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Abstract

The \generic viewpoint" assumption states that an observer is not in a special

position relative to the scene. It is commonly used to disqualify scene inter-

pretations that assume special viewpoints, following a binary decision that the

viewpoint was either generic or accidental. In this paper, we apply Bayesian

statistics to quantify the probability of a view, and so derive a useful tool to

estimate scene parameters.

Generic variables can include viewpoint, object orientation, and lighting po-

sition. By considering the image as a (di�erentiable) function of these variables,

we derive the probability that a set of scene parameters created a given image.

This scene probability equation has three terms: the �delity of the scene inter-

pretation to the image data; the prior probability of the scene interpretation;

and a new genericity term, which favors scenes likely to produce the observed

image. The genericity term favors image interpretations for which the image

is stable with respect to changes in the generic variables. It results from inte-

gration over the generic variables, using a low-noise approximation common in

Bayesian statistics.

This approach may increase the scope and accuracy of scene estimates. It

applies to a range of vision problems. We show shape from shading examples,

where we rank shapes or re
ectance functions in cases where these are otherwise

unknown. The rankings agree with the perceived values.

To appear in the International Journal of Computer Vision, 1996
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21 Introduction

A major task of visual perception is to �nd the scene which best explains visual observations.

Bayesian statistics are a powerful tool for this [63, 25, 59, 14, 37, 35, 29, 38, 3]. Assump-

tions are expressed in terms of prior probabilities. Using a model for how a scene relates to

the observation, one forms the posterior probability for the scene, given the observed visual

data. After choosing a criterion of optimality, one can calculate a best interpretation. Other

computational techniques, such as regularization [61, 54, 60] and minimum description length

analysis [18, 52], can be posed in a Bayesian framework [59, 41]. In this paper, we show how the

commonly encountered conditions of \generic viewpoint" in
uence the posterior probabilities

to give additional information about the scene.

The generic view assumption [7, 6, 45, 47, 56, 48, 1] postulates that the scene is not viewed from

a special position. Fig. 1 shows an example. The square in (a) could be an image of a wire-frame

cube (b) viewed from a position where the line segments of the front face hid those behind them.

However, that would require an unlikely viewpoint, and given the image in (a), one should infer

a square, not a cube. The generic view assumption has been invoked to explain perceptions

involving stereo and transparency [48], linear shape from shading [53], object parts and illusory

contours [1], and feature or object identi�cation [39, 45, 6, 56, 47, 35, 19]. Often, researchers

assume a view is either generic, and therefore admissible, or accidental, and therefore rejected.

Some have pointed out that it should be possible to quantify the degree of accidentalness or

have done so in special cases [45, 47, 42, 48, 35, 19].

(a) (b)

Figure 1: An example of use of the generic view assumption for binary decisions. The image

(a) could be of a square, or it could be an \accidental view" of the cube in (b). Since a cube

would require a special viewing position to be seen as the image in (a), we reject that possible

interpretation for (a).

In this paper we quantify generic view probabilities in a general case; we �nd the probability

of a given scene hypothesis under the assumption of generic viewpoint. We do not restrict

ourselves to viewpoint; the generic variable can be, for example, object orientation or lighting

position. Scene parameters can be re
ectance function, shape, and velocity. We show that the

generic view assumption can strongly in
uence the scene interpretation.
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3The key to quantifying the generic view probabilities is to �nd how the visual data would

change were the generic variables (e.g., the viewpoint) to change. We will show that large image

changes correspond to unlikely scenes. Our approach employs an established approximation

in Bayesian statistics (approximating the log likelihood function as a gaussian [40, 20, 34, 36,

44, 10, 4, 28, 58, 46]), allowing convenient marginalization over the generic variables. Szeliski

[59] used related ideas to set regularization parameters by maximum likelihood estimation.

See Weinshall et. al. [62] for a related non-Bayesian approach. Marginalization over the

generic variables can also be interpreted using the loss functions of Bayesian decision theory

[4], discussed in Section 4.2 and in [23, 65, 24].

Our Bayesian framework also takes into account the �delity of a rendered scene to the image

data and the prior probability of the scene. The conditional probability we will derive gives a

new objective function for a vision algorithm to optimize. Including the generic view proba-

bilities may lead to more powerful vision algorithms, or better models of human perception.

