic method for label placement in scatterplots. Psychometrika, 52(3):463-468.

Papadimitriou, C. H. and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms and Complexity. Pren-
tice Hall, Englewood Cliffs, New Jersey.

Purdom, P. W. 1983. Search rearrangement backtracking and polynomial average time. Artificial Intelli-
gence, 21(1,2):117-133.

Sahni, S. 1974. Computationally related problems. SIAM Journal of Computing, 3:262-279.

United States Geological Survey, National Mapping Division. 1990. Geographic Names Information Sys-
tem, November.

van Roessel, J. W. 1989. An algorithm for locating candidate labeling boxes within a polygon. The American
Cartographer, 16(3):201-209.

Wu, C. V. and B. P. Buttenfield. 1991. Reconsidering rules for point-feature name placement. Cartograph-
ica, 28(1):10-27, Spring.

Yoeli, P. 1972. The logic of automated map lettering. The Cartographic Journal, 9(2):99-108, December.

Zoraster, S. 1986. Integer programming applied to the map label placement problem. Cartographica,
23(3):16-27.

Zoraster, S. 1990. The solution of large 0-1 integer programming problems encountered in automated car-
tography. Operations Research, 38(5):752-759, September-October.

Zoraster, S. 1991. Expert systems and the map label placement problem. Cartographica, 28(1):1-9, Spring.

•

	Title Page
	Title Page
	page 2

	An Empirical Study of Algorithms for Point Feature Label Placement
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

