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Abstract

We extend an earlier motion-synthesis algorithm for physically realistic articulated figures in
several ways. First, we summarize several incremental improvements to the original algorithm
that improve its efficiency significantly and provide the user with some ability to influence what
motions are generated. These techniques can be used by an animator to achieve a desired move-
ment style, or they can be used to guarantee variety in the motions synthesized over several
runs of the algorithm. Second, we report on new mechanisms that support the concatenation
of existing, automatically generated motion controllers to produce complex, composite move-
ment. Finally, we describe initial work on generalizing the techniques from 2D to 3D articulated
figures. Taken together, these results illustrate the promise and challenges afforded by the au-
tomated motion-synthesis approach to computer animation. Key Words: Animation, spacetime
constraints, heuristic methods, machine learning, stochastic optimization, evolutionary compu-
tation.
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1 Introduction

Automatic motion synthesis for articulated �gures is the problem posed by the Spacetime Constraints (SC)
paradigm for animation [19]. In this paradigm, the animator speci�es only the physical structure of an
articulated �gure and quantitative criteria for success in a desired task. The computer must compute
physically realistic motion for the �gure that is near optimal1 according to the task criteria.

Early motion-synthesis algorithms used local optimization to re�ne initial �gure trajectories by making
themmore compliantwith physical law, or by improving the motion with respect to the task criteria [4, 5, 19].
However, local optimization has inherent limitations for this problem: it is usually confounded by the
discontinuities and local optima found in the search space of a typical SC problem, and it leaves primary
responsibility for constructing coarse initial trajectories with the human animator.

Recently, a new approach to the motion-synthesis problem has been proposed. The approach is not to
compute the �gure's trajectory directly, but instead to generate automatically amotion controller that, when
executed, will produce the desired motion [10, 11, 15, 16]. In any particular embodiment of this approach,
two broad and nearly independent choices must be made:

1. how the motion controller is to be represented; and

2. how the space of possible controllers is to be searched.

An early example of this idea from the computer-graphics literature is provided by Ridsdale [15], who
used a neural network to control a simulated one-rod robot arm that could hit a ball against the wall of a
handball court. Ridsdale's search strategy is an adaptation of the standard back-propagation algorithm for
training neural networks, augmented with simulated annealing to avoid local minima.

Van de Panne and Fiume [16] have described a similar approach that is capable of solving more general
motion-synthesis problems. In their work a motion controller is termed a sensor-actuator network (SAN).
In a SAN, the actuators' responses are interdependent nonlinear functions of the �gure's physical-state
variables. Van de Panne and Fiume search the space of possible controllers in two stages. The �rst stage
is a random generate-and-test procedure, and the second stage e�ects a subsequent re�nement by simulated
annealing or stochastic gradient ascent.

In contrast to these explicitly connectionist approaches, Ngo and Marks employ a bank of mutually
independent controllers called stimulus-response (SR) rules. Information from the physical environment is
used principally to determine which rule is active at any given time in the physical simulation. We refer to
this as a banked stimulus-response (BSR) controller. The space of possible BSR controllers is searched by
evolutionary computation [7, 10, 11].

There are several reasons why the automatic synthesis of motion controllers is not yet a practical approach
to motion synthesis. In this paper we focus on four of these limitations in the context of the previously
reported BSR-controller work:

1. The original search algorithm is slow and complex|it can require up to an hour on a massively parallel
computer to compute a motion controller.

2. There is no mechanism to in
uence the search algorithm to produce motions that match an animator's
preconceptions|the algorithm is inherently random, and, in general there is no way to a�ect or even
predict what it will produce in any given run.

3. The motion generated by a single controller is relatively simple|the only way to get complex, composite
motion is to concatenate several problem instances in time and to generate separate motion controllers
serially for each subproblem. This time-consuming approach is similar to one proposed by Cohen [5]
in the context of the original Spacetime Constraints paradigm [19].

