
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Principles and Implementation of Deductive
Parsing

Stuart M. Shieber, Yves Schabes, Fernando C. N. Pereira

TR94-08 December 1994

Abstract

We present a system for generating parsers based directly on the metaphor of parsing as deduc-
tion. Parsing algorithms can be represented directly as deduction systems, and a single deduction
engine can interpret such deduction systems so as to implement the corresponding parser. The
method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-
clause grammars and other logic grammar formalisms, and has been used for rapid prototyping
of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars,
categorial grammars, and lexicalized context-free grammars.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1994
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:{

1. First printing, MN94-08, May 1994

1

1 Introduction

Parsing can be viewed as a deductive process that seeks to prove claims about
the grammatical status of a string from assumptions describing the grammatical
properties of the string's elements and the linear order between them. Lambek's
syntactic calculi (Lambek, 1958) comprise an early formalization of this idea,
which more recently was explored in relation to grammar formalisms based
on de�nite clauses (Colmerauer, 1978; Pereira and Warren, 1980; Pereira and
Warren, 1983) and on feature logics (Shieber, 1992; Rounds and Manaster-
Ramer, 1987; Carpenter, 1992).

The view of parsing as deduction adds two main new sources of insights and
techniques to the study of grammar formalisms and parsing:

1. Existing logics can be used as a basis for new grammar formalisms with
desirable representational or computational properties.

2. The modular separation of parsing into a logic of grammaticality claims
and a proof search procedure allows the investigation of a wide range of
parsing algorithms for existing grammar formalisms by selecting speci�c
classes of grammaticality claims and speci�c search procedures.

While most of the work on deductive parsing has been concerned with (1), we
will in this paper investigate (2), more speci�cally how to synthesize parsing
algorithms by combining speci�c logics of grammaticality claims with a �xed
search procedure. In this way, deduction can provide a metaphor for parsing
that encompasses a wide range of parsing algorithms for an assortment of gram-
matical formalisms. We
esh out this metaphor by presenting a series of parsing
algorithms literally as inference rules, and by providing a uniform deduction en-
gine, parameterized by such rules, that can be used to parse according to any
of the associated algorithms. The inference rules for each logic will be repre-
sented as unit clauses and the �xed deduction procedure, which we provide a
Prolog implementation of, will be a version of the usual bottom-up consequence
closure operator for de�nite clauses. As we will show, this method directly
yields dynamic-programming versions of standard top-down, bottom-up, and
mixed-direction (Earley) parsing procedures. In this, our method has similari-
ties with the use of pure bottom-up deduction to encode dynamic-programming
versions of de�nite-clause proof procedures in deductive databases (Bancilhon
and Ramakrishnan, 1988; Naughton and Ramakrishnan, 1991).

The program that we develop is especially useful for rapid prototyping of
and experimentation with new parsing algorithms, and was in fact developed for
that purpose. We have used it, for instance, in the development of algorithms
for parsing with tree-adjoining grammars, categorial grammars, and lexicalized
context-free grammars.

Many of the ideas that we present are not new. Some have been presented
before; others form part of the folk wisdom of the logic programming community.

MERL-TR-94-08 May 1994

2

However, the present work is to our knowledge the �rst to make the ideas
available explicitly in a single notation and with a clean implementation. In
addition, certain observations regarding e�cient implementation may be novel
to this work.

The paper is organized as follows: After reviewing some basic logical and
grammatical notions and applying them to a simple example (Section 2), we
describe how the structure of a variety of parsing algorithms for context-free
grammars can be expressed as inference rules in specialized logics (Section 3).
Then, we extend the method for stating and implementing parsing algorithms
for formalisms other than context-free grammars (Section 4). Finally, we dis-
cuss how deduction should proceed for such logics, developing an agenda-based
deduction procedure implemented in Prolog that manifests the presented ideas
(Section 5).

2 Basic Notions

As introduced in Section 1, we see parsing as a deductive process in which
rules of inference are used to derive statements about the grammatical status
of strings from other such statements. Statements are represented by formulas
in a suitable formal language. The general form of a rule of inference is

A1 � � � Ak

B
hside conditions on A1; : : : ; Ak; Bi .

The antecedents A1; : : : ; Ak and the consequent B of the inference rule are for-
mula schemata, that is, they may contain syntactic metavariables to be instan-
tiated by appropriate terms when the rule is used. A grammatical deduction
system is de�ned by a set of rules of inference and a set of axioms given by
appropriate formula schemata.

Given a grammatical deduction system, a derivation of a formula B from
assumptions A1; : : : ; Am is, as usual, a sequence of formulas S1; : : : ; Sn such
that B = Sn, and each Si is either an axiom (one of the Aj) or there is a rule
of inference R and formulas Si1 ; : : : ; Sik with i1; : : : ; ik < i such that for appro-
priate substitutions of terms for the metavariables in R, Si1 ; : : : ; Sik match the
antecedents of the rule, Si matches the consequent, and the rule's side condi-
tions are satis�ed. We write A1; : : : ; Am ` B and say that B is a consequence

of A1; : : : ; Am if such a derivation exists. If B is a consequence of the empty set
of assumptions, it is said to be derivable, in symbols ` B.

In our applications of this model, rules and axiom schemata may refer in
their side conditions to the rules of a particular grammar, and formulas may
refer to string positions in the �xed string to be parsed w = w1 � � �wn. With
respect to the given string, goal formulas state that the string is grammatical
according to the given grammar. Then parsing the string corresponds to �nding
a derivation witnessing a goal formula.

MERL-TR-94-08 May 1994

3

We will use standard notation for metavariables ranging over the objects
under discussion: n for the length of the object language string to be parsed;
A;B;C : : : for arbitrary formulas or symbols such as grammar nonterminals;
a; b; c; : : : for arbitrary terminal symbols; i; j; k; : : : for indices into various strings,
especially the string w; �;�;
; : : : for strings or terminal and nonterminal sym-
bols. We will often use such notations leaving the type of the object implicit
in the notation chosen for it. Substrings will be notated elliptically as, e.g.,
wi � � �wj for the i-th through j-th elements of w, inclusive. As is usual, we take
wi � � �wj to be the empty string if i > j.

2.1 A First Example: CYK Parsing

As a simple example, the basic mechanism of the Cocke-Younger-Kasami (CYK)
context-free parsing algorithm (Kasami, 1965; Younger, 1967) for a context-free
grammar in Chomsky normal form can be easily represented as a grammatical
deduction system.

We assume that we are given a string w = w1 � � �wn to be parsed and a
context-free grammar G = hN;�; P; Si , where N is the set of nonterminals
including the start symbol S, � is the set of terminal symbols, (V = N [� is
the vocabulary of the grammar,) and P is the set of productions, each of the
form A ! � for A 2 N and � 2 V �. We will use the symbol) for immediate
derivation and

�

) for its re
exive, transitive closure, the derivation relation. In
the case of a Chomsky-normal-form grammar, all productions are of the form
A! B C or A! a.

The items of the logic (as we will call parsing logic formulas from now on)
are of the form [A; i; j], and state that the nonterminal A derives the substring

between indices i and j in the string, that is, A
�

) wi+1 � � �wj. Sound axioms,
then, are grounded in the lexical items that occur in the string. For each
word wi+1 in the string and each rule A ! wi+1, it is clear that the item
[A; i; i+ 1] makes a true claim, so that such items can be taken as axiomatic.

Then whenever we know that B
�

) wi+1 � � �wj and C
�

) wj+1 � � �wk | as
asserted by items of the form [B; i; j] and [C; j; k] | where A ! B C is a

production in the grammar, it is sound to conclude that C
�

) wi+1 � � �wk, and
therefore, the item [C; i; k] should be inferable. This argument can be codi�ed
in a rule of inference:

[B; i; j] [C; j; k]
[A; i; k]

A! B C

Using this rule of inference with the axioms, we can conclude that the string is
admitted by the grammar if an item of the form [S;0; n] is deducible, since such

an item asserts that S
�

) w1 � � �wn = w. We think of this item as the goal item

to be proved.
In summary, the CYK deduction system (and all the deductive parsing sys-

tems we will de�ne) can be speci�ed with four components: a class of items; a

MERL-TR-94-08 May 1994

4

Item form: [A; i; j]

Axioms: [A; i; i+ 1] A! wi+1

Goals: [S; 0; n]

Inference rules:
[B; i; j] [C; j; k]

[A; i; k]
A! B C

Figure 1: The CYK deductive parsing system.

set of axioms; a set of inference rules; and a subclass of items, the goal items.
These are given in summary form in Figure 1.

This deduction system can be encoded straightforwardly by the following
logic program:

nt(A, I1, I) :-

word(I, W),

(A ---> [W]),

I1 is I - 1.

nt(A, I, K) :-

nt(B, I, J),

nt(C, J, K),

(A ---> [B, C]).

where A ---> [X1,: : :,Xm] is the encoding of a production A ! X1 � � �Xn

in the grammar and word(i,wi) holds for each input word wi in the string to
be parsed. A suitable bottom-up execution of this program, for example using
the semi-na��ve bottom-up procedure (Naughton and Ramakrishnan, 1991) will
behave similarly to the CYK algorithm on the given grammar.

2.2 Proofs of Correctness

Rather than implement each deductive system like the CYK one as a separate
logic program, we will describe in Section 5 a meta-interpreter for logic programs
obtained from grammatical deduction systems. The meta-interpreter is just
a variant of the semi-na��ve procedure specialized to programs implementing
grammatical deduction systems. We will show in Section 5 that our procedure
generates only items derivable from the axioms (soundness) and will enumerate
all the derivable items (completeness). Therefore, to show that a particular
parsing algorithm is correctly simulated by our meta-interpreter, we basically
need to show that the corresponding grammatical deduction system is also sound

MERL-TR-94-08 May 1994

5

and complete with respect to the intended interpretation of grammaticality
items. By sound here we mean that every derivable item represents a true
grammatical statement under the intended interpretation, and by complete we
mean that the item encoding every true grammatical statement is derivable.
(We also need to show that the grammatical deduction system is faithfully
represented by the corresponding logic program, but in general this will be
obvious by inspection.)

3 Deductive Parsing of Context-Free Grammars

We begin the presentation of parsing methods stated as deduction systems with
several standard methods for parsing context-free grammars. In what follows,
we assume that we are given a string w = w1 � � �wn to be parsed along with a
context-free grammar G = hN;�; P; Si.

3.1 Pure Top-Down Parsing (Recursive Descent)

The �rst full parsing algorithm for arbitrary context-free grammars that we
present from this logical perspective is recursive-descent parsing. Given a context-
free grammar G = hN;�; P; Si, and a string w = w1 � � �wn to be parsed, we
will consider a logic with items of the form [� �; j] where 0 � j � n. Such
an item asserts that the substring of the string w up to and including the j-th
element, when followed by the string of symbols �, forms a sentential form of
the language, that is, that S

�

) w1 � � �wj�. Note that the dot in the item is
positioned just at the break point in the sentential form between the portion
that has been recognized (up through index j) and the part that has not (�).

Taking the set of such items to be the [propositional] formulas of the logic,
and taking the informal statement concluding the previous paragraph to provide
a denotation for the sentences,1 we can explore a proof theory for the logic. We
start with an axiom

[� S; 0] ,

which is sound because S
�

) S trivially.
Note that two items of the form [�wj+1�; j] and [� �; j + 1] make the same

claim, namely that S
�

) w1 � � �wjwj+1�. Thus, it is clearly sound to conclude

1A more formal statement of the semantics could be given, e.g., as

[[[� �; j]]] =

�
truth if S

�

) w1 � � �wj�

falsity otherwise .

MERL-TR-94-08 May 1994

6

Item form: [� �; j]

Axioms: [� S; 0]

Goals: [� ; n]

Inference rules:

Scanning
[�wj+1�; j]
[� �; j + 1]

Prediction
[�B�; j]
[�
�; j]

B !

Figure 2: The top-down recursive-descent deductive parsing system.

the latter from the former, yielding the inference rule:

[�wj+1�; j]
[� �; j + 1]

,

which we will call the scanning rule.
A similar argument shows the soundness of the prediction rule:

[�B�; j]
[�
�; j]

B !
 .

Finally, the item [� ; n] makes the claim that S
�

) w1 � � �wn, that is, that the
string w is admitted by the grammar. Thus, if this goal item can be proved from
the axiom by the inference rules, then the string must be in the grammar. Such
a proof process would constitute a sound recognition algorithm. As it turns out,
the recognition algorithm that this logic of items speci�es is a pure top-down
left-to-right regime, a recursive-descent algorithm. The four components of the
deduction system for top-down parsing | class of items, axioms, inference rules,
and goal items | are summarized in Figure 2.

To illustrate the operation of these inference rules for context-free parsing,
we will use the toy grammar of Figure 3. Given that grammar and the string

w1w2w3 = a program halts(1)

MERL-TR-94-08 May 1994

7

S ! NP VP

NP ! Det N OptRel

NP ! PN

VP ! TV NP

VP ! IV

OptRel ! RelPro VP

OptRel ! �

Det ! a

N ! program

PN ! Terry

PN ! Shrdlu

IV ! halts

TV ! writes

RelPro ! that

Figure 3: An example context-free grammar.

we can construct the following derivation using the rules just given:

1 [� S; 0]
2 [�NP VP; 0] from 1
3 [�Det N OptRel VP; 0] from 2
4 [� a N OptRel VP; 0] from 3
5 [�N OptRel VP; 1] from 4
6 [� program OptRel VP; 1] from 5
7 [�OptRel VP; 2] from 6
8 [�VP; 2] from 7
9 [� IV; 2] from 8
10 [� halts; 2] from 9
11 [� ; 3] from 10

The last item is a goal item, showing that the given sentence is accepted by the
grammar of Figure 3.

The above derivation, as all the others we will show, contains just those items
that are strictly necessary to derive a goal item from the axiom. In general, a
complete search procedure, such as the one we describe in Section 5, generates
items that are either dead-ends or redundant for a proof of grammaticality. Fur-
thermore, with an ambiguous grammar there will be several essentially di�erent
proofs of grammaticality, each corresponding to a di�erent analysis of the input
string.

