
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Evaluating the Contribution of Discourse
Theory to an Interactive System

Charles Rich

TR93-18 September 1993

Abstract

An experiment is proposed which begins to systematically explore the potential contribution of
discourse theory to the design of interactive systems. The experiment involves implementing and
comparing two versions of a very simple system for planning air travel itineraries. One version
of the system includes facilities based on discourse theory, the other does not. Neither system
uses natural language. The long-term goal of this research is to develop a toolkit that can be used
to add discourse capabilities to any interactive system.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1993
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:{

1. First printing, MN93-18, Sept 1993

1

Both intuition and anecdotal evidence suggest that the application of discourse theory
has the potential of improving the design of interactive computer systems. This
paper discusses some of the di�culties in evaluating this potential and proposes an
implementation experiment that begins to explore the question in a more systematic
way. By discourse theory, I mean to refer generally to the body of research that
provides computational models of the extended communication between two or more
agents in a shared context, and especially to work such as [Grosz and Sidner, 1990;
Lochbaum et al., 1990; Grosz and Kraus, 1993], in which an important part of the
shared context is a collaborative task.

It seems intuitive in many situations to view an interactive computer system as
an agent with which the user collaborates. From this point of view, I would argue
that such systems will be easier for people, especially novices, to use if they obey the
same conventions and rules of discourse that people are familiar with from everyday
experience. (This is analogous to the argument that direct manipulation computer
interfaces are successful largely because they take advantage of users' experience with
manipulating the physical world.)

Some of the terminology of discourse theory has already made its way into the
practice of designing interactive systems. It has recently become quite common (see,
for example, the [Maybury, 1993] collection) to describe a system-user interaction in
terms of communication acts such as request, con�rm, inform, and so on. Unfortu-
nately, it is very di�cult to tell exactly which parts of discourse theory have been
applied in these systems and what the contribution has been to the overall system
usability.

The current state of the art in general-purpose tools for human-computer interac-
tion is graphical user interface toolkits, such as Motif. While these toolkits provide a
rich set of appearance options, they provide very shallow semantics for the dynamics
of interaction.

The long-term goal of this research is to develop a general-purpose collection
of subroutines, data structures, and speci�cations (i.e., a toolkit) that application
programmers can easily use to add discourse capabilities such as the following to any
interactive application:

� clari�cation of the current or an earlier communication action

� returning to a subtask which was abandoned or set aside (e.g., while more
information was being gathered)

� mixed initiative (i.e., the system may sometimes suggest an action to be per-
formed next)

� summary of the current state of the collaborative problem solving process

MERL-TR-93-18 Sept 1993

2

One of the biggest methodological problems in advancing toward the goal of a
general-purpose discourse toolkit is the fact that, if you look at any particular ap-
plication, improving the discourse capabilities of the system is hard to separate from
improving the underlying application-speci�c competence or the graphical presenta-
tion. For example, when users complain that a document preparation system or VLSI
design tool should be \more intelligent" or \easier to use," what they may really want
most is a better algorithm for breaking pages or a better graphical presentation of de-
sign constraints. The methodological challenge is thus to demonstrate the bene�t of
applying discourse theory without getting bogged down in the speci�cs of a particular
application. The implementation experiment proposed in the next section attempts
to meet this challenge.

The basic idea of the experiment is to implement and compare two versions of a sys-
tem. The base version of the system is a conventional interactive application. The
extended version of the system has the same internal algorithms and graphical presen-
tation, but adds capabilities for maintaining and using a representation of discourse
context. (A few extra buttons may be added to the interface for discourse-speci�c
functions.)

The task performed by the system should be simple enough so that a high degree
of competence and a state-of-the-art graphical presentation can be implemented for
the base system with minimal e�ort. The task should also be simple enough so that
building a formal task model, which is required for the discourse extensions, is not
overwhelming.1

The following are key features of this experiment:

� It is clear what is being held constant and what is being varied in the comparison
between systems.

� It is clear what part of discourse theory is being applied and its interaction with
the rest of the system (details in Section 2.3).

� Natural language understanding is not involved.