4. The existing algorithm works for 2D articulated �gures only|generalizing to 3D would appear to be
computationally formidable.

1Because this optimization problem is NP-hard, there exists no polynomial-time algorithm that is guaranteed to return
optimal solutions unless P=NP.
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We show how each of these problems can be addressed to some degree. We begin by summarizing several
incremental improvements to the original algorithm that obviate the need for parallel computation, improve
e�ciency signi�cantly, and a�ord the user limited control over the search process. An animator can use
this latter capability to in
uence directly the style of the resulting motions; it can also be used to produce
a suite of qualitatively di�erent motion controllers for a given SC problem. A selection of di�erent motion
controllers can be passed as input to an editing module in which the animator can concatenate controllers
interactively to produce composite motions. We discuss and demonstrate two di�erent ideas for supporting
interactive controller concatenation. We conclude by reporting initial results on automatic motion synthesis
for 3D articulated �gures.

2 The Original Approach and Extensions

2.1 E�cient automatic synthesis of BSR motion controllers

The system described originally by Ngo and Marks [10, 11] searched in a space of BSR controllers using
a massively parallel genetic algorithm (GA) that ran on a 4096-processor CM-2. In more recent work,
Fukunaga et al. [7] have shown that a serial search algorithm, also based on the principles of evolutionary
computation, exhibits far better performance. Although we assume general familiarity with the approach
as described in previous work, we now brie
y review the details of the BSR controller and the serial search
algorithm.

A BSR controller governs a vector ~�(t) of joint angles, given information about the physical environment

in the form of a vector ~S(t) of sense variables. Sample sense variables for an articulated �gure are listed in
Table 1.

�1; �2; : : : ; �n�1 Joint angles
f1; f2; : : : ; fn+1 Contact forces at rod endpoints

ycm Height of center of mass
_ycm Vertical velocity of center of mass

Table 1: Components of the vector ~S of sense variables for an n-rod articulated �gure.

The controller contains R stimulus-response rules. Each rule i is speci�ed by stimulus parameters ~Slo[i]

and ~Shi [i], and response parameters ~�0[i] and � [i]. Based on the instantaneous value of the sense vector
~S(t), exactly one rule is active at any one time. In particular, each rule i receives a score based on how far

the instantaneous sense vector ~S(t) falls within the hyperrectangle whose corners are ~Slo[i] and ~Shi [i]. The

highest-scoring rule is said to be marked active. (If ~S(t) is not inside the hyperrectangle associated with any

rule, the rule active in the previous time step remains active.) The joint angles ~�(t) are made to approach

the target values ~�0[iactive] prescribed by the active rule iactive.
The following pseudocode summarizes how a BSR controller behaves and is evaluated:

Set iactive to 1
for t = 1 to tmax

Cause joint angles ~�(t) to approach ~�0[iactive] with time constant � [iactive]
Simulate motion for time interval t

Measure sense variables ~S(t)

Possibly change iactive, based on ~S(t)
end for

Assign the controller a �tness value based on how well
the simulated motion meets the animator-supplied task criteria

The search algorithm in Figure 1 is used to compute e�ective BSR controllers. This algorithm works
by simulating the application of several hill climbers in parallel to a working set of motion controllers.
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Initialize a set of random motion controllers
Evaluate each motion controller in the set
for i = 1 to number of iterations
for each individual controller in the set do
Mutate (i.e., reinitialize or perturb) the controller
Evaluate the new controller
if the new controller is better than the old one then
Replace the old controller with the new one

end for

if (i mod reseed interval) = 0 then

Rank order the set of controllers
Replace bottom 50% of the set with top 50%

end if

end for

Reasonable parameter values:
set size = 10
reseed interval = 200
number of iterations = 40,000

Figure 1: Serial search algorithm.