3.1.1 Proof of Completeness

We have shown informally above that the inference rules for top-down parsing
are sound, but for any such system we also need the guarantee of completeness:

MERL-TR-94-08 May 1994

8

if a string is admitted by the grammar, then for that string there is a derivation
of a goal item from the initial item.

In order to prove completeness, we prove the following lemma: If S
�

)
w1 � � �wj
 is a leftmost derivation (where
 2 V �), then the item [�
; j] is
generated. We must prove all possible instances of this lemma. Any speci�c
instance can be characterized by specifying the string
 and the integer j, since
S and w1 � � �wj are �xed. We shall denote such an instance by h
; ji. The proof
will turn on ranking the various instances and proving the result by induction
on the rank. The rank of the instance h
; ji is computed as the sum of j and

the length of a shortest leftmost derivation of S
�

) w1 � � �wj
.
If the rank is zero, then j = 0 and
 = S. Then, we need to show that [�S; 0]

is generated, which is the case since it is an axiom of the top-down deduction
system.

For the inductive step, let h
; ji be an instance of the lemma of some rank
r > 0, and assume that the lemma is true for all instances of smaller rank. Two
cases arise.

Case 1: S
�

) w1 � � �wj
 in one step. Therefore, S ! w1 � � �wj
 is a rule of the
grammar. However, since [� S; 0] is an axiom, by one application of the
prediction rule (predicting the rule S ! w1 � � �wj
) and j applications of
the scanning rule, the item [�
; j] will be generated.

Case 2: S
�

) w1 � � �wj
 in more than one step. Let us assume therefore

that S
�

) w1 � � �wj�kB

0) w1 � � �wj�

0 where
 = �
0 and B !
wj�k+1 � � �wj�. The instance hB

0; j� ki has a strictly smaller rank than
h
; ji. Therefore, by the induction hypothesis, the item [�B
0; j � k] will
be generated. But then, by prediction, the item [�wj�k+1 � � �wj�; j � k]
will be generated and by k applications of the scanning rule, the item
[�B; j] will be generated.

This concludes the proof of the lemma. Completeness of the parser follows
as a corollary of the lemma since if S

�

) w1 � � �wn, then by the lemma the item
[�; n] will be generated.

Completeness proofs for the remaining parsing logics discussed in this paper
could be provided in a similar way by relating an appropriate notion of normal-
form derivation for the grammar formalism under consideration to the item
invariants.

3.2 Pure Bottom-Up Parsing (Shift-Reduce)

A pure bottom-up algorithm can be speci�ed by such a deduction system as
well. Here, the items will have the form [� � ; j]. Such an item asserts the dual

of the assertion made by the top-down items, that �wj+1 � � �wn
�

) w1 � � �wn (or,

equivalently but less transparently dual, that �
�

) w1 � � �wj). The algorithm is

MERL-TR-94-08 May 1994

9

Item form: [� � ; j]

Axioms: [� ; 0]

Goals: [S � ; n]

Inference Rules:

Shift
[� � ; j]

[�wj+1 � ; j + 1]

Reduce
[�
 � ; j]
[�B � ; j]

B !

Figure 4: The bottom-up shift-reduce deductive parsing system.

then characterized by the deduction system shown in Figure 4. The algorithm
mimics the operation of a nondeterministic shift-reduce parsing mechanism,
where the string of symbols preceding the dot corresponds to the current parse
stack, and the substring starting at the index j corresponds to the as yet unread
input.

The soundness of the inference rules in Figure 4 is easy to see. The an-
tecedent of the shift rule claims that �wj+1 � � �wn

�

) w1 � � �wn, but that is also

what the consequent claims. For the reduce rule, if �
wj+1 � � �wn
�

) w1 � � �wn

and B !
, then by de�nition of
�

) we also have �Bwj+1 � � �wn
�

) w1 � � �wn.
As for completeness, it can be proved by induction on the steps of a reversed
rightmost context-free derivation in a way very similar to the completeness proof
of the last section.

The following derivation shows the operation of the bottom-up rules on
example sentence (1):

1 [� ; 0]
2 [a � ; 1] from 1
3 [Det � ; 1] from 2
4 [Det program � ; 2] from 3
5 [Det N � ; 2] from 4
6 [Det N OptRel � ; 2] from 5
7 [NP � ; 2] from 6
8 [NP halts � ; 3] from 7
9 [NP IV � ; 3] from 8
10 [NP VP � ; 3] from 9
11 [S � ; 3] from 10

The last item is a goal item, which shows that the sentence is parsable according

MERL-TR-94-08 May 1994

10

to the grammar.

3.3 Earley's Algorithm

Stating the algorithms in this way points up the duality of recursive-descent
and shift-reduce parsing in a way that traditional presentations do not. The
summary presentation in Figure 5 may further illuminate the various interrela-
tionships. As we will see, Earley's algorithm (Earley, 1970) can then be seen as
the natural combination of these two algorithms.

In recursive-descent parsing, we keep a partial sentential form for the mate-
rial yet to be parsed, using the dot at the beginning of the string of symbols to
remind us that these symbols come after the point that we have reached in the
recognition process. In shift-reduce parsing, we keep a partial sentential form for
the material that has already been parsed, placing a dot at the end of the string
to remind us that these symbols come before the point that we have reached
in the recognition process. In Earley's algorithm we keep both of these partial
sentential forms, with the dot marking the point somewhere in the middle where
recognition has reached. The dot thus changes from a mnemonic to a necessary
role. In addition, Earley's algorithm localizes the piece of sentential form that is
being tracked to that introduced by a single production. (Because the �rst two
parsers do not limit the information stored in an item to only local information,
they are not practical algorithms as stated. Rather some scheme for sharing the
information among items would be necessary to make them tractable.)

The items of Earley's algorithm are thus of the form [i; A ! � � �; j] where
� and � are strings in V � and A ! �� is a production of the grammar. As was
the case for the previous two algorithms, the j index provides the position in the
string that recognition has reached, and the dot position marks that point in
the partial sentential form. In these items, however, an extra index i marks the
starting position of the partial sentential form, as we have localized attention
to a single production. In summary, an item of the form [i; A ! � � �; j]

makes the top-down claim that S
�

) w1 � � �wiA
, and the bottom-up claim that
�wj+1 � � �wn

�

) wi+1 � � �wn. The two claims are connected by the fact that
A! �� is a production in the grammar.

The algorithm itself is captured by the speci�cation found in Figure 5. Proofs
of soundness and completeness are somewhat more complex than those for the
pure top-down and bottom-up cases shown above, and are directly related to
the corresponding proofs for Earley's original algorithm (Earley, 1970).

The following derivation, again for sentence (1), illustrates the operation of

MERL-TR-94-08 May 1994

11

Algorithm Bottom-Up Top-Down Earley's

Item form [� � ; j] [� �; j] [i; A! � � �; j]

Invariant S
�

) w1 � � �wj� S
�

) w1 � � �wiA

�wj+1 � � �wn
�

) w1 � � �wn �wj+1 � � �wn
�

) wi+1 � � �wn

Axioms [� ; 0] [� S; 0] [0; S0 ! � S; 0]

Goals [S � ; n] [� ; n] [0; S0 ! S � ; n]

Scanning
[� � ; j]

[�wj+1 � ; j + 1]
[�wj+1�; j]
[� �; j + 1]

[i; A! � �wj+1�; j]
[i; A! �wj+1 � �; j + 1]

Prediction
[�B�; j]
[�
�; j]

B !

[i; A! � �B�; j]
[j; B ! �
; j]

B !

Completion
[�
 � ; j]
[�B � ; j]

B !

[i; A! � �B�; k] [k;B !
 � ; j]

[i; A! �B � �; j]

Figure 5: Summary of parsing algorithms presented as deductive parsing sys-
tems. (In the axioms and goal items of Earley's algorithm, S0 serves as a new
nonterminal not in N .)

MERL-TR-94-08 May 1994

12

the Earley inference rules:

1 [0; S0 ! � S; 0]
2 [0; S ! �NP VP; 0] from 1
3 [0;NP! �Det N OptRel; 0] from 2
4 [0;Det! � a; 0] from 3
5 [0;Det! a � ; 1] from 4
6 [0;NP! Det �N OptRel; 1] from 3 and 5
7 [1; N ! � program; 1] from 6
8 [1; N ! program � ; 2] from 7
9 [0;NP! Det N �OptRel; 2] from 6 and 8
10 [2;OptRel! � ; 2] from 9
11 [0;NP! Det N OptRel � ; 2] from 9 and 10
12 [0; S ! NP �VP; 2] from 2 and 11
13 [2;VP! � IV; 2] from 12
14 [2; IV! � halts; 2] from 13
15 [2; IV! halts � ; 3] from 14
16 [2;VP! IV � ; 3] from 13 and 15
17 [0; S ! NP VP � ; 3] from 12 and 16
18 [0; S0 ! S � ; 3] from 1 and 17

The last item is again a goal item, so we have an Earley derivation of the
grammaticality of the given sentence.

4 Deductive Parsing for Other Formalisms

The methods (and implementation) that we developed have also been used for
rapid prototyping and experimentation with parsing algorithms for grammatical
frameworks other than context-free grammars. They can be naturally extended
to handle augmented phrase-structure formalisms such as logic grammar and
constraint-based formalisms. They have been used in the development and
testing of algorithms for parsing categorial grammars, tree-adjoining grammars,
and lexicalized context-free grammars. In this section, we discuss these and
other extensions.

4.1 Augmented Phrase-Structure Formalisms

It is straightforward to see that the three deduction systems just presented
can be extended to constraint-based grammar formalisms with a context-free
backbone. The basis for this extension goes back to metamorphosis grammars
(Colmerauer, 1978) and de�nite-clause grammars (DCG) (Pereira and Warren,
1980). In those formalisms, grammar symbols are �rst-order terms, which can
be understood as abbreviations for the sets of all their ground instances. Then

MERL-TR-94-08 May 1994

13

an inference rule can also be seen as an abbreviation for all of its ground in-
stances, with the metagrammatical variables in the rule consistently instantiated
to ground terms. Computationally, however, such instances are generated lazily
by accumulating the consistency requirements for the instantiation of inference
rules as a conjunction of equality constraints and maintaining that conjunction
in normal form | sets of variable substitutions | by uni�cation. (This is di-
rectly related to the use of uni�cation to avoid \guessing" instances in the rules
of existential generalization and universal instantiation in a natural-deduction
presentation of �rst-order logic).

We can move beyond �rst-order terms to general constraint-based grammar
formalisms (Shieber, 1992; Carpenter, 1992) by taking the above constraint
interpretation of inference rules as basic. More explicitly, a rule such as Earley
completion

[i; A! � �B�; k] [k;B !
 � ; j]
[i; A! �B � �; j]

is interpreted as shorthand for the constrained rule:

[i; A! � �B�; k] [k;B0 !
 � ; j]
[i; A0 ! �B00 � �; j]

A = A0 and B = B0 and B = B00

When such a rule is applied, the three constraints it depends on are conjoined
with the constraints for the current derivation. In the particular case of �rst-
order terms and antecedent-to-consequent rule application, completion can be
given more explicitly as

[i; A! � �B�; k] [k;B0 !
 � ; j]
[i; �(A ! �B � �); j]

� = mgu(B;B0) :

where mgu(B;B0) is the most general uni�er of the terms B and B0. This is the
interpretation implemented by the deduction procedure described in the next
section.

The move to constraint-based formalisms raises termination problems in
proof construction that did not arise in the context-free case. In the general
case, this is inevitable, because a formalism like DCG (Pereira and Warren,
1980) or PATR-II (Shieber, 1985a) has Turing-machine power. However, even if
constraints are imposed on the context-free backbone of the grammar produc-
tions to guarantee decidability, such as o�ine parsability (Bresnan and Kaplan,
1982; Pereira and Warren, 1983; Shieber, 1992), the prediction rules for the
top-down and Earley systems are problematic. The di�culty is that prediction
can feed on its own results to build unboundedly large items. For example,
consider the DCG

s ! r(0; N)
r(X;N) ! r(s(X); N) b
r(N;N) ! a

MERL-TR-94-08 May 1994

14

It is clear that this grammar accepts strings of the form abn with the variable
N being instantiated to the unary (successor) representation of n. It is also
clear that the bottom-up inference rules will have no di�culty in deriving the
analysis of any input string. However, Earley prediction from the item [0; s !
� r(0; N); 0] will generate an in�nite succession of items:

[0; s! � r(0; N); 0]
[0; r(0; N)! � r(s(0); N) b; 0]
[0; r(s(0); N)! � r(s(s(0)); N) b; 0]
[0; r(s(s(0)); N)! � r(s(s(s(0))); N) b; 0]
� � �

This problem can be solved in the case of the Earley inference rules by ob-
serving that prediction is just used to narrow the number of items to be con-
sidered by scanning and completion, by maintaining the top-down invariant
S

�

) w1 � � �wiA
. But this invariant is not required for soundness or complete-
ness, since the bottom-up invariant is su�cient to guarantee that items represent
well-formed substrings of the input. The only purpose of the top-down invariant
is to minimize the number of completions that are actually attempted. Thus the
only indispensable role of prediction is to make available appropriate instances
of the grammar productions. Therefore, any relaxation of prediction that makes
available items of which all the items predicted by the original prediction rule are
instances will not a�ect soundness or completeness of the rules. More precisely,
it must be the case that any item [i; B ! �
; i] that the original prediction
rule would create is an instance of some item [i; B0 ! �
0; i] created by the
relaxed prediction rule. A relaxed prediction rule will create no more items than
the original predictor, and in fact may create far fewer. In particular, repeated
prediction may terminate in cases like the one described above. For example, if
the prediction rule applied to [i; A! � �B0�; j] yields [i; �(B ! �
); i] where
� = mgu(B;B0), a relaxed prediction rule might yield [i; �0(B ! �
); i], where
�0 is a less speci�c substitution than � chosen so that only a �nite number of
instances of [i; B ! �
; i] are ever generated. A similar notion for general
constraint grammars is called restriction (Shieber, 1985b; Shieber, 1992), and
a related technique has been used in partial evaluation of logic programs (Sato
and Tamaki, 1984).

