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Abstract

A visual system makes assumptions in order to assign interpretations of shape, lighting, or mo-
tion to visual data. The assumption ofg̈eneric vieẅKoenderink79,Binford81,Biederman85,Nakayama92
states that the observer is not in a special position relative to the scene . Researchers commonly
use a binary decision of generic or accidental view to disqualify scene interpretations that as-
sume special viewpoints Lowe85a,Malik87,Richards87,Pentland90,Leclerc91,Jepson92. Here
we show how to use the generic view assumption to quantify the likelihood of a view, adding
a new term to the probability of a given image interpretation. The resulting framework better
models what the eye sees and reduces the reliance on other prior assumptions. It may lead to
computer vision algorithms of greater power and accuracy or better models of human vision. We
show applications to the problem of inferring shape from a shaded image.
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1A visual system makes assumptions in order to interpret visual data. The assumption

of \generic view" [1, 2, 3, 4] states that the observer is not in a special position relative

to the scene . Researchers commonly use a binary decision of generic or accidental view

to disqualify scene interpretations that assume accidental viewpoints [5, 6, 7, 8, 9, 10].

Here we show how to use the generic view assumption, and others like it, to quantify the

likelihood of a view, adding a new term to the probability of a given image interpretation.

The resulting framework better models the visual world and reduces the reliance on

other prior assumptions. It may lead to computer vision algorithms of greater power

and accuracy or better models of human vision. We show applications to the problems

of inferring shape, surface reectance properties, and motion from images.

Consider the image of Fig. 1 (a). Perceptually, there are two possible interpretations: a

bump, lit from the left, or a dimple, lit from the right. Yet many shapes and lighting

directions (b) could explain the image. How should a visual system choose?

We note that the ridges in shapes 2 { 4 of (b) must line-up with the assumed light

direction. We can study the accidentalness of this alignment by exploring how the

image of the illuminated shape changes as we perturb the azimuthal light direction.

Figure 1 (c) shows that shape 3 presents images similar to (a) only for a small range

of assumed light directions. The bump in (c) (shape 5) presents images like (a) over

a broader range of light directions. If all azimuthal light directions are equally likely,

shape 5 has more chances to create image (a) than does shape 3.

To quantify such probabilities, we use a Bayesian framework (e.g., [11]). This combines

the data (Fig. 1 (a)) with known or estimated prior probabilities to �nd the posterior

probability of each candidate shape.

We treat the azimuthal light direction as a random variable, an example of what we

call a generic variable, ~x, with prior probability density P~x(~x). (We use subscripts to

distinguish between probability densities, P ). Generic variables can include viewpoint,
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2lighting direction, or object pose. These are variables which we do not need to estimate

precisely.

We assume a prior probability density, P~�
(~�), for the scene parameter ~� we want to

estimate. For this example, shapes 1 { 5 are assigned equal probabilites.

The posterior distribution, P (~�; ~x j ~y), gives the probability that scene parameter ~�

(shape) and generic variable ~x (light direction) created the visual data ~y (Fig. 1 (a)).

From P (~�; ~x j ~y), we will �nd the posterior probability P (~� j ~y).

We use Bayes' theorem to evaluate P (~�; ~x j ~y):

P (~�; ~x j ~y) =
P (~y j ~�; ~x)P~�

(~�)P~x(~x)

P~y(~y)
; (1)

where we have assumed that ~x and ~� are independent. The denominator is constant for

all models ~� to be compared.

To �nd P (~�; ~x j ~y), independent of the value of the generic variable ~x, we integrate the

joint probability of Eq. (1) over the possible ~x values:

P (~�j~y) =
P~�

(~�)

P~y(~y)

Z
P (~y j ~�; ~x)P~x(~x) d~x: (2)

We will assume that the prior probability P~x(~x) of the generic variables is a constant.

The generalization for other priors is straightforward. P (~y j ~�; ~x) is large where the

scene ~� and the value ~x give an image similiar to the observation ~y. The integral of

Eq. (2) integrates the area of ~x for which ~� yields the observation. In our example, it

e�ectively counts the frames in Figure 1 (c) or (d) where the rendered image is similar

to the input data.

We assume zero mean Gaussian observation noise of variance �2, which plays two roles.