Periodically, the set is \reseeded" by replacing the worse half of the set with copies of the better half. This
refocuses the search on more promising areas of the search space. The running time for this algorithm is
typically 3{6 minutes on a single DEC 3000/400 AXP workstation for 2D articulated-�gure controllers like
those illustrated in Figures 5{10.2

The most important factor in the success of the search algorithm is the fact that it is searching in the
space of possible motion controllers, rather than the space of trajectories. Nevertheless, certain secondary
details of the initial random-generation process and the mutation operator are important for successful
motion synthesis and are described in detail elsewhere [10, 11].

2.2 Additional �tness terms

The inability of the user to in
uence the search algorithm in a principled and organized fashion is a potential
shortcoming of fully automated approaches to motion synthesis. This causes di�culties when the animator
has a preconceived idea for how an animated character should move, but is unable to cause the search
algorithm to generate the expected motion. It is also a problem when what is required is not just a controller
for one kind of motion, but a suite of controllers for many di�erent kinds of motion for the same animated
character (x3).

A concrete instance of this problem is provided by Mr. Star-Man. Given the task of makingMr. Star-Man
travel, the search algorithms have produced a variety of motions, including a shu�ing gait (Figure 5) and
a cartwheel (Figure 6). However, since the shu�ing gait tends to cover more distance per unit time than
the other motions, it is the motion most frequently produced. As a test case, we set out to provide some
mechanism whereby the search could reliably be guided toward either the shu�e or the cartwheel.

For any optimization task, an obvious way to obtain alternative solutions is to change the �tness function
arbitrarily, assuming that one's optimization technique can cope with arbitrary �tness functions. Early
experimentation showed that this approach is feasible within the BSR paradigm. However, as a general

2Ngo and Marks originally reported running times of 30{60 minutes on a CM-2 Connection Machine to compute comparable
BSR motion controllers [10, 11]. Van de Panne and Fiume reported running times of 1{6 hours on a Sun SPARC IPC for their
algorithm [16].
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Term Function
max cm height Maximum height of center of

mass during motion
slip sum Distance traversed by body parts

in continuous contact with ground
rotations Number of full-body rotations

during motion

Table 2: Secondary terms in the �tness function.

technique it is too arbitrary: the animator should be given some guidance as to how the �tness function can
be modi�ed most e�ectively.

Our attempt at a more structured approach to �tness-function modi�cation involves combining a single
primary term with one or more of a suite of secondary terms. The primary term in the �tness function is
the one given the most weight, and is therefore the one that determines the most salient characteristics of
the motion. For example, to get Mr. Star-Man to travel, i.e., to move from left to right, the primary term in
the �tness function is the horizontal distance traversed by his center of mass. Primary terms are determined
by the requirements of the animation script, and are of necessity quite arbitrary. The secondary terms,
which are added to the primary term in the �tness function, determine minor characteristics of the motion.
Our goal was to describe a canonical set of secondary terms that would be broadly useful, regardless of the
primary term. Our initial candidate set of secondary terms for 2D articulated �gures is given in Table 2.

For the sample problem we proposed above, assigning a positive weight only to the secondary term
slip sum guarantees a shu�ing gait, whereas assigning a positive weight only to the secondary term
rotations guarantees a cartwheel. For our other animated characters, varying the coe�cients of the small
set of terms in Table 2 was su�cient to generate reliably all motions that we had ever seen occur at ran-
dom, or that we had anticipated from a priori considerations. Moreover, the motions generated correlate
qualitatively with the secondary �tness terms: a positive coe�cient for max cm height biases the search in
favor of hopping or jumping motions, a positive coe�cient for slip sum encourages sliding or shu�ing, and
a positive coe�cient for rotations usually leads to some kind of gyration.

2.3 Di�erent sense variables

The nature of the motions produced by controller synthesis depends intimately on the space of controllers
made available for searching. For example, BSR controllers produce motions that are quite di�erent from
those produced by SANs, which tend to exhibit characteristic sinusoidal vibrations [12, 17]. Thus, another
way to in
uence the style of generated motions might be to modify the form of the BSR controller.