The problem with the DCG above can be seen as following from the compu-
tation of derivation-speci�c information in the arguments to the nonterminals.
However, applications frequently require construction of the derivation for a
string (or similar information), perhaps for the purpose of further processing.
It is simple enough to augment the inference rules to include with each item a
derivation. For the Earley deduction system, the items would include a fourth
component whose value is a sequence of derivation trees, nodes labeled by pro-
ductions of the grammar, one derivation tree for each element of the right-hand
side of the item before the dot. The inference rules would be modi�ed as shown
in Figure 6. The system makes use of a function tree that takes a node label l

MERL-TR-94-08 May 1994

15

Item form: [i; A� � �; j;D]

Axioms: [0; S0 ! � S; 0; hi]

Goals: [0; S0 ! S � ; n;D]

Inference rules:

Scanning
[i; A! � �wj+1�; j;D]

[i; A! �wj+1 � �; j + 1; D]

Prediction
[i; A! � �B�; j;D]
[j; B ! �
; j; hi]

B !

Completion
[i; A! � �B�; k;D1] [k;B !
 � ; j;D2]
[i; A! �B � �; j;D1 [tree(B !
;D2)]

Figure 6: The Earley deductive parsing system modi�ed to generate derivation
trees.

(a production in the grammar) and a sequence of derivation trees D and forms
a tree whose root is labeled by l and whose children are the trees in D in order.

Of course, use of such rules makes the caching of lemmas essentially useless,
as lemmas derived in di�erent ways are never identical. Appropriate methods
of implementation that circumvent this problem are discussed in Section 5.4.

4.2 Combinatory Categorial Grammars

A combinatory categorial grammar (Ades and Steedman, 1982) consists of two
parts: (1) a lexicon that maps words to sets of categories; (2) rules for combining
categories into other categories.

Categories are built from atomic categories and two binary operators: for-
ward slash (/) and backward slash (n). Informally speaking, words having cate-
gories of the form X/Y , XnY , (W/X)/Y etc. are to be thought of as functions
over Y 's. Thus the category SnNP of intransitive verbs should be interpreted as
a function from noun phrases (NP) to sentences (S). In addition, the direction
of the slash (forward as in X/Y or backward as in XnY) speci�es where the
argument must be found, immediately to the right for / or immediately to the
left for n.

For example, a CCG lexicon may assign the category SnNP to an intransitive
verb (as the word sleeps). SnNP identi�es the word (sleeps) as combining with a
(subject) noun phrase (NP) to yield a sentence (S). The back slash (n) indicates
that the subject must be found immediately to the left of the verb. The forward

MERL-TR-94-08 May 1994

16

Word Category

John NP

bananas NP

likes (SnNP)/NP
really (SnNP)/(SnNP)

Figure 7: An example CCG lexicon.

slash / would have indicated that the argument must be found immediately to
the right of the verb.

More formally, categories are de�ned inductively as follows:2 Given a set of
nonterminals,

� Nonterminal symbols are categories.

� If c1 and c2 are categories, then (c1/c2) and (c1nc2) are categories.

The lexicon is de�ned as a mapping f from words to �nite sets of categories.
Figure 7 is an example of a CCG lexicon. In this lexicon, likes is encoded as a
transitive verb (SnNP)/NP, yielding a sentence (S) when a noun phrase (NP)
object is found to its right and when a noun phrase subject (NP) is then found
to its left.

Categories can be combined by a �nite set of rules that fall in two classes:
application and composition.

Application allows the simple combination of a function with an argument
to its right (forward application) or to its left (backward application). For
example, the sequence (SnNP)/NP NP can be reduced to SnNP by applying
the forward application rule. Similarly, the sequence NP SnNP can be reduced
to S by applying the backward application rule.

Composition allows to combine two categories in a similar fashion as func-
tional composition. For example, forward composition combines two categories
of the form X/Y Y /Z to another category X/Z. The rule gives the appearance
of \canceling" Y , as if the two categories were numerical fractions undergoing
multiplication. This rule corresponds to the fundamental operation of \compos-
ing" the two functions, the function X/Y from Y to X and the function Y /Z
from Z to Y .

The rules of composition can be speci�ed formally as productions, but unlike
the productions of a CFG, these productions are universal over all CCGs. In
order to reduce the number of cases, we will use a vertical bar j as an instance of

2The notation for backward slash used in this paper is consistent with one de�ned by Ades
and Steedman (1982): XnY is interpreted as a function from Y s toXs. Although this notation
has been adopted by the majority of combinatory categorial grammarians, other frameworks
(Lambek, 1958) have adopted the opposite interpretation for XnY : a function from Xs to Y s.

MERL-TR-94-08 May 1994

17

a forward or backward slash, / or n. Instances of j in left- and right-hand sides
of a single production should be interpreted as representing slashes of the same
direction. The symbols X, Y and Z are to be read as variables which match
any category.

Forward application: X ! X/Y Y
Backward application: X ! Y XnY
Forward composition: XjZ ! X/Y Y jZ
Backward composition: XjZ ! Y jZ XnY

A string of words is accepted by a CCG, if a speci�ed nonterminal symbol
(usually S) derives a string of categories that is an image of the string of words
under the mapping f .

A bottom-up algorithm | essentially the CYK algorithm instantiated for
these productions | can be easily speci�ed for CCGs. Given a CCG, and a
string w = w1 � � �wn to be parsed, we will consider a logic with items of the
form [X; i; j] where X is a category and i and j are integers ranging from 0 to
n. Such an item, asserts that the substring of the string w from the i + 1-th
element up to the j-th element can be reduced to the category X. The required
proof rules for this logic are given in Figure 8.

To illustrate the operations, we will use the lexicon in Figure 7 to combine
the string

John really likes bananas(2)

Among other ways, the sentence can be proved as follows:

1 [NP; 0; 1]
2 [(SnNP)/(SnNP); 1; 2]
3 [(SnNP)/NP; 2; 3]
4 [(SnNP)/NP; 1; 3] from 2 and 3
5 [NP; 3; 4]
6 [(SnNP); 1; 4] from 4 and 5
7 [S; 0; 4] from 1 and 6

Other extensions of CCG (such as generalized composition and coordination)
can be easily implemented using such deduction parsing methods.

4.3 Tree-Adjoining Grammars and Related Formalisms

The formalism of tree-adjoining grammars (TAG) (Joshi, Levy, and Takahashi,
1975; Joshi, 1985) is a tree-generating system in which trees are combined by
an operation of adjunction rather than the substitution operation of context-
free grammars.3 The increased expressive power of adjunction allows important

3Most practical variants of TAG include both adjunction and substitution, but for purposes
of exposition we restrict our attention to adjunction alone, since substitution is formally

MERL-TR-94-08 May 1994

18

Item form: [X; i; j]

Axioms: [X; i; i+ 1] where X 2 f(wi+1)

Goals: [S; 0; n]

Inference rules:

Forward Application
[X/Y; i; j] [Y; j; k]

[X; i; j]

Backward Application
[Y; i; j] [XnY; j; k]

[X; i; k]

Forward Composition 1
[X/Y; i; j] [Y /Z; j; k]

[X/Z; i; k]

Forward Composition 2
[X/Y; i; j] [Y nZ; j; k]

[XnZ; i; k]

Backward Composition 1
[Y /Z; i; j] [XnY; j; k]

[X/Z; i; k]

Backward Composition 2
[Y nZ; i; j] [XnY; j; k]

[XnZ; i; k]

Figure 8: The CCG deductive parsing system.

MERL-TR-94-08 May 1994

19

S

NP VP

VTrip

rumbas

VP

VP* Adv

nimbly

VP

Adv

nimbly

NP

Trip VP

V

rumbas

S

(a) (b) (c)

Figure 9: An example tree-adjoining grammar consisting of one initial tree (a),
and one auxiliary tree (b). These trees can be used to form the derived tree
(c) for the sentence \Trip rumbas nimbly." (In an actual English grammar, the
tree depicted in (a) would not be an elementary tree, but itself derived from
two trees, one for each lexical item, by a substitution operation.)

natural-language phenomena such as long-distance dependencies to be expressed
locally in the grammar, that is, within the relevant lexical entries, rather than
by many specialized context-free rules (Kroch and Joshi, 1985).

A tree-adjoining grammar consists of a set of elementary trees of two types:
initial trees and auxiliary trees. An initial tree is complete in the sense that its
frontier includes only terminal symbols. An example is given in Figure 9(a). An
auxiliary tree is incomplete; it has a single node on the frontier, the foot node,
labeled by the same nonterminal as the root. Figure 9(b) provides an example.
(By convention, foot nodes are redundantly marked by a diacritic asterisk (�)
as in the �gure.)

Although auxiliary trees do not themselves constitute complete grammatical
structures, they participate in the construction of complete trees through the
adjunction operation. Adjunction of an auxiliary tree into an initial tree is
depicted in Figure 10. The operation inserts a copy of an auxiliary tree into
another tree in place of an interior node that has the same label as the root and
foot nodes of the auxiliary tree. The subtree that was previously connected to
the interior node is reconnected to the foot node of the copy of the auxiliary
tree. For example, the auxiliary tree in Figure 9(b) can be adjoined at the VP

dispensible and its implementation in parsing systems such as we describe is very much like the
context-free operation. Similarly, we do not address other issues such as adjoining constraints
and extended derivations. Discussion of those can be found elsewhere (Schabes, 1994; Schabes
and Shieber, 1992).

MERL-TR-94-08 May 1994

20

X

X

i

j k

l

X

X

initial tree auxiliary tree derived tree

X*

Figure 10: The operation of adjunction. The auxiliary tree is spliced into the
initial tree to yield the derived tree at right.

node of the initial tree in Figure 9(a) to form the derived tree in Figure 9(c).
Adjunction in e�ect supports a form of string wrapping and is therefore more
powerful than the substitution operation of context-free grammars.

A tree-adjoining grammar can be speci�ed as a quintupleG = hN;�; I; A; Si,
where N is the set of nonterminals including the start symbol S, � is the disjoint
set of terminal symbols, I is the set of initial trees, and A is the set of auxiliary
trees.

To describe adjunction and TAG derivations, we need notation to refer to
tree nodes, their labels, and the subtrees they de�ne. Every node in a tree � can
be speci�ed by its address, a sequence of positive integers de�ned inductively
as follows: the empty sequence � is the address of the root node, and p � k is
the address of the k-th child of the node at address p. Foot(�) is de�ned as
the address of the foot node of the tree � if there is one; otherwise Foot(�) is
unde�ned.

We denote by �@p the node of � at address p, and by �=p the subtree of �
rooted at �@p. The grammar symbol that labels node � is denoted by Label(�).
Given an elementary tree node �, Adj(�) is de�ned as the set of auxiliary trees
that can be adjoined at node �.4

4For TAGs with no constraints on adjunction (for instance, as de�ned here), Adj(�) is just
the set of elementary auxiliary trees whose root node is labeled by Label(�). When other

MERL-TR-94-08 May 1994

21

Finally, we denote by �[�1 7! p1; : : : ; �k 7! pk] the result of adjoining the
trees �1; : : : ; �k at distinct addresses p1; : : : ; pk in the tree �.

The set of trees D(G) derived by a TAG G can be de�ned inductively. D(G)
is the smallest set of trees such that

1. I [A � D(G), that is, all elementary trees are derivable, and

2. De�ne D(�;G) to be the set of all trees derivable as �[�1 7! p1; : : : ; �k 7!
pk] where �1; : : : ; �k 2 D(G) and p1; : : : ; pk are distinct addresses in �.
Then, for all elementary trees � 2 I [A, D(�;G) � D(G). Obviously, if
� is an initial tree, the tree thus derived will have no foot node, and if �
is an auxiliary tree, the derived tree will have a foot node.

The valid derivations in a TAG are the trees in D(�S ; G) where �S is an initial
tree whose root is labeled with the start symbol S.

Parsers for TAG can be described just as those for CFG, as deduction sys-
tems. The parser we present here is a variant of the CYK algorithm extended
for TAGs, similar, though not identical, to that of Vijay-Shanker (1987). We
chose it for expository reasons: it is by far the simplest TAG parsing algorithm,
in part because it is restricted to TAGs in which elementary trees are at most
binary branching, but primarily because it is purely a bottom-up system; no
prediction is performed. Despite its simplicity, the algorithm must handle the
increased generative capacity of TAGs over that of context-free grammars. Con-
sequently, the worst case complexity for the parser we present is worse than for
CFGs | O(n6) time for a sentence of length n.

The present algorithm uses a dotted tree to track the progress of parsing. A
dotted tree is an elementary tree of the grammar with a dot adjacent to one of
the nodes in the tree. The dot itself may be in one of two positions relative to the
speci�ed node: above or below. A dotted tree is thus speci�ed as an elementary
tree �, an address p in that tree, and a marker to specify the position of the dot
relative to the node. We will use the notation �� and �

�
for dotted trees with

the dot above and below node �, respectively.5

In order to track the portion of the string covered by the production up to
the dot position, the CYK algorithm makes use of two indices. In a dotted tree,
however, there is a further complication in that the elementary tree may contain
a foot node so that the string covered by the elementary tree proper has a gap
where the foot node occurs. Thus, in general, four indices must be maintained:

adjoining constraints are allowed, as is standard, they can be incorporated through a revised
de�nition of Adj.

5Although both this algorithm and Earley's use a dot in items to distinguish the progress
of a parse, they are used in quite distinct ways. The dot of Earley's algorithm tracks the
left-to-right progress of the parse among siblings. The dot of the CYK TAG parser tracks
the pre-/post-adjunction status of a single node. For this reason, when generalizing Earley's
algorithm to TAG parsing (Schabes, 1994), four dot positions are used to simultaneously track
pre-/post-adjunction and before/after node left-to-right progress.