The last point above is important for both practical and theoretical reasons. As
a practical matter, natural language understanding, even in a limited setting, is a
very di�cult problem in its own right. Including a natural language understanding

1A personal note. From my experience with research on an intelligent software assistant [Rich
and Waters, 1990], I am particularly concerned with this point. It is very easy for the e�ort of
formalizing a task/domain to overwhelm the other goals of the research, especially in the early
stages.

MERL-Note-93-18 Sept 1993

3

module in the base system would push the implementation e�ort well beyond the
minimal level.

From a theoretical point of view, if this form of experiment is successful (i.e., if
the extended system is better than the base system), it will also help demonstrate
that discourse theory addresses the content of collaborative communication at a very
fundamental level|with respect to which English utterances, mouse clicks, or changes
in the shape or color of an icon can simply be viewed as alternative presentations.
This is an important step toward the goal of a discourse toolkit that can be used with
any interactive application, i.e., not just those that involve natural language.

2.1 The Base System

The proposed task for the base system, namely planning air travel itineraries, is
motivated mostly by the public availability2 of a large transcribed corpus of telephone
conversations between travel agents and customers. Careful analysis of this corpus
has been extremely helpful for understanding how the general principles of discourse
theory are instantiated in this particular task. This task also satis�es the requirements
of minimal implementation e�ort for the base system and minimal task modeling
e�ort.

The basic operation of the base system, shown in Figure 1, is very simple: a �lter
determined by user constraints such as desired airline, destination, arrival time, seat
type, etc., is used to select a set of candidate ights from the database of all ights.
(For multi-leg itineraries, the system can be thought of as a �lter on the appropriately
sized cross-product of ights.)

The architecture of the base system, shown in Figure 2, follows current good
design practice by enforcing a clear separation between the application logic/state
and the user interface. The application is in e�ect a simple state machine controlled
through a direct manipulation interface. Many other systems, such as spreadsheets

2From Patti Price at SRI International.

ALL

CANDIDATE
FLIGHTS

FLIGHTS

CONSTRAINTS

USER

Figure 1. Basic operation of the base system.

MERL-TR-93-18 Sept 1993

4

LOGIC
&

STATE

D
IR

E
C

T
 M

A
N

IP
U

LA
T

IO
N

IN
T

E
R

F
A

C
EAPPLICATION

Figure 2. Architecture of the base system.

DL 2310

TWA 1104

AA 742

AA 816

DL 2309

US 816

Figure 3. Presentation graphics of the base system.

and design tools, can be viewed as having this architecture. The direct manipulation
interface will be implemented using a standard graphical toolkit.

A rough sketch of the base system's presentation graphics is shown in Figure 3.
Again, the goal here is to apply the best current design practice. The top half of the
screen is the direct manipulation interface to the user constraints. The complete state
of the system, i.e., all the constraints, is visible and changeable using the appropriate
graphic devices, such as a map for specifying cities, buttons for choices, sliders for
ranges, and so on. The bottom half of the screen is a scrollable window that lists the
candidate ights (itineraries), one per line. Some easily readable layout for each line,
such as a color-coded horizontal time line, would be desirable.

A typical scenario of system use would be as follows. The user �rst clicks on the
map to specify the origin, connecting city, and �nal destination for a trip. A long
list of itineraries immediately appears in the candidate window. She then modi�es
the default settings for various other constraints, such as desired airline and arrival
times, thereby reducing the number of candidates to two. Finally, she decides which
itinerary she likes best and books it (this �nal selection step is not supported by the
system).

MERL-Note-93-18 Sept 1993

5

2.2 Limitations of the Base System

The system described above sounds pretty good at �rst blush|certainly a lot easier
than using printed airline guides! However, I think users will be dissatis�ed with it
in a number of ways. Below are some guesses about the kinds of di�culties that will
arise, based partly on analysis of the transcribed conversations between travel agents
and customers.

The most obvious di�culty using the base system arises when the candidate win-
dow becomes empty, i.e., when there are no ights satisfying the current constraints.
At this point, a natural thing for the user to do is to return to a previous state of
the system in which the candidate window was not empty. (The alternative using the
base system as described thus far is blind search, i.e., randomly changing constraints
until some candidates appear.) A simple extension to the base system which seems
to address this di�culty is to maintain a chronological history of all previous system
states and to provide a direct manipulation interface, such as a stack of notecards,
for choosing a previous state.