In a time-based BSR motion controller, the sole input \sensor" measures elapsed time, so that the bank
of stimulus-response rules is equivalent to a simple script of responses that is performed one or more times.
(We refer to the original BSR controllers described in x2.1 as sense-based to distinguish them from this new
kind of motion controller.) In our form of the time-based BSR controller (Figure 2), a time interval with
user-de�ned length tper is broken into a small number R of mutually exclusive time segments. During each
segment, the corresponding stimulus-response rule is active. The sequence of time segments is repeated to
�ll the length of the simulation, T , which is also chosen by the user. Thus, if tper < T , then the sequence
of actions speci�ed by the rules is repeated periodically. If, on the other hand, tper � T , then the action
sequence is not constrained to be periodic.

In recent papers [10, 11, 16] it has been argued or assumed that the space of controllers with access to
information about physical state should be easier to search than the space of controllers based on time alone.
Unexpectedly, the space of time-based motion controllers for 2D articulated �gures3 proved easier to search
than the space of sense-based controllers.4 Furthermore, by manually varying the value of the period tper,

3The issue is more complex for 3D articulated �gures, as we describe in x4.
4Good time-based controllers for these problems can be found in a few tens of seconds on a DEC 3000/400 AXP workstation
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0 tper 2tper 4tper 5tper3tper

T = 5tper

1 2 3 4

Rule Stimulus Response

1 [0; tend1 ) (~�01 ; �1)

2 [tbegin2 = tend1 ; tend2 ) (~�02 ; �2)

3 [tbegin3 = tend2 ; tend3 ) (~�03 ; �3)

4 [tbegin4 = tend3 ; T ) (~�04 ; �4)

Figure 2: An illustration of a time-based BSR motion controller, with R = 4.

it is possible to elicit a variety of motions, from highly periodic to completely aperiodic; thus time-based
controllers a�ord the animator straightforward control over the periodicity of the computed controller. For
example, the \tumbling" sequence of Beryl Biped depicted in Figure 7 was computed with tper = T , where
T is the length of time available for the entire motion. The periodic shu�ing in Figure 8 was computed with
a value of tper � T .

3 Composite Motion Synthesis

The automatic motion-synthesis techniques described here and elsewhere are currently capable of producing
controllers only for relatively simple motions. To address this limitation in the context of the Witkin-Kass
approach [19], Cohen [5] implemented a system that permits a human animator to design and re�ne a
trajectory by interactively submitting simple SC subproblems for solution on-line. An analogous system for
interactive controller synthesis may be quite attractive for 2D articulated �gures, especially given the ability
to solve 2D SC problems in times ranging from minutes to seconds on a modern workstation. However,
such speedy turnaround is not likely for 3D SC problems in the near future (x4), so other approaches for
generating complex, composite motions are needed.

As an alternative to Cohen's approach, we propose the following regimen for creating composite motion
sequences for 2D articulated �gures:5

1. The animator de�nes the animated character by specifying the physical structure of an articulated
�gure.

2. The computer generates a suite of di�erent sense-based motion controllers for this character automat-
ically o�-line, using the serial search algorithm (Figure 1) and various combinations of primary and
secondary �tness terms (x2.2).

3. The animator develops composite motions by interactively concatenating selected controllers in time
using an animation editor.

using the serial search algorithm described in Figure 1. Two factors that may contribute to the ease with which good time-based
controllers can be found is the relatively small number of parameters per rule, and the relatively small number of rules per
controller.

5This regimen is very similar in spirit to one described previously by van de Panne et al. [18], though the motion-controller
representations in both schemes are very di�erent, and controllers are concatenated automatically in our approach. Indeed, the
broad idea of concatenatingmotion controllers has been proposed and investigated previously in a variety of contexts [2, 3]; our
contribution is distinguished by the method we use for concatenating controllers automatically and the scope and generality of
the motion controllers considered.
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Unlike Cohen's approach, this method has the advantage that all lengthy computations are performed o�-line
in step 2; the animator's interaction with the editor in step 3 does not require the solution of additional
SC problems. However, it is not immediately obvious how the concatenation operation in step 3 can be
supported: if a motion controller is invoked for an articulated �gure that starts in a di�erent con�guration
than the one for which the controller was designed, what happens?