We show applications to the shape from shading problem, yielding new results. Using a two-

parameter family of re
ectance functions, we show how to �nd the probability of a re
ectance

function from a single image. We �nd shape and lighting direction estimates under conditions

where many estimates would account for the image data equally well. We show how a scene

hypothesis which accounts less well for image data can be more likely. This method also applies

to other vision problems, such as motion [22] and stereo [65].

We motivate our approach in the remainder of the introduction. In Section 2 we derive the scene

probability equation, the conditional probability for a scene interpretation given the observed

visual data. Then we show the applications to shape from shading. Shorter reports of this

work include [21, 22].

1.1 Example

Di�erent shapes and re
ectance functions can explain a given image. Fig. 2 shows an example.

The image (a) may look like a cylinder (c) painted with a Lambertian re
ectance function (b)

(shown on a hemisphere). However, it could also have been created by the 
atter shape of (f),

painted with a shiny re
ectance function (e). If both interpretations account for the data, how

can we choose between them? We should use whatever information we have about their prior

probabilities, but we may not know those well [48].

We can distinguish between the two scene hypotheses if we imagine rotating them. The

Lambertian shaded image would change little for small rotations, Fig. 2 (d), while the shiny
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4image would change considerably, (g). Thus, for the Lambertian solution, for a large range of

object poses we would see the image of (a). For the shiny solution, we would see that image

over a smaller range of poses.

This also holds if we reverse the roles of the shiney and Lambertian objects, as shown in Figs. 3.

The image data, Fig. 3 (a), may look like a shiny cylinder, but, again, it can be explained by

either a Lambertian re
ectance function, shape (c) painted with the re
ectance function shown

in (b), or a shiny one, the shape (f) painted with (e). Note that the shape for the Lambertian

function is taller than that of the shiny re
ectance function. When we rotate both shapes,

in (d) and (g), it is the Lambertian image, (d), which changes more than the shiny one (g),

because of the parallax induced as the tall shape moves back and forth.

Thus in each case the shape and re
ectance functions which correspond to our perception

of the image create a more stable image under imagined rotations of the rendered scene. A

small image derivative with respect to object orientation means that the image will look nearly

the same over a relatively large range of object poses. If all object orientations are equally

probable, then the probability of an object is proportional to the range of angles over which it

looks nearly the same as the image data. We will use a measurement noise model to specify

what it means for two images to \look nearly the same". In our analysis, the image derivatives

will arise from expanding the image in a Taylor series in the generic view variable.
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(a)

 

(b)
(c)  

(d)

 

(e)
(f)  

(g)

Figure 2: The image (a) appears to be a cylinder (c) painted with a Lambertian re
ectance

function (b) (shown on a hemisphere). However the 
atter shape of (f) and a shiny re
ectance

function (e) also explain the data equally well. We can distinguish between the competing

accounts for (a) by imagining rotating each shape. Images of each shape at three nearby orien-

tations are shown in (d) and (g). We see that the image made assuming a Lambertian re
ectance

function (b) is more stable than that made assuming a shiny re
ectance function (e). The re-


ectance function of (b) provides more angles over which the image looks nearly the same. If

all viewpoints are equally likely, and the shapes and re
ectances of (b-c) and (e-f) are equally

likely to occur in the world, then (b-c) is a more probable interpretation than (e-f).
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(a)

 

(b)
(c)  

(d)

 

(e)
(f)  

(g)

Figure 3: The image, (a), can be accounted for in two di�erent ways. The shape (c) and

the Lambertian re
ectance function shown in (b) will create the image (a), as will the shape

(f) and a shiny re
ectance function (e). We can distinguish between the shiny and Lambertian

explanations for (a) if we imagine rotating each shape. The greyscale images show each shape at

three di�erent orientations. The image made from the shiny re
ectance function, (e), changes

only a little, while the parallax caused by the rotation of the tall shape of the Lambertian

solution causes a larger image change. The re
ectance function of (e) provides more angles over

which the image looks nearly the same. If all viewpoints are equally likely, and the shapes and

re
ectances of (b-c) and (e-f) are equally likely to occur in the world, then (e-f) is more probable

than (b-c). In Section 2 we make this precise.
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72 The Scene Probability Equation

In this section we derive the probability densities for scene parameters given observed data.