Unfortunately, this kind of backtracking often forces the user to throw away useful
work that has already been done. To illustrate, consider a four-city itinerary, such as
the following:3

CITY4CITY1 CITY2 CITY3

Suppose you started entering constraints working forward from City1 to City2 to
City3, and arrive at an impasse (empty candidate list) while entering the constraints
on the third leg of the trip (City3 to City4). At this point suppose you want to retract
the constraints on the �rst leg, but leave the constraints on the second leg alone. Even
with a complete state history, there is no easy way to achieve this e�ect|you have to
individually change each constraint on the �rst leg to its earlier value. The problem
is that the system was never in the state you wish to go to. The solution to this
problem, as we will see in the next section, is to represent not just the state of the
base system, but also the state of the discourse.

Another di�culty with the base system is that the user constraints are all set in-
dependently. From looking at the transcribed conversations, it is clear that there are
often dependencies between constraints. For example, in four-city itinerary above, if
you enter 7 p.m. as the latest desired arrival time at City2, it follows that the earliest
desired departure time (including the miminum allowance for changing planes) is 7:30
p.m. You should not have to separately enter this 7:30 constraint. Unfortunately,
the dependency between these two constraints cannot simply be built into the base
system, because the direction of the dependency varies according to whether you are
working forward or backward. If you are working backward from City4, then the de-
pendency goes the other way. The solution to this problem, as with the backtracking
problem, lies in adding an explicit representation of the discourse state.

3This is chronological vs. dependency-directed backtracking ([Winston, 1992], Chapter 14).

MERL-TR-93-18 Sept 1993

6

2.3 Discourse Context

The central concept in discourse theory is the discourse context. In general, the
discourse context includes intentional state, attentional state, and linguistic structure
[Grosz and Sidner, 1986]. In this experiment, a representation of only the intentional
part of the discourse context will be added to the base system, using a formalism
based on shared plans [Grosz and Sidner, 1990].

A shared plan represents the state of a collaborative discourse in terms of rela-
tionships between the goals and actions of the agents involved. For example, there
are basically two problem solving strategies (recipes) that people use for planning
multi-leg air travel itineraries: working forward from the originating city or working
backward from the �nal destination. Each of these recipes has the same subgoals
(selecting a ight for each leg), but in a di�erent order. The shared plan for this task
speci�es which recipe is being used, which subgoals have been achieved so far, and
which user and system actions contributed to each subgoal.

The shared plan representation provides direct solutions to both of the di�culties
described in Section 2.2. Since each constraint setting action is linked to the subgoal
of selecting a ight for a particular leg, it is possible to retract the constraints related
to any leg regardless of the chronological order in which the constraints were entered.
In this way the system can backtrack to new combinations of partial previous states.
The constraint dependency problem is solved by letting the recipe speci�ed in the
shared plan control which way the dependency goes.

The shared plan representation also begins to support the general capabilities
outlined for a discourse toolkit in Section 1. For example, when a user returns after
being interrupted in the middle of working on a complicated trip, an automatically
generated description of the current shared plan might serve as a good summary of
what was going on. To support mixed initiative, the system might suggest actions
that will contribute to unachieved subgoals in the current recipe.

2.4 The Extended System

Figure 4 shows the architecture of the extended system. Dashed lines indicate the
discourse extensions and relationships. There are two components in the discourse
extensions: the discourse manager (the procedural component) and the discourse con-
text (which contains an implementation of the shared plan representation discussed
in the preceding section).

As can be seen in the �gure, the application logic part of the base system needs
to be modi�ed to send to the discourse manager a description of each system action
as it is performed. Similarly, the direct-manipulation interface needs to be modi�ed
to produce a discourse-level description of each user action as it is performed. The
formalism for these action descriptions will be based on Sidner's arti�cial negotiation
language [Sidner, 1992].