One possibility is that this is not a problem, due to the intrinsic robustness in standard sense-based BSR
controllers. If a �gure's physical con�guration (i.e., its joint angles, location, orientation, and linear and
angular momentum) is reasonably close to a con�guration that occurs somewhere in its normal trajectory (the
one followed by the �gure when started from its expected initial con�guration), then the motion controller
will usually produce a motion similar to the one it was designed to produce. Thus the animator need not
be intolerably precise in choosing when to switch from one motion controller to another in order to get a
desired composite motion.

We tested this hypothesis by building a graphical editor for animation that allows a user to switch
between precomputed, sense-based motion controllers interactively, using a direct-manipulation interface.
This simple mechanism proved to be usable. If the animator took the time to become familiar with the
various motion controllers at his disposal and was willing to explore alternative transition points between
controllers patiently and intelligently, then it was usually possible to produce a desired composite motion,
involving up to �ve di�erent controllers, in a few minutes [6].

Nevertheless, this simplistic approach undoubtedly requires more user input and expertise than is desir-
able, because the motion controllers are not in�nitely robust. For example, the typical result of a careless
concatenation of motion controllers is shown in Figure 9. Three previously computed controllers|one for
cartwheeling, one for jumping, and one for shu�ing|have been linked together in series, but the transi-
tion from the cartwheel to the jump is 
awed: the jumping controller is capable of e�ecting a jump when
Mr. Star-Man is more or less upright, but fails otherwise. When concatenating controllers in the animation
editor, the animator usually starts out in such a situation, and then attempts to repair it by testing di�erent
transition points between the di�erent controllers.

We have automated aspects of this otherwise tedious transition-point-selection process by implementing
three techniques [1]:

� Enhanced motion controllers: By randomly perturbing the initial physical con�guration of the artic-
ulated �gure during each iteration of the original motion-synthesis process, the resulting sense-based
motion controller can be made more robust. (The use of controllers made more robust by this technique
also makes transition-point selection easier to do in the manual animation editor described above.)

� A composite-motion scripting language: To determine an optimal set of transition points, there must
be some optimization criterion. Using a scripting language, the animator quanti�es the desired char-
acteristics of each phase of the composite motion. An interpreter translates these characteristics into
a single �tness function suitable for optimization. A sample script is shown in Table 3.

� A heuristic search strategy: Beginning with an initial guess at a suitable set of transition points, a
greedy search algorithm iteratively moves each transition point in the direction that most improves the
�tness function encoded in the composite-motion script, terminating when no further local improve-
ments are possible.

Thus in this approach the animator is responsible for entering an initial set of transition points and a
composite-motion script (both of which are entered via a text editor in our current implementation), but is
not responsible for adjusting the transition points.

Given the script in Table 3 and the initial concatenation of motion controllers depicted in Figure 9, our
technique adjusted the transition points automatically to achieve the desired composite motion (consisting
of a cartwheel, a jump,6 and a shu�e) depicted in Figure 10.

6This unusual jump is made possible by applying high torque to bring the legs together quickly. This may not be very
plausible biologically; however, it is physically correct, given that we did not limit the amount of torque that could be applied
by Mr. Star-Man's thigh muscles.
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Script:

cartwheel :hlog(product(delta(var(cm x)),

equal(delta(var(time)),159,10)));

jump :hlog(product(best(var(min y)),

equal(delta(var(time)),90,10)));

shuffle :hlog(product(delta(var(cm x)),

equal(delta(var(time)),100,10)));

Translation:

� Credit for the cartwheel phase is proportional to the horizontal distance traveled by the center
of mass (cm x) times a factor that penalizes deviation from the original user-supplied duration
of the cartwheel (159 simulator ticks).