Let y be a vector of observations (boldface symbols will indicate vectors). This can be image

intensities, or measures derived from them, such as spatial or temporal derivatives or normal

velocities. For simplicity, we will call this \the image".

Let the vector � be the scene parameters we want to estimate. This vector can describe, for

example, the object shape and re
ectance function or the image velocities.

Let x be an M dimensional vector of the generic variables. These are the variables over which

we will marginalize. For the example of Section 1.1 this was the object pose angle. Generic

variables can be, for example, viewpoint position, object orientation, or lighting position. The

probability density of x, Px(x), will typically be uniform, Px(x) = k, but it need not be. (The

notation P
a
(a) denotes the probability density function on the variable a as a function of a.

For brevity, we omit the subscript for conditional probability functions.)

The scene parameters � and generic variables x determine the ideal observation (image), ~y,

through the \rendering function", f :

~y = f(x; �) (1)

For the cylinders of Section 1.1 the rendering function was the computer graphics calculation

which gave the image as a function of surface shape, �, and incident light angle, x.

We postulate some measurement noise, although we will often examine the limit where its

variance goes to zero. The observation, y, is the rendered ideal image ~y plus the measurement

noise, n:

y = ~y+ n: (2)

Let Pn(n) be the probability density function of the noise. We will assume that the measure-

ment noise is a set of Gaussian random variables with mean zero and standard deviation �.

Here we assume the noise is identically distributed, but we extend the results to non-identical

distributions in Section 4.1. Thus

Pn(n) =
1

(
p
2��2)N

exp
�knk2
2�2

; (3)

where N is the dimension of the observation and noise vectors and knk2 = n�n . For lim� ! 0,

the noise term allows us to examine the local behavior of the rendering function. For �nite �,

it allows us to handle noisy or uncalibrated images.
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8The posterior distribution, P (�;x j y), gives the probability that scene parameter � (e.g.

shape) and generic variable x (e.g. light direction) created the visual data y (the image).

From P (�;x j y), we will �nd the posterior probability P (� j y).

We use Bayes' theorem to evaluate P (�;x j y):

P (�;x j y) = P (y j �;x)P�(�)Px(x)
Py(y)

; (4)

where we have assumed that x and � are independent. The denominator is constant for all

models � to be compared.

To �nd P (�;x j y), independent of the value of the generic variable x, we integrate the joint

probability of Eq. (4) over the possible x values:

P (�jy) = P�(�)

Py(y)

Z
P (y j �;x)Px(x)dx: (5)

P (y j �;x) is large where the scene � and the value x give an image similiar to the observation

y. Equation (5) integrates the area of x for which � roughly yields the observation y.

For our noise model,

P (y j �;x) = 1

(
p
2��2)N

e
�ky�f (x;�)k2

2�2 : (6)

For the low noise limit, we can �nd an analytic approximation to the integral of Eq. (6) in

Eq. (5). We expand f(x; �) in Eq. (6) in a second order Taylor series,

f(x; �) � f(x0; �) +
X
i

f 0i [x� x0]i +
1

2

X
i;j

[x� x0]i f
00
ij [x� x0]j ; (7)

where [�]i indicates the ith component of the vector in brackets, and

f 0i =
@f(x; �)

@xi
jx=x0 ; (8)

and

f 00ij =
@2f(x; �)

@xi@xj
jx=x0 : (9)

We take x0 to be the value of x which can best account for the image data for a given �; i.e.,

the x for which ky � f(x; �)k2 is minimized. The derivatives f 0i and f 00ij must exist, so this

approximation does not apply to non-di�erentiable image representations.

Using Eqs. (6){(9) to second order in x � x0 in the integral of Eq. (5) yields the posterior

probability for the scene parameters � given the visual data y (see Appendix A):

P (� j y) = k exp (
�ky� f(x0; �)k2

2�2
) [P�(�)Px(x0)]

1p
det(A)

(10)

= k (�delity) (prior probability) (genericity);
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9where the i and jth elements of the matrix A are

Aij = f 0i � f 0j � (y� f(x0; �)) � f 00ij : (11)

We call Eq. (10) the scene probability equation. It has two familiar terms and a new term. The

term exp(
�ky�f(x0;�)k2

2�2
) penalizes scene hypotheses which do not account well for the original

data (hypotheses � for which the squared di�erence of f(x0; �) from the image data y is large).