It measures the similarity between images as the probability that noise accounts for the
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3di�erences. It can also model physical noise. For this noise model,

P (~y j ~�; ~x) = 1

(
p
2��2)N

e
�k~y�~f(~x;~�)k2

2�2 ; (3)

where ~f(~x; ~�) is a known \rendering function" which gives the image created by the

generic and scene parameters ~x and ~�, and N is the dimensionality of the visual data ~y.

For the low noise limit, we can �nd an analytic approximation to the integral of Eq. 2.

We expand ~f (~x; ~�) in Eq. (3) in a second order Taylor series,

~f (~x; ~�) � ~f(~x0; ~�) +A(~x� ~x0) +
1

2
(~x� ~x0)

T
B(~x� ~x0); (4)

where the i and jth elements of the matrices A and B are:

Aij =
@fj(~x; ~�)

@xi
j~x=~x0 ; (5)

and

Bij =
@2 ~f (~x; ~�)

@xi@xj
j~x=~x0 : (6)

We take ~x0 to be the value of ~x which can best account for the observed image data;

i.e., for which k~y � ~f(~x; ~�)k2 is minimized.

Using Eqs. (3){(6) to second order in ~x � ~x0 in the integral of Eq. (2), we �nd the

posterior probability for the scene parameters ~� given the visual data ~y:

P (~� j ~y) = k exp (
�k~y � ~f(~x0; ~�)k

2

2�2
) P~�

(~�)
1q

det(C)
(7)

= (�delity) (prior probability) (generic view);

where the i and jth elements of the matrix C are

Cij = (AT
A)ij � (~y � ~f (~x0; ~�)) �Bij : (8)

We call Eq. (7) the scene probability equation. The normalization constant k does not

enter into comparisons between interpretations ~�. The exponential term, which we call
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4the image �delity term, favors scene hypotheses which have a small mean-squared dif-

ference from the visual data. This and the prior probability term P~�
(~�) are familiar

in computational vision. Regularization, from which many vision algorithms have been

derived [12, 13], �nds the maximum probability density [14, 15] using these two terms,

when viewed in a Bayesian context. The third, generic view term, accounts for the

assumptions of generic viewpoint, pose or lighting position. The scene probability equa-

tion favors interpretations which can generate the observed image over a relatively large

range of generic variables, by penalizing high image derivatives with respect to those

variables. If the prior probability of the generic variable were not constant then the

factor P~x( ~x0) would be included in the prior term of Eq. (7).

The generic view term is especially useful when several explanations account equally

well for visual data, as occurs commonly in problems of stereo, shape, motion, and color

perception (e.g. [16]). Then the image �delity term is the same for the competing

explanations. The prior probabilities may not be known well [4]. The generic view term

allows a choice based on the reliable assumptions of generic view, pose, or light source

position.

Our approach relates to Bayesian analyses of data interpolation, image restoration, and

other problems [11, 15, 17]. In that work, as in this, one favors hypotheses which could

have generated the observed data many ways. See also [18], a related non-Bayesian

approach.

Using the scene probability equation, Eq. (7), we plot in Fig. 1 (e) the relative probability

of shapes 1 { 5 of (b). Note the agreement with the bump/dimple shapes perceived to

be the true explanation of (a). (Presumably, these are perceptually favored because

they are more probable). Without the generic view term, one would have to state an

arbitrary preference for bumps or dimples to choose between the candidate shapes.

In Figure 2 we use the scene probability equation to choose between surface reectance
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5functions in a case where they would otherwise be indistinguishable.

Figure 3 shows an example where both the �delity and the prior probability terms favor

a perceptually implausible explanation. Only when the generic view term of Eq. (7) is

included does the perceptually favored explanation rank higher.

In Figure 4, we apply the scene probability equation to the problem of estimating the

local image velocity from local measurements of the velocity components normal to

the contrast orientation [19]. All velocity components parallel to the local contrast

orientation are possible, but high speeds would imply a coincidental alignment of the

local contrast with the image velocity. The scene probability equation predicts a bias

toward zero parallel velocity component, which is supported by psychophysical evidence

[20].

From an equation which ranks scene interpretations, such as the scene probability equa-

tion, Eq. (7), one can develop vision algorithms which �nd an optimum interpretation.