MERL-TR-94-08 May 1994

22

two (i and l in Figure 10) to specify the left edge of the auxiliary tree and the
right edge of the parsed portion (up to the dot position) of the auxiliary tree,
and two more (j and k) to specify the substring dominated by the foot node.

The parser therefore consists of inference rules over items of the following
forms: [��; i; j; k; l] and [�

�
; i; j; k; l], where

� � is a node in an elementary tree,

� i; j; k; l are indices of positions in the input string w1 � � �wn ranging over
f0; � � � ; ng[f g, where indicates that the corresponding index is not used
in that particular item.

An item of the form [�@p�; i; ; ; l] speci�es that there is a tree T 2 D(�=p;G),
with no foot node, such that the fringe of T is the string wi+1 � � �wl. An item of
the form [�@p�; i; j; k; l] speci�es that there is a tree T 2 D(�=p;G), with a foot
node, such that the fringe of T is the stringwi+1 � � �wj Label(Foot(T)) wk+1 � � �wl.
The invariants for [�@p�; i; ; ; l] and [�@p�; i; j; k; l] are similar, except that the
derivation of T must not involve adjunction at node �@p.

The algorithm preserves this invariant while traversing the derived tree from
bottom to top, starting with items corresponding to the string symbols them-
selves, which follow from the axioms

[��; i; ; ; i+ 1] Label(�) = wi+1

combining completed subtrees into larger ones, and combining subtrees before
adjunction (with dot below) and derived auxiliary trees to form subtrees after
adjunction (with dot above). Figure 11 depicts the movement of the dot from
bottom to top as parsing proceeds. In Figure 11(a), the basic rules of dot
movement not involving adjunction are shown, including the axiom for terminal
symbols, the combination of two subchildren of a binary tree and one child of a
unary subtree, and the movement corresponding to the absence of an adjunction
at a node. These are exactly the rules that would be used in parsing within a
single elementary tree. Figure 11(b) displays the rules involved in parsing an
adjunction of one tree into another.

These dot movement rules are exactly the inference rules of the TAG CYK
deductive parsing system, presented in full in Figure 12. In order to reduce the
number of cases, we de�ne the notation i [j for two indices i and j as follows:

i [j =

8>><
>>:

i j =
j i =
i i = j

unde�ned otherwise

Although this parser works in time O(n6) | the Adjoin rule with its six
independent indices is the step that accounts for this complexity | and its
average behavior may be better, it is in practice too ine�cient for practical

MERL-TR-94-08 May 1994

23

A

A

A

Adjoin

B

aC

A

Terminal
Axiom

Complete Unary

Complete Binary

No Adjoin

(a) (b)

i

p q

l

(D)
j k

D

A

Foot
Axiom

A

Figure 11: Examples of dot movement in the CYK tree traversal implicit in the
TAG parsing algorithm.

MERL-TR-94-08 May 1994

24

Item form: [��; i; j; k; l]
[��; i; j; k; l]

Axioms:

Terminal Axiom [��; i; ; ; i+ 1] Label(�) = wi+1

Empty String Axiom [��; i; ; ; i] Label(�) = �

Foot Axiom [�@Foot(�)
�
; p; p; q; q] � 2 A

Goals: [�@��;0; ; ; n] � 2 I and Label(�@�) = S

Inference Rules:

Complete Unary
[�@(p � 1)�; i; j; k; l]
[�@p�; i; j; k; l]

�@(p � 2) unde�ned

Complete Binary
[�@(p � 1)�; i; j; k; l] [�@(p � 2)�; l; j0; k0;m]

[�@p�; i; j [j0; k [k0;m]

No Adjoin
[��; i; j; k; l]
[��; i; j; k; l]

Adjoin
[�@��; i; p; q; l] [��; p; j; k; q]

[��; i; j; k; l]
� 2 Adj(�)

Figure 12: The CYK deductive parsing system for tree-adjoining grammars.

MERL-TR-94-08 May 1994

25

use for two reasons. First, an attempt is made to parse all auxiliary trees
starting bottom-up from the foot node, regardless of whether the substring
between the foot indices actually can be parsed in an appropriate manner. This
problem can be alleviated, as suggested by Vijay-Shanker and Weir (1993), by
replacing the Foot Axiom with a Complete Foot rule that generates the item
[�@Foot(�)�; p; p; q; q] only if there is an item [��; p; j; k; q] where � 2 Adj(�),
i.e.,

Complete Foot
[��; p; j; k; q]

[�@Foot(�)�; p; p; q; q]
� 2 Adj(�)

This complicates the invariant considerably, but makes auxiliary tree parsing
much more goal-directed. Second, because of the lack of top-down prediction,
attempts are made to parse elementary trees that are not consistent with the
left context. Predictive parsers for TAG can be, and have been, described as
deductive systems. For instance, Schabes (1994) provides a detailed explanation
for a predictive left-to-right parser for TAG inspired by the techniques of Earley's
algorithm. Its worst-case complexity is O(n6) as well, but its average complexity
on English grammar is well superior to its worst case, and also to the CYK TAG
parser. A parsing system based on this algorithm is currently being used in the
development of a large English tree-adjoining grammar at the University of
Pennsylvania (Paroubek, Schabes, and Joshi, 1992).

Many other formalisms related to tree-adjoining grammars have been pro-
posed, and the deductive parsing approach is applicable to these as well. For
instance, as part of an investigation of the precise de�nition of TAG derivation,
Schabes and Shieber describe a compilation of tree-adjoining grammars to lin-
ear indexed grammars, together with an e�cient algorithm, stated as deduction
system for recognition and parsing according to the compiled grammar (Sch-
abes and Shieber, 1992). A prototype of this parser has been implemented using
the deduction engine described here. (In fact, it was as an aid to testing this
algorithm, with its eight inference rules each with as many as three antecedent
items, that the deductive parsing meta-interpreter was �rst built.)

Schabes and Waters (1993a) suggest the use of a restricted form of TAG in
which the foot node of an auxiliary tree can occur only at the left or right edge
of the tree. Since the portion of string dominated by an auxiliary tree is con-
tiguous under this constraint, only two indices are required to track the parsing
of an auxiliary tree adjunction. Consequently, the formalism can generate only
context-free languages and can be parsed in cubic time. The resulting system,
called lexicalized context-free grammar (LCFG), is a compromise between the
parsing e�ciency of context-free grammar and the elegance and lexical sensitiv-
ity of tree-adjoining grammar. The deductive parsing meta-interpreter has also
been used for rapid prototyping of an Earley-style parser for LCFG (Schabes
and Waters, 1993b).

MERL-TR-94-08 May 1994

26

4.4 Inadequacy for Sequent Calculi

All the parsing logics discussed here have been presented in a natural-deduction
format that can be implemented directly by bottom-up execution. However,
important parsing logics, in particular the Lambek calculus (Lambek, 1958;
Moortgat, 1988), are better presented in a sequent-calculus format. The main
reason for this is that those systems use nonatomic formulas that represent con-
current or hypothetical analyses. For instance, if for arbitrary u with category
B we conclude that vu has category A, then in the Lambek calculus we can
conclude that v has category A/B.

The main di�culty with applying our techniques to sequent systems is that
computationally they are designed to be used in a top-down direction. For
instance, the rule used for the hypothetical analysis above has the form:

�B ` A

� ` A/B
(3)

It is reasonable to use this rule in a goal-directed fashion (consequent to an-
tecedent) to show � ` A/B, but using it in a forward direction is impractical,
because B must be arbitrarily assumed before knowing whether the rule is ap-
plicable.

More generally, in sequent formulations of syntactic calculi the goal sequent
for showing the grammaticality of a string wi has the form

W1 � � �Wn ` S

where Wi gives the grammatical category of wi and S is the category of a sen-
tence. Proof search proceeds by matching current sequents to the consequents
of rules and trying to prove the corresponding antecedents, or by recognizing
a sequent as an axiom instance A ` A. The corresponding natural deduc-
tion proof would start from the assumptions W1; : : : ;Wn and try to prove S,
which is just the proof format that we have used here. However, sequent rules
like (3) above correspond to the introduction of an additional assumption (not
one of the Wi) at some point in the proof and its later discharge, as in the
natural-deduction detachment rule for propositional logic. But such undirected
introduction of assumptions just in case they may yield consequences that will
be needed later is computationally very costly.6 Systems that make full use of
the sequent formulation therefore seem to require top-down proof search. It is
of course possible to encode top-down search in a bottom-up system by using
more complex encodings of search state, as is done in Earley's algorithm or in
the magic sets/magic templates compilation method for deductive databases
(Bancilhon and Ramakrishnan, 1988; Ramakrishnan, 1988). Pentus (1993), for

6There is more than a passing similarity between this problem and the problem of pure
bottom-up parsing with grammars with gaps. In fact, a natural logical formulation of gaps is
as assumptions discharged by the wh-phrase they stand for (Pareschi and Miller, 1990; Hodas,
1992).

MERL-TR-94-08 May 1994

27

instance, presents a compilation of Lambek calculus to a CFG, which can then
be processed by any of the standard methods. However, it is not clear yet that
such techniques can be applied e�ectively to grammatical sequent calculi so that
they can be implemented by the method described here.

5 Control and Implementation

The speci�cation of inference rules, as carried out in the previous two sections,
only partially characterizes a parsing algorithm, in that it provides for what
items are to be computed, but not in what order. This further control informa-
tion is provided by choosing a deduction procedure to operate over the inference
rules. If the deduction procedure is complete, it actually makes little di�erence
in what order the items are enumerated, with one crucial exception: We do not
want to enumerate an item more than once. To prevent this possibility, it is
standard to maintain a cache of lemmas, adding to the cache only those items
that have not been seen so far. The cache plays the same role as the chart in
chart-parsing algorithms (Kay, 1986), the well-formed substring table in CYK
parsing (Kasami, 1965; Younger, 1967), and the state sets in Earley's algorithm
(Earley, 1970). In this section, we develop a forward-chaining deduction proce-
dure that achieves this elimination of redundancy by keeping a chart.

Items should be added to the chart as they are proved. However, each new
item may itself generate new consequences. The issue as to when to compute
the consequences of a new item is quite subtle. A standard solution is to keep
a separate agenda of items that have been proved but whose consequences have
not been computed. When an item is removed from the agenda and added to
the chart, its consequences are computed and themselves added to the agenda
for later consideration.

Thus, the general form of an agenda-driven, chart-based deduction procedure
is as follows:

1. Initialize the chart to the empty set of items and the agenda to the axioms
of the deduction system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove
it.

(b) Add the trigger item to the chart, if necessary.

(c) If the trigger item was added to the chart, generate all items that
are new immediate consequences of the trigger item together with all
items in the chart, and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved (and the string recognized);
otherwise it is not.

MERL-TR-94-08 May 1994

28

There are several issues that must be determined in making this general
procedure concrete, which we describe under the general topics of eliminating

redundancy and providing e�cient access. At this point, however, we will show
that, under reasonable assumptions, the general procedure is sound and com-
plete.

In the arguments that follow, we will assume that items are always ground
and thus derivations are as de�ned in Section 2. A proof for the more general
case, in which items denote sets of possible grammaticality judgments, would
require more intricate de�nitions for items and inference rules, without changing
the essence of the argument.

Soundness We need to show that if the above procedure places item I in the
chart when the agenda has been initialized in step (1) with items A1; : : : ; Ak,
then A1; : : : ; Ak ` I. Since any item in the chart must have been in the
agenda, and been placed in the chart by step (2b), it is su�cient to show that
A1; : : : ; Ak ` I for any I in the agenda. We show this by induction on the stage
](I) of I, the number of the iteration of step (2) at which I has been added to
the agenda, or 0 if I has been placed in the agenda at step (1). Note that since
several items may be added to the agenda on any given iteration, many items
may have the same stage number.

If](I) = 0, I must be an axiom, and thus the trivial derivation consisting
of I alone is a derivation of I from A1; : : : ; Ak.

Assume that A1; : : : ; Ak ` J for](J) < n and that](I) = n. Then I must
have been added to the agenda by step (2c), and thus there are items J1; : : : ; Jm
in the chart and a rule instance such that

J1 � � � Jm
I

hside conditions on J1; : : : ; Jm; Ii

where the side conditions are satis�ed. Since J1; : : : ; Jm are in the chart, they
must have been added to the agenda at the latest at the beginning of iteration
n of step (2), that is,](Ji) < n. By the induction hypothesis, each Ji must
have a derivation �i from A1; : : : ; Ak. But then, by de�nition of derivation, the
concatenation of the derivations �1; : : : ;�m followed by I is a derivation of I
from A1; : : : ; Ak.

Completeness We want to show that if A1; : : : ; Ak ` I, then I is in the
chart at step (3). Actually, we can prove something stronger, namely that I
is eventually added to the chart, if we assume some form of fairness for the
agenda. Then we will have covered cases in which the full iteration of step (2)
does not terminate but step (3) can be interleaved with step (2) to recognize
the goal as soon as it is generated. The form of fairness we will assume is that
if](I) <](J) then item I is removed from the agenda by step (2a) before item
J . The agenda mechanism described in Section 5.3 below satis�es the fairness
assumption.

MERL-TR-94-08 May 1994

29

We show completeness by induction on the length of any derivationD1; : : : ; Dn

of I from A1; : : : ; Ak. (Thus we show implicitly that the procedure generates
every derivation, although in general it may share steps among derivations.)

For n = 1, I = D1 = Ai for some i. It will thus be placed in the agenda at
step (1), that is](I) = 0. Thus by the fairness assumption I will be removed
from the agenda in at most k iterations of step (2). When it is, it is either
added to the chart as required, or the chart already contains the same item.
(See discussion of the \if necessary" proviso of step (2b) in Section 5.1 below.)

