
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Recursive Coalescing Method for
Bisecting Graphs

Bryan Mazlish, Stuart Shieber, Joe Marks

TR94-10 December 1994

Abstract

We present an extension to a hybrid graph-bisection algorithm developed by Bui et al. that uses
vertex coalescing and the Kernighan-Lin variable-depth algorithm to minimize the size of the
cut set. In the original heuristic technique, one iteration of vertex coalescing is used to improve
the performance of the Kernighan-Lin algorithm. We show that by performing vertex coalescing
recursively, substantially greater improvements can be achieved for standard random graphs of
average degree in the range [2.0,5.0]. Keywords: algorithms, combinatorial problems, design of
algorithms, empirical analysis of algorithms, heuristic search.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:{

1. First printing, TR-94-10, June 1994

1

In a graph-bisection problem, we are given a graph G = (V;E), such that
jV j = 2n. The goal is to �nd a pair hA;Bi of independent subsets of V ,
where jAj = jBj = n, such that the number of edges with endpoints in both
A and B is minimized. Since the graph-bisection problem is NP-hard (Garey,
Johnson, and Stockmeyer, 1976), it is reasonable to assume that there is no
e�cient way to solve such problems exactly. A number of heuristic tech-
niques have been proposed for bisecting graphs (Kernighan and Lin, 1970;
Fiduccia and Mattheyses, 1982; Bui et al., 1989; Goldberg and Burnstein,
1983; Krishnamurthy, 1984). The long-standing champion, as evidenced by
extensive empirical testing (Johnson et al., 1989), is the Kernighan-Lin (KL)
variable-depth algorithm (Kernighan and Lin, 1970), presented in Figure 1.
The details of this algorithm are not important for the purposes of the present
discussion. The crucial characteristic of the algorithm, in addition to its good
performance, is that it starts with an initial bisection (chosen randomly) and
iteratively improves it to form the �nal bisection.

Recently, a variation on the algorithm, which uses vertex coalescing, has
yielded signi�cantly better solutions for graphs of small average degree (in
the range [2:0; 4:0]) (Bui et al., 1987; Bui et al., 1989).1 In this paper, we
extend this coalescing idea, improving it nearly as much as it improves upon
the original Kernighan-Lin algorithm.

1According to Johnson et al. (1989), \most interesting applications involve graphs with
a low average degree," so the focus in this paper is on graphs with average degree in the
range [2:0;5:0].

MERL-TR-94-10 June 1994

2

KL(G; hA;Bi)
f

int i; k; swap val; cumulative swap val total; cumulative swap vals[];

repeat

f
hAtmp;Btmpi hA;Bi;
i 1;
cumulative swap val total 0;
while (jAtmpj > 0) do
f
(ai; bi; swap val) best swap(G; hAtmp; Btmpi);
/* best swap() returns the best pair of vertices in Atmp and Btmp

to swap, and the change in cut-set size that results from the swap. */
cumulative swap val total cumulative swap val total+ swap val;
cumulative swap vals[i] cumulative swap val total;
hAtmp; Btmpi hAtmp � faig; Btmp � fbigi;
i i+ 1;
g
k index of max positive val(cumulative swap vals);
/* k = 0 if all entries in cumulative swap vals are � 0. */

if k > 0 then

hA;Bi (hA� fa1; : : : ; akg+ fb1; : : : ; bkg; B � fb1; : : : ; bkg+ fa1; : : : ; akgi);
g
until k = 0;
return(hA;Bi);
g

Figure 1: The Kernighan-Lin graph-bisection algorithm.

MERL-TR-94-10 June 1994

3

C(base)(G)
f
M maximal matching(G);
G0 coalesce(M;G);
hR; Si random bisection(G0);
hA0; B0i base(G0; hR;Si);
hA;Bi uncoalesce and rebalance(hA0; B0i);
return(base(G; hA;Bi));
g

Figure 2: The vertex-coalescing technique.

Bui et al. proposed the algorithm described in Figure 2 for improving the
performance of any given bisection algorithm (the base algorithm) that works
by improving an initial bisection of a graph; the Kernighan-Lin algorithm is
of this type. First, a maximal matching EM � E of G is computed: by
de�nition, no two edges in EM share a vertex and all edges not in EM share
a vertex with an edge in EM . All pairs of vertices joined by edges in EM are
then coalesced to form a new smaller graph G0 = (V 0; E0), typically of higher
average degree. From a random bisection hR;Si of G0, a better bisection
hA0; B0i is computed using the base algorithm. The edges in G0 are then
uncoalesced; applying this operation to hA0; B0i induces a partition of G that
may not be balanced, so a rebalancing operation may be necessary to produce
a bisection hA;Bi of G. (The vertices moved in the rebalancing operation|
typically very few|are chosen randomly.) This bisection is then subjected
to one more application of the base algorithm. We will use the functional
notation C(base) to refer to the algorithm generated by augmenting a base
algorithm base with the coalescing method.