We call this the image �delity term. (This may also be called the \likelihood of x0 and � with

respect to y"). The prior probability term P�(�) came from Bayes' law and incorporates prior

assumptions. These two terms (the prior and a squared error term) are familiar. 1p
det(A)

, is

the new term, arising from the generic view assumption. If the rendered image changes quickly

with the generic view variables, the image derivatives of Eq. (11) will be large. Then the generic

view term 1p
det(A)

will be small, causing the scene hypothesis � to be unlikely. This 1p
det(A)

term quanti�es our intuitive notion of generic view, and we call it the genericity term. The

scene probability equation gives the probability that a scene interpretation � generated the

visual data, y, based on �delity to the data, prior probability, and the probability that the

scene would have presented us with the observed visual data.

We have combined the constants which do not depend on � into the normalization constant

k. We usually examine relative probabilities; then k doesn't matter. If the model accounts

exactly for the image, then y� f(x0; �) = 0 and the second derivative term of Eq. (11) can be

ignored. Even if y 6= f(x0; �), f(x0; �) may di�er from y through random noise in a way which

is uncorrelated with the image. Then the dot product of the second derivatives are likely to

be zero [55]. In many cases it is straightforward to calculate the value x0 in f(x0; �).

The approach of Section 4.2 handles cases where the matrix A in the denominator of the

genericity term is not of full rank. In general, there will be only one or few generic variables,

so the dimensionality (M�M) of the matrixA is low. We derive the scene probability equation

for generic object pose in 3-d in Appendix B.

The quanti�cation of the genericity of a view in Eq. (10) follows established techniques in

Bayesian statistics. The matrix A is called the conditional Fisher information matrix [20, 4].

It is used to approximate the likelihood locally as a Gaussian [20, 34, 10] and can be used in

integration over a loss function or in marginalization [44, 4]. For example, Box and Tiao [9]

employ this approximation when they integrate out nuisance parameters from a joint posterior,

as we have done here. Gull [27] calls 1p
det(A)

the Occam factor and he, Skilling [58], and

MacKay [46] use it as we have here and in other ways.

The case of only one generic variable and ky � f(x0; �)k = 0 shows the role of the image
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10derivatives more clearly. Then the scene probability equation becomes:

P (� j y) = c exp (
�ky� f(x0; �)k2

2�2
) P�(�)

1qP
i(

@fi(x;�)

@x
jx=x0)

2

; (12)

The probability of a parameter vector � varies inversely with the sum of the squares of the

image derivatives with respect to the generic variable.

The scene probability densities in Eqs. (10) and (12) are the crux of a Bayesian analysis. Once

P (� j y) is known, the best estimate for � can be found using a number of standard criteria

of merit [49]. The parameter vector which minimizes the expected squared error, �MMSE, is

the conditional mean of �:

�MMSE =

Z
P (� j y) � d�: (13)

The maximum a posteriori (MAP) estimate is the � which maximizes the conditional proba-

bility,

�MAP =
argmax

�
P (� j y): (14)

Alternatively, one can pass a representation of the entire probability density function P (� j y)
on to a higher level of processing.

Including the generic view term provides a better statistical model of the world. Using it should

increase the accuracy of scene estimates. Starting from this framework, the next research

direction is to develop algorithms which �nd the best �. Since the generic view term models

a regularity that exists in the world, including it may give more powerful and accurate vision

algorithms.
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113 Shape from Shading Examples

We apply the scene probability equation to some problems in shape from shading. Given

a shaded image, lighting conditions and the re
ectance function, there are many algorithms

which can compute a shape to account for the shaded image; see [30, 31] for reviews.

Most shape from shading algorithms require speci�cation of the lighting and object surface

characteristics. There are a number of methods that can infer these given more than one

view of the object [33, 64, 26, 50]. Finding the object shape from a single view without these

parameters is not a solved problem. Methods have been proposed to estimate light source

direction or overall albedo, assuming Lambertian surfaces [51, 43, 66]. Brooks and Horn [13]

proposed a more general scheme that iterated to �nd a shape and re
ectance map that could

account for the image data.