Assume now that the result holds for derivations of length less than n. Con-
sider a derivation D1; : : : ; Dn = I. Either I is an axiom, in which case we have
just shown it will have been placed in the chart by iteration k, or, by de�nition
of derivation, there are i1; : : : ; im < n such that there is a rule instance

Di1
� � � Dim

I
hside conditions on Di1 ; : : :Dim ; Ii(4)

with side conditions satis�ed. By de�nition of derivation, each pre�xD1; : : : ; Dij

of D1; : : : ; Dn is a derivation of Dij from A1; : : : ; Ak. Then each Dij is in the
chart, by the induction hypothesis. Therefore, for eachDij there must have been
an identical item Ij in the agenda that was added to the chart at step (2b). Let
Ip be the item in question that was the last to be added to the chart. Immedi-
ately after that addition, all of the Ij (that is, all of the Dij) are in the chart,
and Ip = Dip is the trigger item for rule application (4). Thus I is placed in the
agenda. Since step (2c) can only add a �nite number of items to the agenda, by
the fairness assumption item I will eventually be considered at steps (2a) and
(2b), and added to the chart if not already there.

5.1 Eliminating Redundancy

Redundancy in the chart. The deduction procedure requires the ability to
generate new consequences of the trigger item and the items in the chart. The
key word in this requirement is \new". Indeed, the entire point of a chart-based
system is to allow caching of proved lemmas so that previously proved (old)
lemmas are not further pursued. It is therefore crucial that no item be added to
the chart that already exists in the chart, and it is for this reason that step (2b)
above speci�es addition to the chart only \if necessary".

De�nition of \redundant item". The point of the chart is to serve as a
cache of previously proved items, so that an item already proved is not pursued.
What does it mean for an item to be redundant, that is, occurring already in
the agenda or chart? In the case of ground items, the appropriate notion of
occurrence in the chart is the existence of an identical chart item. If items can
be non-ground (for instance, when parsing relative to de�nite-clause grammars
rather than context-free grammars) a more subtle notion of occurrence in the
chart is necessary. As mentioned above, a non-ground item stands for all of

MERL-TR-94-08 May 1994

30

its ground instances, so that a non-ground item occurs in the chart if all its
ground instances are covered by chart items, that is, if it is a specialization of
some chart item. (This test su�ces because of the strong compactness of sets
of terms de�ned by equations: if the instances of a term A are a subset of the
union of the instances of B and C, then the instances of A must be a subset
of the instances of either B or C (Lassez, Maher, and Marriot, 1988).) Thus,
the appropriate test is whether an item in the chart subsumes the item to be
added.7

Redundancy in the agenda. We pointed out that redundancy checking in
the chart is necessary. The issue of redundancy in the agenda is, however, a
distinct one. Should an item be added to the agenda that already exists there?

Finding the rule that matches a trigger item, triggering the generation of new
immediate consequences, and checking that consequences are new are expensive
operations to perform. The existence of duplicate items in the agenda therefore
generates a spurious overhead of computation especially in pathological cases
where exponentially many duplicate items can be created in the agenda, each
one creating an avalanche of spurious overhead.

For these reasons, it is also important to check for redundancy in the agenda,
that is, the notion of \new immediate consequences" in step (2c) should be
interpreted as consequent items that do not already occur in the chart or agenda.
If redundancy checking occurs at the point items are about to be added to the
agenda, it is not required when they are about to be added to the chart; the \if
necessary" condition in step (2b) will in this case be vacuous, since always true.

Triggering the generation of new immediate consequences. With re-
gard to step (2c), in which we generate \all items that are new immediate
consequences of the trigger item together with all other items in the chart", we
would like, if at all possible, to refrain from generating redundant items, rather
than generating, checking for, and disposing of the redundant ones. Clearly,
any item that is an immediate consequence of the other chart items only (that
is, without the trigger item) is not a new consequence of the full chart. (It
would have been generated when the last of the antecedents was itself added to
the chart.) Thus, the inference rules generating new consequences must have
at least one of their antecedent items being the trigger item, and the search for
new immediate consequences can be limited to just those in which at least one
of the antecedents is the trigger item. The search can therefore be carried out
by looking at all antecedent items of all inference rules that match the trigger
item, and for each, checking that the other antecedent items are in the chart.
If so, the consequent of that rule is generated as a potential new immediate

7This subsumption check can be implemented in several ways in Prolog. The code in the

appendix presents two of the options.

MERL-TR-94-08 May 1994

31

consequence of the trigger items plus other chart items. (Of course, it must be
checked for prior existence in the agenda and chart as outlined above.)

5.2 Providing E�cient Access

Items should be stored in the agenda and chart in such a way that they can
be e�ciently accessed. Stored items are accessed at two points: when checking
a new item for redundancy and when checking a (non-trigger) antecedent item
for existence in the chart. For e�cient access, it is desirable to be able to
directly index into the stored items appropriately, but appropriate indexing
may be di�erent for the two access paths. We discuss the two types of indexing
separately, and then turn to the issue of variable renaming.

Indexing for redundancy checking. Consider, for instance, the Earley de-
duction system. All items that potentially subsume an item [i; A ! � � �; j]
have a whole set of attributes in common with the item, for instance, the indices
i and j, the production from which the item was constructed, and the position
of the dot (i.e., the length of �). Any or all of these might be appropriate for
indexing into the set of stored items.

Indexing for antecedent lookup. The information available for indexing
when looking items up as potential matches for antecedents can be quite di�er-
ent. In looking up items that match the second antecedent of the completion
rule [k;B !
 � ; j], as triggered by an item of the form [i; A ! � � B�; k],
the index k will be known, but j will not be. Similarly, information about B
will be available from the trigger item, but no information about
. Thus, an
appropriate index for the second antecedent of the completion rule might in-
clude its �rst index k and the main functor of the left-hand-side B. For the
�rst antecedent item, a similar argument calls for indexing by its second index
k and the main functor of the nonterminal B following the dot. The two cases
can be distinguished by the sequence after the dot: empty in the former case,
non-empty in the latter.

Variable renaming. A �nal consideration in access is the renaming of vari-
ables. As non-ground items stored in the chart or agenda are matched against
inference rules, they become further instantiated. This instantiation should not
a�ect the items as they are stored and used in proving other consequences, so
that care must be taken to ensure that variables in agenda and chart items are
renamed consistently before they are used. Prolog provides various techniques
for achieving this renaming implicitly.

MERL-TR-94-08 May 1994

32

5.3 Prolog Implementation of Deductive Parsing

In light of the considerations presented above, we turn now to our method of
implementing an agenda-based deduction engine in Prolog. We take advantage
of certain features that have become standard in Prolog implementations, such
as clause indexing. The code described below is consistent with Quintus Prolog.

5.3.1 Implementation of Agenda and Chart

Since redundancy checking is to be done in both agenda and chart, we need the
entire set of items in both agenda and chart to be stored together. For e�cient
access, we store them in the Prolog database under the predicate stored/2.
The agenda and chart are therefore comprised of a series of unit clauses, e.g.,

stored(1, item(...)). � beginning of chart
stored(2, item(...)).
stored(3, item(...)).
� � �
stored(i� 1, item(...)). � end of chart
stored(i, item(...)). � head of agenda
stored(i+ 1, item(...)).
� � �
stored(k� 1, item(...)).
stored(k, item(...)). � tail of agenda

The �rst argument of stored/2 is a unique identifying index that corresponds
to the position of the item in the storage sequence of chart and agenda items.
(This information is redundantly provided by the clause ordering as well, for
reasons that will become clear shortly.) The index therefore allows (through
Quintus's indexing of the clauses for a predicate by their �rst head argument)
direct access to any stored item.

Since items are added to the sequence at the end, all items in the chart
precede all items in the agenda. The agenda items can therefore be characterized
by two indices, corresponding to the �rst (head) and last (tail) items in the
agenda. A data structure packaging these two \pointers" therefore serves as the
proxy for the agenda in the code. An item is moved from the agenda to the
chart merely by incrementing the head pointer. Items are added to the agenda
by storing the corresponding item in the database and incrementing the tail
pointer.

To provide e�cient access to the stored items, auxiliary indexing tables can
be maintained. Each such indexing table, is implemented as a set of unit clauses
that map access keys to the indexes of items that match them. In the present
implementation, a single indexing table (under the predicate key_index/2) is
maintained that is used for accessing items both for redundancy checking and for
antecedent lookup. (This is possible because only the item attributes available

MERL-TR-94-08 May 1994

33

in both types of access are made use of in the keys, leading to less than optimal
indexing for redundancy checking, but use of multiple indexing tables leads to
much more database manipulation, which is quite costly.)

In looking up items for redundancy checking, all stored items should be
considered, but for antecedent lookup, only chart items are pertinent. The dis-
tinction between agenda and chart items is, under this implementation, implicit.
The chart items are those whose index is less than the head index of the agenda.
This test must be made whenever chart items are looked up. However, since
clauses are stored sequentially by index, as soon as an item is found that fails
the test (that is, is in the agenda) the search for other chart items can be cut
o�.

5.3.2 Implementation of the Deduction Engine

Given the design decisions described above, the general agenda-driven, chart-
based deduction procedure presented in Section 5 can be implemented in Prolog
as follows:8

parse(Value) :-

% (1) Initialize the chart and agenda
init_chart,

init_agenda(Agenda),

% (2) Remove items from the agenda and process
% until the agenda is empty
exhaust(Agenda),

% (3) Try to �nd a goal item in the chart
goal_item_in_chart(Goal).

To exhaust the agenda, trigger items are repeatedly processed until the agenda
is empty:

exhaust(Empty) :-

% (2) If the agenda is empty, we're done
is_empty_agenda(Empty).

exhaust(Agenda0) :-

% (2a) Otherwise get the next item index from the agenda
pop_agenda(Agenda0, Index, Agenda1),

% (2b) Add it to the chart
add_item_to_chart(Index),

% (2c) Add its consequences to the agenda
add_consequences_to_agenda(Index, Agenda1, Agenda),

8The code presented here diverges slightly from that presented in the appendix for reasons

of exposition.

MERL-TR-94-08 May 1994

34

% (2) Continue processing the agenda until empty
exhaust(Agenda).

For each item, all consequences are generated and added to the agenda:

add_consequences_to_agenda(Index, Agenda0, Agenda) :-

findall(Consequence,

consequence(Index, Consequence),

Consequences),

add_items_to_agenda(Consequences, Agenda0, Agenda).

The predicate add_items_to_agenda/3 adds the items under appropriate in-
dices as stored items and updates the head and tail indices in Agenda0 to form
the new agenda Agenda.

A trigger item has a consequence if it matches an antecedent of some rule,
perhaps with some other antecedent items and side conditions, and the other
antecedent items have been previously proved (thus in the chart) and the side
conditions hold:

consequence(Index, Consequent) :-

index_to_item(Index, Trigger),

matching_rule(Trigger,

RuleName, Others, Consequent, SideConds),

items_in_chart(Others, Index),

hold(SideConds).

Note that the indices of items, rather than the items themselves are stored in the
agenda, so that the index of the trigger item must �rst be mapped to the actual
item (with index_to_item/2) before matching it against a rule antecedent. The
items_in_chart/2 predicate needs to know both the items to look for (Others)
and the index of the current item (Index) as the latter distinguishes the items
in the chart (before this index) from those in the agenda (after this index).

We assume that the inference rules are stored as unit clauses under the pred-
icate inference(RuleName, Antecedents, Consequent, SideConds) where
RuleName is some mnemonic name for the rule (such as predict or scan),
Antecedents is a list of the antecedent items of the rule, Consequent is the
single consequent item, and Sideconds is a list of encoded Prolog literals to
execute as side conditions. To match a trigger item against an antecedent of
an inference rule, then, we merely select a rule encoded in this manner, and
split up the antecedents into one that matches the trigger and the remaining
unmatched antecedents (to be checked for in the chart).

matching_rule(Trigger,

RuleName, Others, Consequent, SideConds) :-

inference(RuleName, Antecedents, Consequent, SideConds),

MERL-TR-94-08 May 1994

35

split(Trigger, Antecedents, Others).

5.3.3 Implementation of Other Aspects

A full implementation of the deduction-parsing system | complete with en-
codings of several deduction systems and sample grammars | is provided in
the appendix. The code in the appendix covers the following aspects of the
implementation that are not elsewhere described.

1. Input and encoding of the string to be parsed (Section A.1).

2. Implementation of the deduction engine driver including generation of
consequences (Section A.2).

3. Encoding of the storage of items (Section A.3) including the implementa-
tion of the chart (Section A.3.1) and agenda (Section A.3.2).

4. Encoding of deduction systems (Section A.4).

5. Implementation of subsumption checking (Section A.6).

All Prolog code is given in the Edinburgh notation, and has been tested under
the Quintus Prolog system.

5.4 Alternative Implementations

This implementation of agenda and chart provides a compromise in terms of
e�ciency, simplicity, and generality. Other possibilities will occur to the reader
that may have advantages under certain conditions. Some of the alternatives
are described in this section.

Separate agenda and chart in database. Storage of the agenda and the
chart under separate predicates in the Prolog database allows for marginally
more e�cient lookup of chart items; an extraneous arithmetic comparison of
indices is eliminated. However, this method requires an extra retraction and
assertion when moving an index from agenda to chart, and makes redundancy
checking more complex in that two separate searches must be engaged in.

Passing agenda as argument. Rather than storing the agenda in the database,
the list of agenda items might be passed as an argument. (The implementation
of queues in Prolog is straightforward, and would be the natural structure to
use for the agenda argument.) This method again has the marginal advantage
in antecedent lookup, but it becomes almost impossible to perform e�cient
redundancy checking relative to items in the agenda.

MERL-TR-94-08 May 1994

36

E�cient bottom-up interpretation. The algorithm just presented can be
thought of as a pure bottom-up evaluator for inference rules given as de�nite
clauses, where the head of the clause is the consequent of the rule and the body
is the antecedent. However, given appropriate inference rules, the bottom-up
procedure will simulate non-bottom-up parsing strategies, such as the top-down
and Earley strategies described in Section 3. Researchers in deductive databases
have extensively investigated variants of that idea: how to take advantage of
the tabulation of results in the pure bottom-up procedure while keeping track
of goal-directed constraints on possible answers. As part of these investigations,
e�cient bottom-up evaluators for logic programs have been designed, for in-
stance CORAL (Ramakrishnan, Srivastava, and Sudarshan, 1992). Clearly, one
could use such a system directly as a deduction parser.