Bui et al. concluded that the reason coalescing helps is that previously re-
ported heuristic techniques (and the Kernighan-Lin algorithm in particular)
tend to work better on graphs of higher degree. However, if this idea works
for the original graph G, then the coalescing paradigm should likewise help

MERL-TR-94-10 June 1994

4

RC(base)(G)
f
if G:E = fg then
f
hR;Si random bisection(G);
return(base(G; hR;Si));
g
M maximal matching(G);
G0 coalesce(M;G);
hA0; B0i RC(base)(G0);
hA;Bi uncoalesce and rebalance(hA0; B0i);
return(base(G; hA;Bi));
g

Figure 3: The recursive vertex-coalescing technique.

for the coalesced graph, G0, which will usually have higher average degree
than G. By applying this idea recursively we can use the coalescing algo-
rithm on increasingly smaller graphs of increasingly higher average degree
until we cannot coalesce the graph any further (see Figure 3). The base case
of the recursion occurs when the edge set E of G is empty, in which case
a random bisection is passed to the base algorithm. The �nal bisection of
each graph yields an initial bisection for the graph one level higher in the
recursion. We will use the notation RC(base) to refer to the augmentation
of a base algorithm base with this recursive coalescing method.

MERL-TR-94-10 June 1994

5

We implemented the original Kernighan-Lin algorithm (KL), and the coa-
lesced (C(KL)) and recursively coalesced (RC(KL)) variants, and compared
their performance on a set of random graphs. We used the standard G(m; p)
random-graph model for our tests. In this model, there are m vertices in the
graph, and edges are independently placed between each pair of vertices with
probability p. Studies by Bui et al. and Johnson et al. have shown that tests
on these graphs give a good indication of likely performance on other kinds
of random graphs (Bui et al., 1989; Johnson et al., 1989).

Our test suite contained 25 graphs constructed for �ve di�erent values
each of m and p. The sizes of the graphs increase on a logarithmic scale to
give jV j = 124, 250, 500, 1000, and 2000. For each value of jV j we created
graphs by choosing p so that the expected average degree of the graph would
be 2.5, 3.5, 5, 10, and 20. (The actual average degree of each test graph
was within 0.05 of the target value.) Each algorithm was run 1000 times on
every graph, using di�erent random bisections for each run. Running times
for any particular graph were within a factor of two for all three algorithms,
as would be expected.2

For graphs with average degree in the range [2:0; 5:0], RC(KL) dominates
C(KL), which dominates KL. The chart in Figure 4 shows the change in
average solution quality for graphs of degree 2.5. (Following the convention
adopted by Johnson et al. (Johnson et al., 1989), results are reported in terms
of the best cut found by any of the algorithms for the graphs in question.)

A di�erent perspective on the relative performance of the algorithms is
shown in Figure 5. The chart in this �gure shows the distributions of solutions
found by the algorithms for graphs with 1000 vertices and average degree 2.5.
The improvement of RC(KL) over C(KL) as captured in the relative shift
of the distribution to the left is approximately the same as that of C(KL)
relative to KL.

As the graph size increases, however, the comparative advantage of the

2For each combination of vertex-set size and average degree there are a large nuber of
graphs that can be generated. We conducted a number of tests to determine how much one
graph can bias algorithmic performance. These tests veri�ed that algorithmic performance
has very low variability across standard random graphs with the same average degree and
vertex-set size. We can thus use one random graph for each combination of vertex-set size
and average degree without sacri�cing accuracy in our results.

MERL-TR-94-10 June 1994

6

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Pe
rc

en
t

Number of Vertices

Kernighan-Lin
Coalesced KL

Recursively Coalesced KL

Figure 4: Performance of KL, C(KL), and RC(KL) on graphs of varying
numbers of vertices with average degree 2:5.

MERL-TR-94-10 June 1994

7

0

100

200

300

400

500

600

700

800

80 90 100 110 120 130 140 150 160 170

N
um

be
r

of
 O

cc
ur

en
ce

s

Cut Size Across Partition

Kernighan-Lin
Coalesced KL

Recursively Coalesced KL

Figure 5: Distributions for KL, C(KL), and RC(KL) of cut-size found in
10,000 trials for a single G(1000; 2:5) graph.

MERL-TR-94-10 June 1994

8

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22

Pe
rc

en
t

Average Degree of Graph

Kernighan-Lin
Coalesced KL

Recursively Coalesced KL

Figure 6: Performance KL, C(KL), and RC(KL) for 1000-vertex graphs of
varying average degree.