MERL-Note-93-18 Sept 1993

7

LOGIC
&

STATE

DISCOURSE CONTEXT

DISCOURSE MANAGER

D
IR

E
C

T
 M

A
N

IP
U

LA
T

IO
N

IN
T

E
R

F
A

C
EAPPLICATION

USER ACTSSYSTEM ACTS

Figure 4. Architecture of extended system (extensions shown in dashed lines).

For example, when the user clicks on an icon representing a two-valued constraint,
the interface should report that the user has proposed that the value of the constraint
be reversed. When the application logic actually changes the value of the constraint,
it should report a system action of accepting that proposal.

The discourse manager is responsible for updating the discourse context based on
incoming information about system and user actions. The details of the operation of
the discourse manager are somewhat sketchy at this point, since this is the component
for which the most basic research needs to be done.

The discourse manager may also need to exchange information directly with the
user. For example, the easiest way to establish which recipe is being used (e.g.,
forward vs. backward) would be to add a set of buttons to the interface labelled with
the options.4 The discourse manager may also need access to the user display to print
out a summary of the current problem solving state.

Finally, the discourse manager needs to be able to update the state of the appli-
cation, such as to automatically set constraints that depend on other constraints, as
discussed above.

2.5 Evaluation

The evaluation part of the experiment has not yet been designed. The basic idea of
the evaluation is to have a number of people use the two systems to plan itineraries

4The alternative is to try to recognize which recipe is being used by looking only at the actions

performed by the user. This is plan recognition and is well-known to be very di�cult in general.

MERL-TR-93-18 Sept 1993

8

given verbal descriptions such as the following:

You are a Boston-based sales representative planning a trip to visit cus-
tomers in Chicago, Denver, and San Francisco next week. You would
prefer to leave on Wednesday morning, but can leave on Tuesday night,
if necessary. Your customer in Denver is only available between 11 a.m.
and 3 p.m. on Thursday. You would prefer to y as much as possible
on American Airlines, as you have almost enough frequent ier miles to
qualify for a free trip this summer. You absolutely must be home by 5
p.m. on Friday in order to make it to your son's piano recital.

The base and extended systems can then be compared in terms of measures such as
performance time, quality of solution, and user satisfaction.

As a practical matter, it makes sense to pursue the evaluation in two phases. In
the �rst phase, which is informal and involves a small number of users, the goal will be
mainly to get ideas about how to improve the extended system. If this �rst phase is
promising, a second more formal phase may be undertaken with more careful controls
and a larger number of subjects for statistical signi�cance.

As well as being a convenient architecture for this experiment, Figure 4 might also
serve as the framework for a discourse toolkit. To consider this possibility, we �rst
need to shift our point of view from the end user of an interactive system to the
application programmer who is the \user" of the toolkit during system development.

3.1 Modularity

From point of view of the application programmer, one of the most important prop-
erties of a toolkit is its modularity. Ideally, a discourse toolkit should provide a
narrow, well-speci�ed interface and should not interfere with the normal operation of
the underlying application.

The conventional undo facility, despite its limitations (it only supports chronolog-
ical backtracking), is a good example of modularity. The toolkit-level speci�cation of
undo simply provides a function to be called by the application whenever a reversible
unit of action has been completed. (The programmer gets to decide the granularity of
the reversible units.) The information passed from the application to the undo facility
is simply a pointer to an application procedure that reverses the current action. All
that the undo facility does is store the current procedure pointer (or perhaps a stack
of them) and invoke the current procedure when requested by the user. A bene�t of
this kind of modularity from the end user's point of view is that the functionality of
the undo command is consistent across applications.

MERL-Note-93-18 Sept 1993

9

A discourse toolkit should provide the same kind of modularity as undo, but for
more powerful discourse-related capabilities. Figure 4 suggests that it may be possi-
ble to achieve this goal by sprinkling calls to the discourse manager throughout the
application logic and direct manipulation interface code, without otherwise interfer-
ing with the operation of the application. The experimental implementation of the
extended air travel system will shed some light on how well this idea works out in
practice.