Construction of derivations. The direct use of the inference rules for build-
ing derivations, as presented in Section 4.1, is computationally ine�cient, since
it eliminates structure-sharing in the chart. All ways of deriving the same string
will yield distinct items, so that sharing of computation of subderivations is no
longer possible.

A preferable method is to compute the derivations o�ine by traversing the
chart after parsing is �nished. The deduction engine can be easily modi�ed
to do so, using a technique reminiscent of that used in the Core Language
Engine (Alshawi, 1992). First, we make use of two versions of each inference
rule, an online version such as the Earley system given in Figure 5, with no
computation of derivations, and an o�ine version like the one in Figure 6 that
does generate derivation information. We will presume that these two ver-
sions are stored, respectively, under the predicates inference/4 (as before) and
inference_offline/4, with the names of the rules specifying the correspon-
dence between related rules. Similarly, the online initial_item/1 speci�cation
should have a corresponding initial_item_offline/1 version.

The deduction engine parses a string using the online version of the rules,
but also stores, along with the chart, information about the ways in which each
chart item was constructed, with unit clauses of the form

stored_history(Consequent, Rule, Antecedents). ,

which speci�es that the item whose index is given by Consequentwas generated
by the inference rule whose name is Rule from the antecedent items given in the
sequence Antecedents. (If an item is generated as an initial item, its history
would mark the fact by a unit clause using the constant initial for the Rule
argument.)

When parsing has completed, a separate process is applied to each goal item,
which traverses these stored histories using the second (o�ine) version of the in-
ference rules rather than the �rst, building derivation information in the process.
The following Prolog code serves the purpose. It de�nes offline_item(Index,

MERL-TR-94-08 May 1994

37

Item), a predicate that computes the o�ine item Item (presumably including
derivation information) corresponding to the online item with index given by
Index, using the second version of the inference rules, by following the deriva-
tions stored in the chart history.

offline_item(Index, Item) :-

stored_history(Index, initial, _NoAntecedents),

initial_item_offline(Item).

offline_item(Index, Item) :-

stored_history(Index, Rule, Antecedents),

offline_items(Antecedents, AntecedentItems)

inference_offline(Rule, AntecedentItems, Item, SideConds),

hold(SideConds).

offline_items([], []).

offline_items([Index|Indexes], [Item|Items]) :-

offline_item(Index, Item),

offline_items(Indexes, Items).

The o�ine version of the inference rules need not merely compute a deriva-
tion. It might perform some other computation dependent on derivation, such
as semantic interpretation. Abstractly, this technique allows for staging the
parsing into two phases, the second comprising a more �ne-grained version of
the �rst. Any staged processing of this sort can be implemented using this
technique.

Finer control of execution order For certain applications, it may be neces-
sary to obtain even �ner control over the order in which the antecedent items and
side conditions are checked when an inference rule is triggered. Given that the
predicates items_in_chart/2 and holds/1 perform a simple left-to-right check-
ing of the items and side conditions, the implementation of matching_rule/5
above leads to the remaining antecedent items and side conditions being checked
in left-to-right order as they appear in the encoded inference rules, and the side
conditions being checked after the antecedent items. However, it may be prefer-
able to check antecedents and side conditions interleaved, and in di�erent orders
depending on which antecedent triggered the rule.

For instance, the side condition A = A0 in the second inference rule of
Section 4.1 must be handled before checking for the nontrigger antecedent of that
rule, in order to minimize nondeterminism. If the �rst antecedent is the trigger,
we want to check the side conditions and then look for the second antecedent,
and correspondingly for triggering the second antecedent. The implementation
above disallows this possibility, as side conditions are always handled after the
antecedent items. Merely swapping the order of handling side conditions and
antecedent items, although perhaps su�cient for this example, does not provide

MERL-TR-94-08 May 1994

38

a general solution to this problem.
Various alternatives are possible to implement a �ner level of control. We

present an especially brutish solution here, although more elegant solutions are
possible. Rather than encoding an inference rule as a single unit clause, we
encode it with one clause per trigger element under the predicate

inference(RuleName, Antecedents, Consequent)

where Rulename and Consequent are as before, but Antecedents is now a list
of all the antecedent items and side conditions of the rule, with the trigger item
�rst. (To distinguish antecedent items from side conditions, a disambiguating
pre�x operator can be used, e.g., @item(...) versus ?side_condition(...).)
Matching an item against a rule then proceeds by looking for the item as the
�rst element of this antecedent list.

matching_rule(Trigger, RuleName, Others, Consequent) :-

inference(RuleName, [Trigger|Others], Consequent),

The consequence/2 predicate is modi�ed to use this new matching_rule/4

predicate, and to check that all of the antecedent items and side conditions
hold.

consequence(Index, Consequent) :-

index_to_item(Index, Trigger),

matching_rule(Trigger, RuleName, Others, Consequent),

hold(Others, Index).

The antecedent items and side conditions are then checked in the order in
which they occur in the encoding of the inference rule.

hold([], _Index).

hold([Antecedent|Antecedents], Index) :-

holds(Antecedent, Index),

hold(Antecedents, Index).

holds(@Item, Index) :- item_in_chart(Item, Index).

holds(?SideCond, _Index) :- call(SideCond).

6 Conclusion

The view of parsing as deduction presented in this paper, which generalizes that
of previous work in the area, makes possible a simple method of describing a
variety of parsing algorithms | top-down, bottom-up, and mixed | in a way
that highlights the relationships among them and abstracts away from incidental

MERL-TR-94-08 May 1994

39

di�erences of control. The method generalizes easily to parsers for augmented
phrase structure formalisms, such as de�nite-clause grammars and other logic
grammar formalisms. Although the deduction systems do not specify detailed
control structure, the control information needed to turn them into full-
edged
parsers is uniform, and can therefore be given by a single deduction engine that
performs sound and complete bottom-up interpretation of the rules of inference.
The implemented deduction engine that we described has proved useful for rapid
prototyping of parsing algorithms for a variety of formalisms including variants
of tree-adjoining grammars, categorial grammars, and lexicalized context-free
grammars.

Acknowledgements

This material is based in part upon work supported by the National Science
Foundation under Grant No. IRI-9350192 to SMS. The authors would like to
thank the anonymous reviewers for their helpful comments on an earlier draft.

References

Ades, Anthony E. and Mark J. Steedman. 1982. On the order of words. Lin-
guistics and Philosophy, 4(4):517{558.

Alshawi, Hiyan, editor. 1992. The Core Language Engine. ACL-MIT Press Se-
ries in Natural Language Processing. MIT Press, Cambridge, Massachusetts.

Bancilhon, Fran�cois and Raghu Ramakrishnan. 1988. An amateur's introduc-
tion to recursive query processing strategies. In Michael Stonebraker, editor,
Readings in Database Systems. Morgan Kaufmann, San Mateo, California,
section 8.2, pages 507{555.

Bresnan, Joan and Ron Kaplan. 1982. Lexical-functional grammar: A formal
system for grammatical representation. In J. Bresnan, editor, The Mental
Representation of Grammatical Relations. MIT Press, pages 173{281.

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Number 32 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, England.

Colmerauer, Alain. 1978. Metamorphosis grammars. In Leonard Bolc, editor,
Natural Language Communication with Computers. Springer-Verlag, pages
133{187.

First appeared as \Les Grammaires de Metamorphose", Groupe
d'Intelligence Arti�cielle, Universit�e de Marseille II, November 1975.

MERL-TR-94-08 May 1994

40

Earley, Jay C. 1970. An e�cient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94{102.

Hodas, Joshua S. 1992. Specifying �ller-gap dependency parsers in a linear-logic
programming language. In Krzysztof Apt, editor, Proceedings of the Joint
International Conference and Symposium on Logic Programming, Washing-
ton D.C., pages 622 { 636.

Joshi, Aravind K., L. S. Levy, and M. Takahashi. 1975. Tree adjunct grammars.
Journal of Computer and System Sciences, 10(1):136{163.

Joshi, Aravind K. 1985. How much context-sensitivity is necessary for charac-
terizing structural descriptions|Tree adjoining grammars. In D. Dowty,
L. Karttunen, and A. Zwicky, editors, Natural Language Processing|
Theoretical, Computational and Psychological Perspectives. Cambridge Uni-
versity Press, New York.

Kasami, T. 1965. An e�cient recognition and syntax algorithm for context-
free languages. Technical Report AF-CRL-65-758, Air Force Cambridge
Research Laboratory, Bedford, MA.

Kay, Martin. 1986. Algorithm schemata and data structures in syntactic pro-
cessing. In Barbara J. Grosz, Karen Sparck Jones, and Bonnie LynnWebber,
editors, Readings in Natural Language Processing. Morgan Kaufmann, Los
Altos, California, chapter I. 4, pages 35{70.

Originally published as a Xerox PARC technical report, 1980.

Kroch, Anthony and Aravind K. Joshi. 1985. Linguistic relevance of tree adjoin-
ing grammars. Technical Report MS-CIS-85-18, Department of Computer
and Information Science, University of Pennsylvania, April.

Lambek, Joachim. 1958. The mathematics of sentence structure. American
Mathematical Monthly, 65:154{170.

Lassez, Jean-Louis, Michael J. Maher, and Kim G. Marriot. 1988. Uni�cation
revisited. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 587{625, San Mateo, California. Morgan Kauf-
mann.

Moortgat, Michael. 1988. Categorial Investigations: Logical and Linguistic
Aspects of the Lambek Calculus. Ph.D. thesis, University of Amsterdam,
Amsterdam, The Netherlands, October.

Naughton, Je�rey F. and Raghu Ramakrishnan. 1991. Bottom-up evaluation of
logic programs. In Jean-Louis Lassez and Gordon Plotkin, editors, Compu-
tational Logic: Essays in Honor of Alan Robinson. MIT Press, Cambridge,
Massachusetts, chapter 20, pages 641{700.

MERL-TR-94-08 May 1994

41

Pareschi, Remo and Dale A. Miller. 1990. Extending de�nite clause grammars
with scoping constructs. In David H. D. Warren and Peter Szeredi, editors,
Seventh International Conference on Logic Programming, Jerusalem, Israel.
MIT Press.

Paroubek, Patrick, Yves Schabes, and Aravind K. Joshi. 1992. XTAG | a
graphical workbench for developing tree-adjoining grammars. In Proceedings
of the Third Conference on Applied Natural Language Processing, pages 216{
223, Trento, Italy.

Pentus, M. 1993. Lambek grammars are context free. In Proceedings of the
Eighth Annual IEEE Symposium on Logic in Computer Science, pages 429{
433, Montreal, Canada, 19{23 June. IEEE Computer Society Press.

Pereira, Fernando C. N. and David H. D. Warren. 1980. De�nite clause gram-
mars for language analysis|a survey of the formalism and a comparison
with augmented transition networks. Arti�cial Intelligence, 13:231{278.

Pereira, Fernando C. N. and David H. D. Warren. 1983. Parsing as deduction.
In 21st Annual Meeting of the Association for Computational Linguistics,
pages 137{144, Cambridge, Massachusetts, June 15{17.

Ramakrishnan, Raghu, Divesh Srivastava, and S. Sudarshan. 1992. CORAL:
Control, Relations and Logic. In Procs. of the International Conf. on Very
Large Databases.

Ramakrishnan, Raghu. 1988. Magic templates: A spellbinding approach to
logic programs. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic Programming: Proceedings of the Fifth International Conference and
Symposium, pages 140{159, Seattle, Washington. MIT Press.

Rounds, William C. and Alexis Manaster-Ramer. 1987. A logical version of
functional grammar. In 25th Annual Meeting of the Association for Compu-
tational Linguistics, pages 89{96, Stanford, California. Stanford University.

Sato, Taisuke and Hisao Tamaki. 1984. Enumeration of success patterns in
logic programs. Theoretical Computer Science, 34:227{240.

Schabes, Yves and Stuart Shieber. 1992. An alternative conception of tree-
adjoining derivation. In Proceedings of the Twentieth Annual Meeting of the
Association for Computational Linguistics, pages 167{176.

Schabes, Yves and Richard C. Waters. 1993a. Lexicalized context-free gram-
mars. In 21st Meeting of the Association for Computational Linguistics
(ACL'93), pages 121{129, Columbus, Ohio, June.

MERL-TR-94-08 May 1994

42

Schabes, Yves and Richard C. Waters. 1993b. Lexicalized context-free gram-
mar: A cubic-time parsable formalism that strongly lexicalizes context-free
grammar. Technical Report 93-04, Mitsubishi Electric Research Laborato-
ries, 201 Broadway. Cambridge MA 02139.

Schabes, Yves. 1994. Left to right parsing of lexicalized tree-adjoining gram-
mars. Computational Intelligence.

To appear.

Shieber, Stuart M. 1985a. Criteria for designing computer facilities for linguistic
analysis. Linguistics, 23:189{211.

Shieber, Stuart M. 1985b. Using restriction to extend parsing algorithms for
complex-feature-based formalisms. In 23rd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 145{152, Chicago, Illinois. Uni-
versity of Chicago.

Shieber, Stuart M. 1992. Constraint-Based Grammar Formalisms. MIT Press,
Cambridge, Massachusetts.

Vijay-Shanker, K. and David J. Weir. 1993. Parsing some constrained grammar
formalisms. Computational Linguistics, 19(4):591{636, December.

Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis,
Department of Computer and Information Science, University of Pennsylva-
nia.

Younger, D. H. 1967. Recognition and parsing of context-free languages in time
n
3. Information and Control, 10(2):189{208.

MERL-TR-94-08 May 1994

43

A Full Code for the Deductive Parsing Engine

h infer.pli

/*==

Parser Based on a General Tabular Inference Engine

==*/

/*--

LIBRARIES

--*/

:- use_module(library(readin)). % provides: read_in/1

:- use_module(library(lists)). % provides: append/3

% reverse/2

/*--

COMPONENTS

--*/

:- ensure_loaded(input).

:- ensure_loaded(driver).

:- ensure_loaded(items).

:- ensure_loaded(inference).

:- ensure_loaded(grammars).