Including the generic view term gives a better statistical model of the visual world. It

may result in more powerful and accurate algorithms for vision.
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6Figure Captions

Figure 1

(a) Perceptually, this image has two possible interpretations. It could be a bump, lit from

the left, or a dimple, lit from the right. (b) Mathematically, there are many possibilities.

The �ve shown here were found by a linear shape from shading algorithm assuming

shallow incident light from di�erent azimuthal directions and the boundary conditions

described in [8]. Shapes 2 { 4 require coincidental alignment with the assumed light

direction. For shape 3, (c), the rendered image changes quickly with assumed light

angle; only a small range of light angles yields an image like (a). The generic view

term of the scene probability equation, Eq. (7), penalizes an interpretation which has

high image derivatives with respect to the generic variable, in this case light direction.

For shape 5, (d), a much larger range of light angles gives the observed image. If all

light directions are equally likely, shape 5 should be the preferred explanation. The

probabilities of the candidate shapes, found using Eq. (7), are shown in (e). The results

favor shapes 1 and 5, in agreement with the perceptual appearance of (a).
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7Figure 2

(a) and (b) show two images with intensity variations along only one dimension. Such

images can be explained by many di�erent combinations of surface reectance function

and shape. We use a two-parameter family of reectance functions (a subset of the model

of [21]) and a �xed light position to generate a family of possible shape and reectance

function explanations for each of (a) and (b). (c) provides a visual key to the parameters

by showing the appearance of the surface reectance functions, rendered on the surface of

a sphere. For every specularity and roughness, shapes exist which produce image (a) or

(b). (For each shape we assumed boundary conditions of constant height at the vertical

picture edge). One wants to choose between these competing explanations without

resorting to an ad hoc bias toward some shapes or reectance functions. Each of the

explanations will present the images shown over di�ering ranges of the generic variables,

taken here to be light angle and object orientation. The scene probability equation

calculates their relative probabilities [22]. The plots (d) and (e) show the probability that

the images (a) and (b), respectively, were created by each surface reectance function in

the parameter space and corresponding shape. The probabilities are the highest for the

reectance functions which look like the material of the corresponding original image

(compare with (c)).

MERL-TR-93-19a February 1996



8Figure 3

Showing the need for the generic view term of Eq. (7). We compare the probability

densities of two explanations for the image (a). The surface (b) (shown at 7x vertical

exaggeration), lit at a grazing angle, yields the image (d). The surface (c) gives the

image (e), which accounts less well for the image (a). Thus, based on an image �delity

criterion, (b) is a better explanation. The common prior assumption of a smooth surface

[14] would also favor (b) (the surface is very smooth at the true vertical scale). However,

the object and light source must be precisely positioned for the shape (b) to give the

image (d); the generic view term of the scene probability equation, Eq. (7), penalizes

this. Including the generic view term makes the overall probability densities, shown

in (f), favor the perceptually reasonable explanation of shape (c) over shape (b). (We

made this example by construction. Gaussian random noise at a 7 dB signal to noise

ratio was added to (e) to make (a). (b) was found from (a) using a shape from shading

algorithm, assuming constant surface height at the left picture edge [23]. We evaluated

the likelihood of (b) and (c) assuming both generic object pose and generic lighting

direction. The strength of a prior preference for smooth surfaces is arbitrary and none

was included in the �nal densities. The actual noise variance was used for �2 in the

�delity term of Eq. (7), although a wide range of assumed variances would give the

results shown here).
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9Figure 4

Application of the scene probability equation to velocity estimation. (a) Within a local

aperture, the object velocity direction is ambiguous [19]. V?, the component of velocity

normal to the local contrast, is constrained by the measurement, while Vk is uncon-

strained. (b) Line in velocity space of object velocities consistent with observed normal

velocity. High values of Vk imply a concidental alignment of the local contrast orientation

with the object velocity direction. In our framework, the measurement vector ~y is the

normal velocity vector; the scene parameter ~� is Vk; the generic variable ~x is the angle

� between the object velocity and the orientation of local contrast. The scene proba-

bility equation, Eq. (7), penalizes high derivatives of the normal velocity with respect

to contrast orientation. (c) shows the resulting posterior probability for Vk, showing a

bias in favor of the normal velocity (Vk = 0). This bias is consistent with psychophysical

observations [20].
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