� Credit for the jump is a function of the highest height cleared during this phase (min y) times
a factor that penalizes deviation from the original duration of the jump (90 simulator ticks).

� Credit for the shu�e phase is proportional to the horizontal distance traveled by the center
of mass (cm x) times a factor that penalizes deviation from the original duration of the shu�e
(100 simulator ticks).

� The credit for the three terms is combined according to the function:

credit = log(1 + creditcartwheel) + log(1 + creditjump) + log(1 + creditshu�e)

Table 3: A sample composite-motion script.
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4 Initial Experiments with 3D Articulated Figures

The controller-synthesis approach has produced exciting results, but only for 2D articulated �gures. An
open question is whether this approach will generalize to 3D. There is every reason to believe that the
generalization to 3D should be very di�cult. The dimensionality of the controller space approximately
doubles for a creature with a given number of joints, primarily because each joint can now have two degrees
of freedom. More importantly, for many 3D articulated �gures a large fraction of the search space is occupied
by controllers that cause the �gure to lose balance and fall over unrecoverably. This problem is much less
severe in 2D. Despite these caveats, we have been able to generate automatically e�ective motion controllers
of the BSR variety for a selection of 3D motion-synthesis problems. Our initial results are reported below.

4.1 Time-based controllers

Our research in motion synthesis for 3D articulated �gures began with an investigation of time-based BSR
motion controllers. As indicated in x2.3, this kind of motion controller is simpler to code, makes for an easier
search problem, and seems to be just as able to generate useful simple motions for 2D articulated �gures as
the original sense-based BSR controllers. This also proved true for stable 3D articulated �gures, but not for
unstable ones (x4.2).

A 3D time-based BSR controller is similar in form to its 2D counterpart (Figure 2), except that a response

for rule i is an ordered triple (~�0
i
; ~ 0

i
; �i), where ~�0i and ~ 0

i
are a set of target Euler angles for all the joints

in the articulated �gure. Thus, a time-based BSR controller contains R� 1 independent variables to divide
up each period of time tper, R(2n� 2) target Euler angles (where n is the number of rods in the �gure), and
R time constants, giving a total of 2nR � 1 variables. (The value tper is also essential to the speci�cation
of the controller, but because it is set by the user we do not count it as an independent parameter.) For
example, Rex (depicted in Figure 12) has n = 11 rods and R = 4 SR rules in his motion controller, so the
total number of variables is 87. It is the task of the search algorithm to �nd 87 
oating-point values for these
variables that will cause the �gure to achieve the desired objective, as expressed in the �tness function. (We
used a minor variant of the serial search algorithm described in Figure 1 [13, 14].)

Figure 11 shows a trajectory that is typical of those produced by time-based BSR motion controllers.
Cujo, a dog-like creature, propels himself forward by bounding repeatedly. A trajectory for Rex, depicted
in Figure 12, is the result of separate motion-synthesis problems that were solved seriatim (i.e., using an
approach analogous to Cohen's [5]): Rex learns to walk; then given the �nal state of that walk he learns to
turn; then given the �nal state of the turn he learns to walk again. The �tness function for Cujo was simply
the distance traveled by his center of mass. Rex's �tness function was similar, but it also included secondary
terms that penalized sideways motion and falling down.

The progress of the search algorithm in �nding one of Rex's motion controllers for walking is shown in
Figure 3: the top curve depicts the �tness of the best time-based controller found so far, plotted against the
number of controller evaluations performed. In fashion typical for the articulated �gures considered here,
rapid progress is made through the �rst 50,000 evaluations, after which progress is generally slower. One
evaluation of a motion controller for Rex requires 1,000 time steps of simulation, and about 0.3 seconds of
elapsed time on a Digital 3000/400 AXP workstation. An acceptable controller had therefore been found in
just under �ve hours.