However, accounting for image data is not enough. For some classes of images, many shapes and

re
ectance functions can account equally well for an image (although some images which are

impossible to explain by Lambertian shading have been found, [32, 12]). An in�nite number of

surface and light source combinations can explain regions of 1-dimensional intensity variations,

since the solution just involves a 1-dimensional integration. The rendering conditions of \linear

shading" [53] can be invoked to explain any image, as we discuss later. Thus, to explain a

given image, one must choose between a variety of feasible surface shapes, re
ectance functions

and lighting conditions.

To make such choices, one could invoke preferences for shapes or re
ectance functions. Some

shape from shading algorithms do this implicitly by using regularizing functionals. However,

these preferences may not be known well. The scene probability equation enables one to use

the additional information provided by the generic view assumption to choose between shapes

and re
ectance functions, lessening the reliance on the prior assumptions about shapes or

re
ectance functions.

We have not developed a shape from shading algorithm which uses the scene probability

equation directly. Rather, we will use existing shape from shading algorithms [5, 53] to generate

hypothesis shapes and use the scene probability equation to evaluate their probability. Future

research can incorporate the scene probability equation, or an approximation to it, directly

into a shape from shading algorithm.
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123.1 Re
ectance function

We apply the scene probability equation, Eq. (10), to the 1-dimensional examples of Section 1.1,

shown again in Fig. 5 (a) and (c). This will allow us a principaled way to distinguish between

re
ectance functions that account equally well for the image data.

Our observation y is the image data. The parameter vector � we wish to estimate is the shape

and re
ectance function of the object. We use a two variable parameterization of re
ectance

functions, a subset of the Cook and Torrance model [16]. The parameters are surface roughness,

which governs the width of the specular highlight, and specularity, which determines the ratio

of the di�use and specular re
ections. Fig. 4 gives a visual key.

We want to evaluate the probability P (� j y) for each re
ectance function in our parameterized

space. A shape exists for each re
ectance function which could have created the 1-d images

of Fig. 5 (a) and (c). For this example, we will assume a uniform prior for the re
ectance

functions and shapes, P�(�) = k. We used a shape from shading algorithm [5] to �nd the

shape corresponding to each re
ectance function. The boundary condition for the shape from

shading algorithm was uniform height at the top edge of the image. For this image with one-

dimensional intensity variations, the rendered shape accounts for the image data exactly, and

the �delity term of Eq. (10) for P (� j y) is 1.

Now we consider the genericity term of the scene probability equation, the denominator of

Eq. (12). We will use both the vertical rotation of the object and the light position as the

generic variables (the result for the case of generic vertical rotation alone is similar). We need

the derivative of the image intensity I(X;Y ), at each positionX , Y with respect to the rotation

angle, � and light position. We assume orthographic projection. The � derivative is a special

case of Eq. (27) of Appendix C,

dI

d�
=

@I

@Y
Z +

@m

@q
(1 + q2); (15)

where q = @Z
@Y

, Z is the surface height, and m is the re
ectance map. We have suppressed the

X and Y dependence in Eq. (15); by @m
@q

we mean
@m(p;q)

@q
jq=q(X;Y ).

We calculated numerically the image derivative with respect to light position. For the z value

of the center of rotation we used the value which minimized the squared derivative of the image

with respect to object rotation angle, see Appendix B.

Using the above in the scene probability equation, we plot in Fig. 5 (b) and (d) the probability

that each re
ectance function generated the images of (a) and (c). Note that for each image,

the high probabilities correspond to re
ectance functions which look (see Fig. 4) more like the
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13material of the image patches in Fig. 5 (a) and (c). We have evaluated the relative probability

that di�erent re
ectance functions created a given image. Note this was done from a single

view and for a case where the re
ectance function is otherwise completely unknown.

roughness
0.07   0.11   0.19   0.3    0.5

0.0     0.25    0.5    0.75   1.0
specularity

Figure 4: Key to re
ectance function parameters of Fig. 5. Re
ectance functions are displayed

as they would appear on a hemisphere, lit in the same way as Fig. 5 (a) and (c). The ratio of

di�use to specular re
ectance increases in the vertical direction. The surface roughness (which

only a�ects the specular component) increases horizontally. The sampling increments are linear

for specularity and logarithmic for roughness.
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Figure 5: (a) Input image. (b) Probability that image (a) was created by each re
ectance

function and corresponding inferred shape. The probabilities are highest for the re
ectance

functions which look like the dull cylinder. See Fig. 4 for a visual guide to the re
ectance

function parameters of plots (b) and (d). (c) Input image. (d) Probability that (c) was created

by each re
ectance function and corresponding shape. The probabilities are highest for the

re
ectance functions which look like the shiny cylinder. All re
ectance functions can account

for the image data equally well and were assumed to be equally probable. The probability

distinctions between re
ectance functions came from the genericity term of the scene probability

equation.
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153.2 Generic Light Direction

The case of linear shading [53] is good for illustrating the bene�ts of this generic view approach.