3.2 Task Modeling

In order to make use of a discourse toolkit, an application programmer will have to
build a formal model of the collaborative task being performed by the system and user.
Discourse theory provides certain metalevel operators, such as propose, acknowledge,
accept, reject, which can be built into the language of a toolkit. However, the content
of what is being proposed, acknowledged, etc., depends on the speci�c task being
performed. For example, in the air travel task above, the content of a proposal might
be \select TWA as the airline of the ight from Boston to Chicago."

Representing this task-speci�c content requires building up a formal vocabulary
of:

� objects (cities and ights),

� relationships (ights have an airline attribute),

� actions (select an airline for the ight from Boston to Chicago),

� goals (plan an itinerary from Boston to San Francisco), and

� recipes (working forward).

The air travel task in this paper has intentionally been restricted in order to make
this formal model easy to construct. For a real application, constructing a formal task
model can be quite demanding, especially for the average application programmer,
who has little experience with modeling or speci�cation technology of any kind.

De�ning objects and relationships as needed above is very similar to the kind of
data modeling that goes on in modern data base systems. De�ning the actions in a
task model is quite similar to specifying software procedures. The goals and recipes
part of a task model is more abstract than what is usually formalized in current
software practice, except for in expert or knowledge-based systems.

On the one hand, task modeling can be thought of as an unfortunate hidden cost
of applying discourse theory. On the other hand, the need for an explicit task model
should be no surprise. From an AI point of view, what the task model does is add
a measure of reection|\self-awareness," if you like|to a system. Reection is a
well-known technique for improving the performance of a problem-solving system.

MERL-TR-93-18 Sept 1993

10

From a software engineering point of view, the task model can be thought of as part
of the general trend towards improving software by making more of the programmer's
design intentions explicit.

It should also be noted that the task model constructed for a discourse toolkit
does not have to be as complete as it would have to be if the whole application were
being implemented using a goal-directed AI problem solver. From the toolkit's point
of view, how the application decides what action to perform next is a \black box."
All the toolkit needs to do is to represent the results of that decision.

If the extended system described above does in fact turn out to support more exible
and uent interaction than the base system, I hope it will encourage further e�ort
toward applying discourse theory to the design of interactive systems. A �rst step
in this direction would be to abstract and generalize the mechanisms developed in
the experimental system to the class of applications that share the same architecture.
Research might then move on to a more generally applicable discourse toolkit.

Acknowledgement

Many of the ideas in this paper arose from discussions with Candace L. Sidner.

[Grosz and Kraus, 1993] B. J. Grosz and S. Kraus. Collaborative plans for group
activities. In Proc. 13th Int. Joint Conf. Arti�cial Intelligence, Chambery, France,
1993.

[Grosz and Sidner, 1986] B. J. Grosz and C. L. Sidner. Attention, intentions, and
the structure of discourse. Computational Linguistics, 12(3):175{204, 1986.

[Grosz and Sidner, 1990] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R.
Cohen, J. L. Morgan, and M. E. Pollack, editors, Intentions and Communication,
chapter 20, pages 417{444. MIT Press, Cambridge, MA, 1990.

[Lochbaum et al., 1990] K. E. Lochbaum, B. J. Grosz, and C. L. Sidner. Models of
plans to support communication: An initial report. In Proc. 8th National Conf. on

Arti�cial Intelligence, pages 485{490, Boston, MA, July 1990.

[Maybury, 1993] M. T. Maybury, editor. Intelligent Multimedia Interfaces. AAAI
Press, Menlo Park, CA, 1993.

MERL-Note-93-18 Sept 1993

11

[Rich and Waters, 1990] C. Rich and R. C. Waters. The Programmer's Apprentice.
Addison-Wesley, Reading, MA and ACM Press, Baltimore, MD, 1990.

[Sidner, 1992] C. L. Sidner. Using discourse to negotiate in collaborative activity:
An arti�cial language. In E. Simoudis, editor, AAAI-92 Workshop on Cooperation

Among Heterogenous Agents, San Jose, CA, July 1992.

[Winston, 1992] P. H. Winston. Arti�cial Intelligence, Third Edition. Addison-
Wesley, Reading, MA, 1992.

MERL-TR-93-18 Sept 1993

	Title Page
	Title Page
	page 2

	Evaluating the Contribution of Discourse Theory to an Interactive System
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