4.2 Sense-based controllers

The simplicity and power of time-based BSR motion controllers make them very attractive when compared
to the original sense-based BSR controllers. Unfortunately, there is some evidence to suggest that the time-
based approach may have inherent limitations. The most di�cult 3D motion-synthesis problem we have
considered is that of making Bob the Biped walk. Bob, a biped with point feet (see Figure 13), is very
unstable, so he falls over easily. To date, we have been unable to generate automatically a time-based
motion controller for Bob that allows him to walk more than two or three steps before keeling over.7

7Bob's point feet make the task he faces similar to learning to walk on stilts. With real human feet, the di�culty of walking
is considerably diminished by the 
exibility of one's ankles in response to contact with the ground. Because a �gure's internal
deformations are determined kinematically in our simulator, a controller representation that permits \
exible ankles" would
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However, we have been successful in computing useful sense-based motion controllers for Bob. The
physical senses used in our 3D controllers are the height of Bob's center of mass and its linear velocity,
Bob's angular velocity, an up vector (the latter three senses are expressed as 3D vectors in a �gure-centric
coordinate system), contact forces and collision impulses for each possible contact point, and internal Euler
angles for each 
exible joint. The increased complexity of each SR rule and the desirability of having more
rules (typically 10) in a sense-based BSR controller means that 880 
oating-point numbers are used to specify
a sense-based motion controller for Bob the Biped. The corresponding number for Rex (Figure 12) is 1,280.

These di�erences in the underlying BSR representation necessitate some minor, but important changes
to the search algorithm. The basic form of the algorithm remains the same (Figure 1), but the initialization
and mutation procedures require modi�cation. Every rule in a time-based controller is guaranteed to be
executed during each time period of duration tper, but no such a priori guarantee can be made for a sense-
based controller. In fact, the addition of a randomly generated SR rule to an existing sense-based controller is
exponentially unlikely to a�ect the generated motion, because a randomly generated stimulus region occupies
an exponentially small fraction of the full volume of the sense space. Therefore, to ensure that non-creep
mutations (i.e., those that generate a new rule from scratch, as opposed to those that make a small change
to an existing rule [10, 11]) play a useful role, it is necessary to devise more aggressive relevance heuristics,
which are methods for generating random stimulus regions that are guaranteed to a�ect the generated
motion. The relevance heuristic employed in the original work on BSR controllers [10, 11] prescribes that
a newly generated stimulus hyperrectangle share a \corner" in sense space with the sense-space trajectory
generated by the unmutated controller. With 3D �gures, it was necessary to change this relevance heuristic to
require that the hyperrectangle contain some point on the trajectory. Applying three rounds of this mutation
operation to the �rst set of 100 motion controllers was also found to be a useful strategy for enriching the
initial population, as was the application of a low-pass �lter to the values of all the physical senses to remove
noise and high-frequency variation [13, 14].

While sense-based motion controllers generally attained �tness scores inferior to those achieved by time-
based controllers for stable articulated �gures (and also took longer to �nd|see Figure 3), they were dis-

be di�cult to design. The additional computational cost of a more general physical simulator able to handle these phenomena
might place results comparable to those reported here beyond the reach of our current serial hardware.
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tinctly superior for Bob the Biped. The walk depicted in Figure 13 was one of two e�ective, forward-facing
walking strategies discovered.8 (The strategy not shown here is a highly periodic shu�ing motion.) We also
noticed a considerable variation in the quality of the BSR controllers found by di�erent runs of the same
algorithm when physical sensors were used (see Figure 4), which suggests that multiple runs of the algo-
rithm, or a larger population of candidate solutions, might be best for 3D articulated-�gure motion-synthesis
problems with this level of di�culty.

5 Conclusions and Further Work

This paper recounts a suite of empirical studies we have undertaken to explore and enhance the practicality
of the BSR-controller approach to automatic motion synthesis for 2D and 3D articulated �gures. These
studies have not led to de�nitive conclusions, but they have served to indicate and clarify directions for
further research in this area. In particular, the research described here raises the following issues:

� Is there a substantially faster way to compute BSR-style motion controllers? Even though we managed
to reduce the time needed for 2D motion synthesis to acceptable levels (less than 10 minutes for sense-
based controllers, and less than two minutes for time-based controllers), 3D motion synthesis for simple
tasks can still take hours of workstation time. Although an earlier attempt to use massive parallelism
for motion synthesis was not especially e�ective [9, 10, 11], a renewed investigation of parallel search
for motion synthesis may be worthwhile.