Under linear shading, we assume that the image intensities I are linearly proportional to the

surface slopes p and q:

I = k1 p+ k2 q: (16)

This equation approximates natural re
ectance functions under conditions of shallow surface

slopes and shallow illumination, or of a broad, linearly distributed light source. Arctan(k1; k2)

tells the direction of the light, �l, and
q
k2
1
+ k2

2
is proportional to the product of lighting

strength and surface re
ectance. The inferred surface slopes scale inversely with
q
k2
1
+ k2

2
.

Without calibration information, k1 and k2 are unknown.

Pentland [53] has shown that a linear transformation relates the image I to a surface for which

the slopes satisfy Eq. (16) above. Thus for any choice of k1 and k2, not both zero, we can

�nd a surface which accounts for the observed image, I , by applying the appropriate linear

transformation to it. Thus, assuming linear shading conditions, any assumed lighting direction

and strength can explain an image by Eq. (16), each using a di�erent inferred shape. How

can we choose which shape and lighting parameters are best? The assumption of generic light

direction provides a criterion.

 

(a)

shapes for different assumed light directions

1

2

3

4

5

(b)

Figure 6: (a) Perceptually, this image has two possible interpretations. It could be a bump, lit

from the left, or a dimple, lit from the right. (b) Mathematically, there are many possible inter-

pretations. For a su�ciently shallow incident light angle, if we assume di�erent light directions,

we �nd di�erent shapes, each of which could account for the observed image.

Suppose the visual data is the image of Fig. 6 (a). Perceptually, there are two possible in-

terpretations: it could be a bump, lit from the left, or a dimple, lit from the right. Yet

mathematically, using the linear shading equation, there are many interpretations to choose
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16from. The image could arise from any of the shapes shown in (b), under the proper lighting

conditions, which are indicated by the lighting direction arrow shown next to each shape. How

should one choose between these competing explanations?

Without considering the generic variables, there are two criteria to evaluate an interpretation

from the terms of Bayes rule for the posterior probability, Eq. (4): how well it accounts for the

observed data, and the prior probability that the interpretation would exist in the world. If

each shape accounts equally well for the image data, we are left with choosing based on prior

probabilities. We could arbitrarily decide that we like bump shapes more than tube shapes

but we may have no grounds for that. Such a decision could lead to an incorrect interpretation

for some other image. What is missing?

For the three tube-like shapes shown, there is a suspicious alignment between the inferred

surface structure and the assumed light direction. We would like to include this coincidence in

our probability calculation. Fig. 6 (c) and (d) give an intuition for how the image derivatives

of the scene probability equation Eq. (10) measure the accidentalness of the surface and light

direction alignments. If we imagine wiggling the assumed azimuthal light direction slightly,

we see that for the shape of (c), the image changes quite a bit. For the shape of (d), we can

observe the image of (a) over a much broader range of assumed light directions. There are

more opportunities for the shape of (d) to have presented us with the image (a) than there are

for the shape of (c).

For each assumed lighting direction (at constant lighting strength), we �nd the shape � which

would create the observed image, y, Fig. 6 (a), using the linear shape from shading algorithm

of [53] and the boundary conditions described therein.

To evaluate P (� j y) in the scene probability equation, we need to �nd
@fi(x;�)

@x
jx=x0=

@I
@�l

.

From Eq. (16) and the de�nition of �l, we have

@I

@�l
= �k2p+ k1q: (17)

Using the above Eq. (17) in the scene probability equation Eq. (10) gives the probability for

each candidate shape, plotted in Fig. 6 (e). The bump and dimple shapes, which assume light

coming from the left or right, are most likely, in agreement with the appearance of (a). We

model variable contrast sensitivity e�ects for this example in Sect. 4.1.