:- ensure_loaded(utilities).

:- ensure_loaded(monitor).

h infer.pli

A.1 Reading and Encoding of Input

It is standard in the logic grammar literature to use a list encoding of strings
and string positions. A string is taken to be a list of words, with string positions
encoded as the su�x of that list beginning at the index in question. Thus, po-
sition 3 of the string encoded [terry, writes, a, program, that, halts]

would be encoded by the list [a, program, that, halts]. Items, which in-
clude one or more such string positions, can become quite large, and testing
for identity of string positions cumbersome, especially as these items are to be
stored directly in the Prolog database. For this reason, we use a more direct
encoding of string positions, and a commensurately more complicated encoding

MERL-TR-94-08 May 1994

44

of the underlying strings. String positions will be taken to be integers. A string
will then be encoded as a series of unit clauses (using the predicate word/2 spec-
ifying which words occur before which string positions. For instance, the string
\Terry writes a program that halts" would be speci�ed with the unit clauses

word(1, terry).

word(2, writes).

word(3, a).

word(4, program).

word(5, that).

word(6, halts).

The end of the string is no longer explicitly represented in this encoding, so
that a predicate sentencelength/1 will be used to specify this information.

sentencelength(6).

A predicate to read in an input string can perform the conversion to this
encoded form automatically, asserting the appropriate unit clauses as the string
is read in.

h input.pli

/*--

READING SENTENCES AND PREPARING PARSER INPUT

--*/

%%% sentencelength(L)

%%% =================

%%%

%%% L is the length of the sentence being parsed.

:- dynamic sentencelength/1.

%%% word(I, W)

%%% ==========

%%%

%%% W is the Ith word in the sentence being parsed.

:- dynamic word/2.

%%% read_input

%%% ==========

MERL-TR-94-08 May 1994

45

%%%

%%% Read a sentence from the user and assert its words

%%% and length.

read_input :-

read_in(S),

encode_sentence(S).

%%% encode_sentence(+Sentence)

%%% =========================

%%%

%%% Clear input, store and encode input Sentence.

encode_sentence(Sentence) :-

retractall(word(_,_)),

retractall(sentencelength(_)),

encode_words(Sentence, 0, Length),

assert(sentencelength(Length)).

%%% encode_words(+Words, +P0, -P)

%%% =============================

%%%

%%% Store input Words from position P0 + 1 to P.

encode_words(['.'], Length, Length) :- !.

encode_words([Word|Words], Length0, Length) :-

Length1 is Length0 + 1,

assert(word(Length1,Word)),

encode_words(Words, Length1, Length).

h input.pli

A.2 Deduction Engine Driver

The main driver operates as per the discussion in Section 5.

h driver.pli

/*--

INFERENCE ENGINE

--*/

MERL-TR-94-08 May 1994

46

%%% parse(-Value)

%%% =============

%%%

%%% Value is the value corresponding to a final item

%%% generated by parsing a sentence typed in from the

%%% standard input.

parse(Value) :-

read_input, % read a sentence

init_chart, % init. to an empty chart

init_agenda(Agenda), % init. agenda to include axioms

exhaust(Agenda), % process agenda until exhausted

final_item(Goal, Value), % get form of final goal item

item_in_chart(Goal). % find all such items in chart

%%% init_agenda(+Axioms, -Agenda)

%%% =============================

%%%

%%% Add indices corresponding to each of the Axioms to

%%% an empty Agenda.

init_agenda(Agenda) :-

initial_items(Axioms), % get axioms

empty_agenda(Empty),

add_items_to_agenda(Axioms, Empty, Agenda).

%%% exhaust(+Agenda)

%%% ================

%%%

%%% Generate all the consequences that follow from the

%%% indices in the Agenda.

exhaust(Empty) :-

is_empty_agenda(Empty).

exhaust(Agenda0) :-

pop_agenda(Agenda0, Index, Agenda1),

add_item_to_chart(Index),

add_consequences_to_agenda(Index, Agenda1, Agenda),

exhaust(Agenda).

%%% add_consequences_to_agenda(+Index, +Agenda0, -Agenda)

MERL-TR-94-08 May 1994

47

%%% ===

%%%

%%% Add to Agenda0 all the indices that follow

%%% immediately from Index, yielding Agenda.

add_consequences_to_agenda(Index, Agenda0, Agenda) :-

all_solutions(Consequence,

consequence(Index, Consequence),

Consequences),

add_items_to_agenda(Consequences, Agenda0, Agenda).

%%% consequence(Index, Consequent)

%%% =============================

%%%

%%% Consequent is the consequent of an inference rule

%%% whose antecedent is satisfied by the item given by

%%% Index and other items in the chart.

consequence(Index, Consequent) :-

index_to_item(Index, Trigger),

matching_rule(Trigger, RuleName, Others, Consequent,

SideConds),

items_in_chart(Others, Index),

hold(SideConds),

notify_consequence(RuleName, Trigger, Others,

SideConds, Consequent).

%%% items_in_chart(+Items, +Index)

%%% =============================

%%%

%%% All the elements of Items, generated when processing

%%% Index from the agenda, are satisfied by stored items

%%% in the chart.

items_in_chart([], _Index).

items_in_chart([Antecedent|Antecedents], Index) :-

item_in_chart(Antecedent, Index),

items_in_chart(Antecedents, Index).

%%% hold(+Conditions)

%%% =================

%%%

%%% All the side Conditions hold.

MERL-TR-94-08 May 1994

48

hold([]).

hold([Cond|Conds]) :-

call(Cond),

hold(Conds).

%%% matching_rule(+Trigger,

%%% -RuleName, -Others, -Consequent, -SideConds)

%%% ==

%%%

%%% Find an inference rule RuleName with antecedent of

%%% the form U @ [Trigger] @ V, where Others is U @ V,

%%% Consequent is the consequent of the rule and

%%% SideConds are its side conditions. (@ denotes here

%%% list concatenation).

matching_rule(Trigger,

RuleName, Others, Consequent, SideConds) :-

inference(RuleName, Antecedent, Consequent, SideConds),

split(Trigger, Antecedent, Others).

h driver.pli

A.3 Stored Items Comprising Chart and Agenda

h items.pli

/*--

STORED ITEMS

--*/

%%% stored(Index, Item)

%%% ===================

%%%

%%% Predicate used to store agenda and chart Items in

%%% the Prolog database along with a unique identifying

%%% Index, assigned in numerical order.

:- dynamic stored/2.

%%% key_index(Key, Index)

%%% =====================

%%%

MERL-TR-94-08 May 1994

49

%%% Predicate used to store an auxiliary indexing table

%%% for indexing stored items. The predicate

%%% item_to_key/2 is used to compute the key for an

%%% item.

:- dynamic key_index/2.

%%% item_stored(+Item, -Index)

%%% ==========================

%%%

%%% Finds a stored Item amd its Index in the sequence of

%%% stored items.

item_stored(Item, Index) :-

item_to_key(Item, Key),

key_index(Key, Index),

stored(Index, Item).

%%% similar_item(+Item, -StoredItem)

%%% ================================

%%%

%%% Find a stored item StoredItem in the stored items

%%% that might subsume Item.

similar_item(Item, SimilarItem) :-

item_to_key(Item, Key),

key_index(Key, IndexofSimilar),

stored(IndexofSimilar, SimilarItem).

%%% subsumed_item(+Item)

%%% ====================

%%% Item is subsumed by some stored item.

subsumed_item(Item) :-

similar_item(Item, OtherItem),

subsumes(OtherItem, Item).

/*..

CHART and AGENDA

..*/

:- ensure_loaded(chart).

:- ensure_loaded(agenda).

MERL-TR-94-08 May 1994

50

h items.pli

A.3.1 Chart Items

h chart.pli

/*..

CHART

..*/

%%% init_chart

%%% ================

%%%

%%% Remove any bits of (agenda or) chart clauses and

%%% associated keys from the Prolog database.

init_chart :-

retractall(stored(_,_)),

retractall(key_index(_,_)).

%%% item_in_chart(?Item, +RefIndex)

%%% ===============================

%%%

%%% Retrieve a stored item matching Item. RefIndex is a

%%% reference index that distinguishes items in the

%%% chart (at or before the reference index) from those

%%% in the agenda (after the reference index). It is

%%% the index of the item in the chart with the largest

%%% index.

item_in_chart(Item, RefIndex) :-

item_stored(Item, ItemIndex),

(ItemIndex =< RefIndex

%% Item is at or before reference, so it is in the

%% chart

-> true

%% Item is after reference, so it AND ALL LATER

%% ITEMS are in the agenda, so stop looking for

%% other chart items.

; !, fail).

%%% item_in_chart(?Item)

%%% ====================

MERL-TR-94-08 May 1994

51

%%%

%%% Item is an item in the chart generated after agenda

%%% is exhausted (so there is no reference index

%%% pointing to the end of the chart, and all stored

%%% items are chart items).

item_in_chart(Item) :-

item_stored(Item, _).

%%% add_item_to_chart(Index)

%%% ========================

%%%

%%% Add the item stored at Index in the stored items to

%%% the chart. (Nothing need be done, since moving on

%%% to the next agenda item changes the reference index,

%%% thereby implicitly making the item a chart item, so

%%% we just print debugging information.)

add_item_to_chart(Index) :-

notify_chart_addition(Index).

h chart.pli

A.3.2 Agenda Items

The agenda items are just a contiguous subsequence of the stored items. The
speci�cation of which items are in the agenda (and therefore which are implicitly
in the chart) is provided by the head and tail indices of the agenda subsequence.
This queue speci�cation of the agenda, packed into a term under the functor
queue/2, is passed around as an argument by the deduction engine. A term
queue(Head, Tail) represents a queue of agenda items where Head is the index
of the �rst element in the queue and Tail is the index of the next element to
be put in the queue (one more than the current last element).

Notice the asymmetry between enqueueing and dequeueing: enqueueing
(add_item_to_agenda/3) takes explicit items, dequeueing (pop_agenda/3) pro-
duces indices that may then be mapped to items by index_to_item/2. This
is somewhat inelegant, but balances the need for abstraction in the generic al-
gorithm with the e�ciency of the main all_solutions there, which need not
store the item whose consequences are being sought.

This implementation is adequate because the items in the agenda always
form a contiguous set of stored items, so their indices are sequential.

h agenda.pli

MERL-TR-94-08 May 1994

52

/*..

AGENDA

..*/

%%% is_empty_agenda(+Agenda)

%%% ========================

%%%

%%% Holds if Agenda represents an empty agenda.

is_empty_agenda(queue(Front, Back)) :-

Front >= Back.

%%% empty_agenda(-Agenda)

%%% =====================

%%%

%%% Agenda is a new empty agenda.

empty_agenda(queue(0, 0)).

%%% pop_agenda(+Agenda, -Index, -NewAgenda)

%%% ======================================

%%%

%%% Index is the top Index in the Agenda, NewAgenda is

%%% the Agenda with that item removed.

pop_agenda(queue(Front, Back),

Front, queue(NewFront, Back)) :-

Front < Back,

NewFront is Front + 1.

%%% add_item_to_agenda(+Item, +Agenda0, -Agenda)

%%% ==

%%%

%%% Add the index corresponding to Item to Agenda0,

%%% yielding Agenda. This stores the appropriate items

%%% in the Prolog database. Note that the stored/2

%%% clause must be asserted at the end of the database

%%% (even though the index numbering provides ordering

%%% information already) to allow early cut off of

%%% searches in item_in_chart/2 (q.v.).

add_item_to_agenda(Item, queue(Front, Back),

queue(Front, NewBack)) :-

MERL-TR-94-08 May 1994

53

notify_agenda_addition(Item),

(\+ subsumed_item(Item)

-> (assertz(stored(Back, Item)),

item_to_key(Item, Key),

assert(key_index(Key, Back)),

NewBack is Back + 1)

; NewBack = Back).

%%% add_items_to_agenda(+Items, +Agenda0, -Agenda)

%%% ==

%%%

%%% Add indices corresponding to all of the Items to

%%% Agenda0 yielding Agenda.

add_items_to_agenda([], Agenda, Agenda).

add_items_to_agenda([Item|Items], Agenda0, Agenda) :-

add_item_to_agenda(Item, Agenda0, Agenda1),

add_items_to_agenda(Items, Agenda1, Agenda).

%%% index_to_item(Index, Item)

%%% ==========================

%%%

%%% Item is the actual stored item for Index.

index_to_item(Index, Item) :-

stored(Index, Item).

h agenda.pli

A.4 Encoding of Deductive Parsing Systems

We present the Prolog encodings of several of the deduction systems discussed
above including all of the context-free systems from Section 2 and the CCG
system described in Section 4.2.

The deduction systems for context-free-based (de�nite clause) grammars all
assume the same encoding of a grammar as a series of unit clauses of the fol-
lowing forms:

Grammar rules: Grammar rules are encoded as clauses of the form LHS --->

RHS where LHS (a nonterminal) and RHS (a list of nonterminals and preter-
minals) are respectively the left- and right-hand side of a rule.

MERL-TR-94-08 May 1994

54

Lexicon: The lexicon is encoded as a relation between preterminals and termi-
nals by unit clauses of the form lex(Term, Preterm), where Preterm

is a preterminal (nonterminal dominating a terminal) that covers the
Terminal.

Start symbol: The start symbol of the grammar is encoded by a unit clause
of the form startsymbol(Start), where Start is a start nonterminal for
the grammar; there may be several such nonterminals.

Nonterminals and terminal symbols are encoded as arbitrary terms and
constants. The distinction between nonterminals and terminals is implicit in
whether or not the terms exist on the left-hand side of some rule.

h inference.pli

/*--

INFERENCE RULES

--

Parsing algorithms are specified as an inference system.

This includes a definition of a class of items, and some

inference rules over those items. Subsets corresponding to

initial items and final items are also defined.

The following predicates are used in defining an inference

system:

%%% initial_item(Item) Item is an initial item.

%%% ==================

%%% final_item(Value) Value is the pertinent information

%%% ================= to return about some final item.