RC(KL) algorithm decreases. The bene�ts from RC(KL) (and C(KL))
can only be realized on graphs of small average degree (less than 5.0). When
the average degree increases above 5.0, the relative e�ectiveness of RC(KL)
decreases dramatically. The chart in Figure 6 shows how average solution
quality varies with average degree for graphs of 1000 vertices. (Graphs with
average degree less than 2.0 are so sparse that very good bisections are found
easily by all of the algorithms.)3

Since all three of the algorithms are not completely deterministic | they

3Although Figure 6 appears to indicate that absolute algorithmic performance decreases
as the vertex-set size decreases, absolute algorithmic performance is better for graphs
of lower degree. The confusion arises in the normalization of the average algorithmic
performances. For graphs of low average degree a small change in cut size has a large
a�ect on the ratio of average cut size to best cut size since the best cut size found is
quite small (54 for the G(1000; 2:0) graph). This skews the apparent absolute algorithmic
performance. One should thus restrict interpretation of Figure 6 to relative algorithmic
performance.

MERL-TR-94-10 June 1994

9

have an arbitrary aspect in the choice of initial bisection and, in the case
of the coalescing algorithms, the choice of maximal match | they allow
for a trade-o� between time and solution quality by conducting a search
among various instantiations of the nondeterministic choices. For instance,
one can generate independent solutions from the space of nondeterministic
possibilities and choose the best; this gives rise to a random-generate-and-
test search regime. (Alternatively, a more directed type of search, such as
hill climbing or simulated annealing might be entertained, though we do not
pursue these possibilities here.) Figure 7 shows that a random-generate-and-
test search in the spaces de�ned by the three algorithms preserves the relative
advantage of RC(KL) over C(KL) and KL. In the �gure, performance was
averaged over 50 runs of each algorithm on the same G(1000; 2:5) graph.
Error bars show standard deviations for the averages.

Even when running time is taken into account, RC(KL) still has a sub-
stantial edge. Figure 8 shows relative performance of a random-generate-and-
test search normalized to equalize the running times of all algorithms. Thus,
for any given running time, the number of iterations allotted to RC(KL) was
less than the number allotted to C(KL), which in turn was allotted fewer
than KL. As the �gure shows, even normalized in this way, the ranking of
RC(KL) over C(KL) over KL is preserved. Given a �xed amount of time
to search for solutions, the RC(KL) algorithm still dominates the other two.

MERL-TR-94-10 June 1994

10

85

90

95

100

105

110

115

120

125

130

135

140

0 100 200 300 400 500 600 700 800 900 1000

B
es

t C
ut

 F
ou

nd

Iteration

Kernighan-Lin
Coalesced KL

Recursively Coalesced KL

Figure 7: Iterated algorithm performance on a G(1000; 2:5) graph as a func-
tion of number of iterations.

MERL-TR-94-10 June 1994

11

85

90

95

100

105

110

115

120

125

130

135

140

0 500 1000 1500 2000 2500 3000

B
es

t C
ut

 F
ou

nd

Time

Kernighan-Lin
Coalesced KL

Recursively Coalesced KL

Figure 8: Iterated algorithm performance on a G(1000; 2:5) graph as a func-
tion of amount of running time (in seconds on a Digital 3000/400 AXP
workstation).

MERL-TR-94-10 June 1994

12

For random G(m; p) graphs with average degree in the range [2:0; 5:0], the
RC(KL) algorithm | a recursive variant of Bui et al.'s C(base) technique
applied to Kernighan and Lin's KL algorithm | has signi�cantly better
average performance, both on a per-iteration and per-unit-time basis, than
the C(KL) and KL algorithms.

MERL-TR-94-10 June 1994

13

Bui, T., S. Chaudhuri, F. Leighton, and M. Sipser. 1987. Graph bisection
algorithms with good average case behavior. Combinatorica, 7(2):171{
191.

Bui, T., C. Heigham, C. Jones, and T. Leighton. 1989. Improving the per-
formance of the Kernighan-Lin and simulated annealing graph bisection
algorithms. In Proceedings of the 26th ACM/IEEE Design Automation
Conference, pages 775{778.

Fiduccia, C. M. and R. M. Mattheyses. 1982. A linear-time heuristic for
improving network partitioning. In Proceedings of the 19th Design Au-
tomation Conference, pages 175{181, Las Vegas, N.M.

Garey, M. R., D. S. Johnson, and L. Stockmeyer. 1976. Some simpli�ed NP-
complete graph problems. Theoretical Computer Science, 1(3):237{267.

Goldberg, M. K. and M. Burnstein. 1983. Heuristic improvement technique
for bisection of VLSI networks. In Proceedings of the IEEE International
Conference on Computer Design, pages 122{125, Port Chester, N.Y.

Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon. 1989. Op-
timization by simulated annealing: An experimental evaluation; part
I, graph partitioning. Operations Research, 37(6):865{892, November-
December.

Kernighan, B. and S. Lin. 1970. An e�cient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, 49(2):291{307, February.

Krishnamurthy, B. 1984. An improved min-cut algorithm for partitioning
VLSI networks. IEEE Transactions on Computers, C-33:438{446.

MERL-TR-94-10 June 1994

	Title Page
	Title Page
	page 2

	A Recursive Coalescing Method for Bisecting Graphs
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