Figure 7 shows the probabilities of shapes reconstructed assuming di�erent light directions

for an image of a nickel, assuming linear shading and the boundary conditions of [53]. The

most probable of those shapes assumes a light direction that is consistant with apparent light
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17direction in the image.
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shape 3 image

assumed
light direction

(c)

shape 5 image

assumed
light direction

(d)

2

0.30
0.23

3

1.0 1.0

1 4 5

0.30

(e)

Figure 6: : : :continued. Some of the shapes would require a coincidental alignment between the

light direction and the inferred structure. (c) For the tube shape shown here, only a small range

of light angles yields the observed image. (d) For the bump shape, a much larger range gives the

observed image. (e) The scene probability equation which we will derive in section 2 allows us

to quantify the degree of coincidence in the alignment of surface structure and light direction,

by di�erentiating the observed image with respect to the assumed light direction. The resulting

probabilities are shown here for the 5 di�erent shapes. The results favor shapes which assume

that the light comes from the left or right, in agreement with the perceptual appearance of (a).

Reprinted with permission from Nature [22]. Copyright 1994 Macmillan Magazines Limited.
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(a)

Polar plot of shape probability
as function of

assumed light direction

(b)

5 1 0 1 5 2 0

re
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log2 (vertical scale)

actual
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Figure 7: (a) Plaster mold from a nickel. We found a shape which yields the image (a) for

various assumed azimuthal light directions. We assumed linear shading of constant lighting

strength, with the boundary conditions of [53]. (b) shows the probability for each shape and

lighting combination from the genericity term of the scene probability equation, Eq. (10), under

the assumption of generic azimuthal light direction. Each shape was assumed to be a priori

equally probable. The probabilities are plotted as a function of the assumed light direction,

showing that the shapes reconstructed assuming the correct light direction are more probable

than those that were reconstructed assuming other light directions. (c) Under the linear shading

approximation, many di�erent vertical scalings can account for a given image, each assuming a

di�erent lighting strength. We inferred shapes which account for (a), using the same boundary

conditions as before. (c) shows the probability as a function of vertical scale for each of the

shapes considered, obtained from the genericity term of the scene probability equation. While

broadly tuned, this distribution agrees well with the actual height of the nickel (in terms of the

picture width).
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203.3 Vertical Scale

We can use the assumption of generic object orientation to estimate the vertical scale in linearly

shaded images where the scale is otherwise indeterminate. The intuition is as follows. If the

object were very 
at, it would require a very bright light at just the right angle to create the

observed image. Any small change in the object pose would cause a large change in the image

intensities, and that 
at object would be unlikely, given the observed image. On the other

hand, if the object were very tall and lit by a weak light, then, if the object were rotated, the

image would change signi�cantly because of parallax. In between those extremes, there should

be a most probable lighting strength and corresponding shape.

The scene probability equation quanti�es that intuition. We �rst need the derivatives of

the observed image with respect to the generic variables. For the case of object pose in 3-

dimensions, the generic variable is the rotation angle about all possible axes of rotation. We

integrate over all possible rotation axes, as described in Appendix B. The resulting scene

probability equation involves the image, the surface estimate and its spatial derivatives, and

the re
ectance map and its derivatives. The rotation origin is chosen to minimize the squared

image derivative with respect to the rotation, see Appendix B.

Fig. 7 (c) shows the resulting probability tuning for vertical scale. In agreement with our

intuition, very large and very small vertical scales are both unlikely. The distribution agrees

well with the actual height (relative to picture widths) of the nickel. Note, however, that the

tuning for vertical scale is very broad; the width at half maximum represents a factor of 64 in

vertical scale. Nonetheless that is more information than we had before.
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213.4 Why the Prior Probability Is Not Enough

Fig. 8 shows an example where both the �delity and prior probability terms favor a percep-

tually implausible explanation. The genericity term alone favors the perceptually plausible

explanation and overwhelms the other two. Fig. 8 (a) shows an image, and (b1) and (c) are

two possible explanations for it. (b1), lit at a grazing angle from the light direction shown

above it, yields the image (d). (c), lit from a di�erent direction, yields (e). (b2) shows the

shape (b1) with the vertical scale exaggerated by a factor of 7. (We made this example by

construction. Gaussian random noise at a 7 dB signal to noise ratio was added to (e) to make

(a). (b1) was found from (a) using a shape from shading algorithm, assuming constant surface

height at the left picture edge [5]. We evaluated the probabilities of (f) assuming both generic

object orientation and generic azimuthal lighting direction. The actual noise variance was used

for �2 in the �delity term of Eq. (10), although a wide range of assumed variances would give

the results we describe. The re
ectance function was Lambertian.)