%%% inference(RuleName, Antecedent,

%%% Consequent, SideConditions)

%%% ===

%%%

%%% Specifies an inference rule named RuleName with

%%% Antecedent items, a Consequent item, and some

%%% SideConditions.

The following predicate is used to define appropriate

indexing of the items:

%%% item_to_key(+Item, -Key)

%%% ========================

MERL-TR-94-08 May 1994

55

%%%

%%% Key is a hash key to associate with the given Item.

%%% The item will be stored in the Prolog database under

%%% that key.

Definitions of these predicates can be found in the

following files:

*/

%:- ensure_loaded('inf-top-down.pl').

%:- ensure_loaded('inf-bottom-up.pl').

:- ensure_loaded('inf-earley.pl').

%- ensure_loaded('inf-ccg.pl').

%%% initial_items(-Items)

%%% =====================

%%%

%%% Items are the initial items of the inference system.

initial_items(Items) :-

all_solutions(Item, initial_item(Item), Items).

h inference.pli

A.4.1 The Top-Down System

h inf-top-down.pli

/*--

Parsing Algorithm Inference System

Pure Top-Down Parsing

--*/

:- op(1200,xfx,--->).

/*--

ITEM ENCODING

--*/

MERL-TR-94-08 May 1994

56

%%% item(AfterDot, I, Value)

%%% ========================

%%%

%%% AfterDot is a list of nonterminals and terminals

%%% that need to be found from position I in the string

%%% to the end of the string. Value is some term that

%%% is passed around among all the items to be returned

%%% as the final value associated with the parse. It is

%%% seeded to be the Start category of the parse, but

%%% may become further instantiated as the parse

%%% progresses.

initial_item(item([Start], 0, Start)) :-

startsymbol(Start).

final_item(item([], Length, Value), Value) :-

sentencelength(Length).

/*--

ITEM INDEXING

--*/

%%% item_to_key(+Item, -Index)

%%% ==========================

%%%

%%% Items are indexed by position and category of first

%%% constituent.

item_to_key(item([First|_], I, _Value), Index) :-

First =.. [Firstcat|_],

hash_term(a(I,Firstcat), Index).

item_to_key(item([], I, _Value), Index) :-

hash_term(a(I,none), Index).

/*--

INFERENCE RULES

--*/

%%%...

%%% SCANNER:

inference(scanner,

MERL-TR-94-08 May 1994

57

[item([B|Beta], I, Value)],

% -------------------------------

item(Beta, I1, Value),

% where

[I1 is I + 1,

word(I1, Bterm),

lex(Bterm, B)]).

%%%...

%%% PREDICTOR:

inference(predictor,

[item([A|Alpha], I, Value)],

% --------------------------------

item(BetaAlpha, I, Value),

% where

[(A ---> Beta),

append(Beta, Alpha, BetaAlpha)]).

h inf-top-down.pli

A.4.2 The Bottom-Up System

h inf-bottom-up.pli

/*--

Parsing Algorithm Inference System

Pure Bottom-Up Parsing

--*/

:- op(1200,xfx,--->).

/*--

ITEM ENCODING

--*/

%%% item(BeforeDot, I)

%%% ==================

MERL-TR-94-08 May 1994

58

%%% r

%%% BeforeDot is a list of nonterminals and terminals

%%% that have been found from the start of the string

%%% through position I. Note that the stack of parsed

%%% constituents is kept in reversed order, with the

%%% most recently parsed at the left edge of the list.

initial_item(item([], 0)).

final_item(item([Value], Length), Value) :-

sentencelength(Length),

startsymbol(Value).

/*--

ITEM INDEXING

--*/

%%% item_to_key(+Item, -Index)

%%% ==========================

%%%

%%% Items are indexed by position and category of first

%%% constituent.

item_to_key(item([First|_], I), Index) :-

First =.. [Firstcat|_],

hash_term(a(I,Firstcat), Index).

item_to_key(item([], I), Index) :-

hash_term(a(I,none), Index).

/*--

INFERENCE RULES

--*/

%%%...

%%% SHIFT:

inference(shift,

[item(Beta, I)],

% -------------------------------

item([B|Beta], I1),

% where

[I1 is I + 1,

word(I1, Bterm),

MERL-TR-94-08 May 1994

59

lex(Bterm, B)]).

%%%...

%%% REDUCE:

inference(reduce,

[item(BetaAlpha, I)],

% --------------------------------

item([A|Alpha], I),

% where

[(A ---> Beta),

reverse(Beta, BetaR),

append(BetaR, Alpha, BetaAlpha)]).

h inf-bottom-up.pli

A.4.3 The Earley's Algorithm System

h inf-earley.pli

/*--

Parsing Algorithm Inference System

Earley's Algorithm

--*/

:- op(1200,xfx,--->).

:- ensure_loaded(library(strings)).

/*--

ITEM ENCODING

--*/

%%% item(LHS, BeforeDot, AfterDot, I, J)

%%% ====================================

%%% r

%%% LHS -> BeforeDot AfterDot r

%%% is a DCG production where BeforeDot is the

%%% reversal of BeforeDot

MERL-TR-94-08 May 1994

60

%%% I, J are the two indices into the string

initial_item(item('<start>', [], [Start], 0,0)) :-

startsymbol(Start).

final_item(item('<start>', [Start], [], 0, Length),

Start) :-

startsymbol(Start),

sentencelength(Length).

/*--

ITEM INDEXING

--*/

%%% item_to_key(+Item, -Key)

%%% ========================

%% Active edges are indexed by the category of the

%% constituent after the dot and the starting position of

%% that constituent.

item_to_key(item(_A, _Alpha, [B|_Beta], _I, J), Hash) :-

B =.. [Bcat|_],

hash_term(a(J,Bcat), Hash).

%% Passive edges (with nothing after the dot) are indexed by

%% the category of the parent constituent, and the starting

%% position of that constituent.

item_to_key(item(A, _Alpha, [], I, _J), Hash) :-

A =.. [Acat|_],

hash_term(p(I,Acat), Hash).

/*--

INFERENCE RULES

--*/

%%%...

%%% SCANNER:

inference(scanner,

[item(A, Alpha, [B|Beta], I, J)],

% -------------------------------------

item(A, [B|Alpha], Beta, I, J1),

% where

[J1 is J + 1,

MERL-TR-94-08 May 1994

61

word(J1, Bterm),

lex(Bterm, B)]).

%%%...

%%% PREDICTOR:

inference(predictor,

[item(_A, _Alpha, [B|_Beta], _I,J)],

% --

item(B, [], Gamma, J,J),

% where

[(B ---> Gamma)]).

%%%...

%%% COMPLETOR:

%%% Type 1 and 2 Completor

inference(completor,

[item(A, Alpha, [B|Beta], I,J),

item(B, _Gamma, [], J,K)],

% --------------------------------

item(A, [B|Alpha], Beta, I,K),

% where

[]).

h inf-earley.pli

A.4.4 The Combinatory Categorial Grammar System

The CCG parser in this section assumes an encoding of the CCG grammar/lexicon
as unit clauses of the form lex(Word, Category), where Word is a word in the
lexicon and Category is a CCG category for that word. Categories are encoded
as terms using the in�x functors + for forward slash and - for backward slash.

The start category is encoded as for context-free grammars above.

h inf-ccg.pli

/*--

Parsing Algorithm Inference System

Bottom-Up Combinatory Categorial Grammar Parsing

--*/

MERL-TR-94-08 May 1994

62

/*--

ENCODING

--*/

%%% item(Cat, I, J, Deriv)

%%% ===

%%% Cat is a CCG category

%%% I, J are the two indices into the string

%%% Deriv is the derivation of the item

initial_item(item(Cat,I,J1, [Cat,Word])) :-

word(J1, Word),

lex(Word,Cat),

I is J1 - 1.

final_item(item(Start,0, Length,D), D) :-

startsymbol(Start),

sentencelength(Length).

/*--

ITEM INDEXING

--*/

%%% item_hash(Item, Index)

%%% ======================

%% Temporarily disabled.

item_hash(_Item, index).

/*--

INFERENCE RULES

--*/

%%%...

%%% FORWARD APPLICATION:

inference(forward-application,

[item(X+Y, I, J, D1), item(Y, J, K, D2)],

% -------------------------------------

item(X,I,K,[D1, D2]),

% where

MERL-TR-94-08 May 1994

63

[]).

%%%...

%%% BACKWARD APPLICATION:

inference(backward-application,

[item(Y, I, J, D1), item(X-Y, J, K, D2)],

% -------------------------------------

item(X,I,K, [D1, D2]),

% where

[]).

%%%...

%%% FORWARD COMPOSITION 1:

inference(forward-composition1,

[item(X+Y, I, J, D1), item(Y+Z, J, K, D2)],

% -------------------------------------

item(X+Z,I,K, [D1, D2]),

% where

[]).

%%%...

%%% FORWARD COMPOSITION 2:

inference(forward-composition1,

[item(X+Y, I, J, D1), item(Y-Z, J, K, D2)],

% -------------------------------------

item(X-Z,I,K, [D1, D2]),

% where

[]).

%%%...

%%% BACKWARD COMPOSITION 1:

inference(backward-composition1,

[item(Y+Z, I, J, D1), item(X-Y, J, K, D2)],

% -------------------------------------

item(X+Z,I,K, [D1, D2]),

% where

[]).

%%%...

%%% BACKWARD COMPOSITION 2:

MERL-TR-94-08 May 1994

64

inference(backward-composition2,

[item(Y-Z, I, J, D1), item(X-Y, J, K, D2)],

% -------------------------------------

item(X-Z,I,K, [D1, D2]),

% where

[]).

h inf-ccg.pli

A.5 Sample Grammars

h grammars.pli

/*--

SAMPLE GRAMMARS

--*/

:- ensure_loaded('gram-dcg.pl').

%:- ensure_loaded('gram-ccg.pl').

h grammars.pli

A.5.1 A Sample De�nite-Clause Grammar

The following is the de�nite-clause grammar of Figure 3 encoded as per Sec-
tion A.4.

h gram-dcg.pli

s(s(NP,VP)) ---> [np(NP), vp(VP)].

np(np(Det,N,Rel)) --->

[det(Det), n(N), optrel(Rel)].

np(np(PN)) ---> [pn(PN)].

vp(vp(TV,NP)) ---> [tv(TV), np(NP)].

vp(vp(IV)) ---> [iv(IV)].

optrel(rel(that,VP)) ---> [relpro, vp(VP)].

%optrel(rel(epsilon)) ---> [].

MERL-TR-94-08 May 1994

65

lex(that, relpro).

lex(terry, pn(pn(terry))).

lex(shrdlu, pn(pn(shrdlu))).

lex(halts, iv(iv(halts))).

lex(a, det(det(a))).

lex(program, n(n(program))).

lex(writes, tv(tv(writes))).

startsymbol(s(_)).

h gram-dcg.pli

A.5.2 A Sample Combinatory Categorial Grammar

The following is the combinatory categorial grammar of Figure 7 encoded ap-
propriately for the CCG deduction system.

h gram-ccg.pli

lex(john, np).

lex(bananas, np).

lex(likes, (s-np)+np).

lex(really, ((s-np)+(s-np))).

startsymbol(s).

h gram-ccg.pli

A.6 Utilities

h utilities.pli

/*--

UTILITIES

--*/

%%% subsumes(+General, +Specific)

%%% =============================

%%%

%%% Holds if General subsumes Specific.

MERL-TR-94-08 May 1994

66

%%% Note that Quintus Prolog 3.x has a subsumes_chk/2 that

%%% could replace subsumes/2. The explicit implementation

%%% is left here to illustrate this standard Prolog idiom

%%% for subsumption testing.

subsumes(General, Specific) :-

\+ \+ (make_ground(Specific),

General = Specific).

%%% make_ground(Term)

%%% =================

%%%

%%% Instantiates all variables in Term to fresh constants.

make_ground(Term) :-

numbervars(Term, 0, _).

%%% all_solutions(Term, Goal, Solutions)

%%% ====================================

%%%

%%% Solutions is a list of instances of Term such that

%%% Goal holds. All free variables in Goal are taken to

%%% be existentially quantified. Solutions may be the

%%% empty list if there are no solutions.

%%% This implementation relies on the details of findall in

%%% Quintus Prolog. It could be reimplemented using the

%%% more standard built-in predicate setof/3 as follows:

%%%

%%% all_solutions(Var, Goal, Solutions) :-

%%% setof(Var, Goal^Goal, Solutions).

all_solutions(Var, Goal, Solutions) :-

findall(Var, Goal, Solutions).

%%% split(Elem, List, Rest)

%%% =======================

%%%

%%% List = U @ [Elem] @ V and Rest = U @ V.

split(Term, [Term|Rest], Rest).

split(Term, [First|Rest0], [First|Rest]) :-

split(Term, Rest0, Rest).

MERL-TR-94-08 May 1994

67

h utilities.pli

A.7 Monitoring and Debugging

h monitor.pli

/*--

MONITORING

--*/

%%% verbose

%%% =======

%%%

%%% Predicate governs the degree of verbosity in the

%%% notifications.

:- dynamic verbose/0.

%%% notify_...(...)

%%% ===============

%%%

%%% Prints debugging information if the flag verbose/0

%%% is true.

notify_consequence(RuleName, Trigger, Others,

SideConds, Consequent) :-

(verbose ->

format(" p: n trigger: p n",

[RuleName, Trigger]),

format(" others: p n", [Others]),

format(" side conds: p n", [SideConds]),

format(" cons: p n", [Consequent])

; true).

notify_agenda_addition(Item) :-

(verbose

-> (format(' NAdding to agenda: <-> p n', [Item]))

; (print('.'), ttyflush)).

notify_chart_addition(Index) :-

index_to_item(Index, Item),

MERL-TR-94-08 May 1994

68

item_to_key(Item, Key),

(verbose

-> (format(' NAdding to chart: < p> p n',

[Key,Item]))

; (print(':'), ttyflush)).

h monitor.pli

MERL-TR-94-08 May 1994

	Title Page
	Title Page
	page 2

	Principles and Implementation of Deductive Parsing
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69