� How useful are time-based BSR controllers? Time-based BSR controllers are simple and easy to com-
pute. They also a�ord the animator an easy mechanism for determining the periodicity of the resulting

8To our amusement (and then to our annoyance), several controllers were computed that achieved net forward movement,
but in such a way that Bob either gyrated or faced backward through much of the motion. To eliminate this behavior and
thereby encourage more conventional forward-facing walking, we modi�ed the �tness function to penalize trajectories in which
Bob experienced a net rotation about the vertical axis. (In addition to this rotation penalty, the �tness function had already
included secondary terms to reward forward motion by both the center of mass and the feet, and to penalize sideways motion
and falling over.)
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motion. Unfortunately, they have two major drawbacks: they are not easily concatenated to give com-
posite motions, and they appear to be of limited utility for unstable 3D articulated �gures. If these
latter issues could be addressed, time-based controllers might be preferred to sense-based controllers
for animation purposes.

� Is there a canonical set of useful secondary �tness terms? Currently, creating animations via automatic
motion synthesis involves much modi�cation of �tness functions. If this remains a completely ad hoc
process, the appeal of this approach will be limited. We have suggested the use of canonical secondary
�tness terms to in
uence the ancillary characteristics of the generated motions in a systematic way.
However, it is clear that if this idea is to be useful, the set of terms in Table 2 must be expanded
considerably: witness the various secondary terms we needed to use to in
uence the motions of the 3D
�gures discussed in x4.

� What is the best way to generate composite motions? The ability to generate composite motions is
essential to achieving any kind of practical utility for automatic motion synthesis. We have proposed
that motions be composed by interactive concatenation of simple BSR motion controllers. The ideal
editor to support this process would be interactive and easy to use, and would provide some automated
support for �nding near-optimal concatenations. It would be necessary to re�ne our initial prototypes
to get a reasonably e�ective tool; this may not be easy, especially for 3D motion controllers.

� Are BSR-style motion controllers suitable for 3D motion synthesis? Our limited initial experimentation
suggests the answer is yes. Furthermore, we have also experimented successfully with 3D BSR motion
controllers for mass-spring models [14]. However, the degree of collective experience with automatic
motion synthesis is not so great that we can assert with con�dence that this kind of controller is
superior to all others; certainly for some motion-synthesis tasks, other approaches will be more useful.

Finally, it must be noted that all our work in 2D and 3D has used, for reasons of computational speed,
a simpli�ed physical simulator similar to one described by Hahn [8, 10, 13]. As computational resources
permit, the issues above should be addressed in the context of more realistic physical simulation.
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Figure 5: Mr. Star-Man shu�ing. The B{C{D{B' sequence is repeated cyclically.
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Figure 6: Mr. Star-Man doing a cartwheel.
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Figure 7: Beryl Biped tumbles aperiodically.
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Figure 8: Beryl Biped shu�es periodically. The C{D{C' sequence is repeated cyclically.
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Figure 9: Mr. Star-Man's composite trajectory before re�nement.

MERL-TR-94-11 August 1994



18

A B

Tilt Hop

B C

C D

Land, pivot Fling

D E

E F

Land

F G

Tumble

HG

Tumble, swing

HI

Tumble

I J

Tumble, do splits

J K

Land

K L

Jump

L M

Stand

M N

Shuffle

N O

Shuffle

Figure 10: Mr. Star-Man's composite trajectory after re�nement.
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Figure 11: Cujo bounds from right to left.

Figure 12: Rex walks, turns, and walks again.

Figure 13: Bob the Biped walks.
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