Perceptually, the shape Fig. 8 (c) seems like a better explanation of (a) than the shape (b1),

even though it doesn't account for all the noise. However, the �delity term of Eq. (10) favors

the 
at interpretation, (b2), since it accounts better for the noisy details of (c). In a Bayesian

or regularization approach, without considering the genericity, the only term left to evaluate

the probability of an interpretation is the prior probability. A typical prior is to favor smooth

surfaces, which would again favor the shape (b1), since it is much smoother than (e), as

measured by the squared second derivatives of the surfaces.

We need some way to penalize the precise alignment between the light source and the object

that is required to get the image (d) from the shape (b1). The genericity term of the scene

probability equation provides this. Because the image (e) is more stable with respect to object

or lighting rotations, (c) has a higher overall probability than the shape (b1).

Whether or not the smooth shape (b1) would be more likely to exist in the world than the

shape (c), it would be very unlikely to present the viewer with the image (d). Our approach

takes both the prior probabilities and the probabilities of the viewing conditions into account

to better model the conditional probability of each shape, given the image data.
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(a)

light direction light direction

(b1) (b2) (c)

Figure 8: An example showing the need for the genericity term in Eq. (10). We compare the

probability densities of two explanations for the image in (a). The surface (b2), lit from the

left, yields the image (d). ((b2) shows the same shape at 7x vertical exaggeration). Shape (c)

is another possible interpretation. When lit from above, it yields (e), a less faithful version of

the original image. The image �delity term of Eq. (10) favors the shape (b1). The commonly

used prior probability of surface smoothness [54, 60] also favors the shape (b1). However, the

shape (b1) must be precisely positioned with respect to the light source to create the image

(d). The genericity term of Eq. (10) penalizes this. Image (e) is stable with respect to lighting

and object movements, giving a higher overall probability to shape (c), plotted in (f) without a

surface smoothness prior.
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Figure 8: : : : continued.

MERL-TR-93-15a February 1996



244 Discussion

4.1 Other Image Error Metrics

The assumed observation noise model sets the penalty for di�erences between the rendered

scene model and the observed data. The identically distributed gaussian noise model of Eq. (3)

corresponds to a squared error penalty for di�erences between images. While this may be

adequate for many applications, it is not a good model of the human visual system's response

[57]. Our Bayesian framework can accomodate a di�erent image error metric.

Viewers are more sensitive to intensity changes in regions of low image contrast. We will

assume that the sensitivity for contrast detection is proportional to the local contrast, a model

based on Weber's Law [17]. (Other local contrast response models [2, 15] could be used.) This

fractionally scaled approach is consistent with the multiplicative impact on image intensities

of changes in lighting intensity or small changes in surface slope.

It is convenient to model the contrast sensitivity di�erences as variations in the strength of the

observation noise. We generalize our observation noise model to

Pn(n) =
1

(
p
2��2)N j�j12

exp
�(y� f(x; �))T ��1 (y� f(x; �))

2�2
; (18)

where �2 is now a scale factor for a noise covariance matrix �. We calculate the contrast as

the square root of the local image variance �(I2)� (�I)2, where overbar denotes a local spatial

average and I are the image intensities. We then use � = diag[ �(I2)� (�I)2], where diag places

the elements of an N dimensional vector along the diagonal of an N by N matrix.

Following the steps of Eqs. (5){(9) with the noise model of Eq. (18) yields a modi�ed scene

probability equation,

P (� j y) = k exp (
�(y� f(x0; �))

T��1(y� f(x0; �))

2�2
) [P�(�)Px(x0)]

1p
det(A)

(19)

where the i and jth elements of the matrix A are

Aij = f 0i�
�1 f 0j � (y� f(x0; �))�

�1 f 00ij : (20)

In both the �delity and genericity terms, squared image di�erences and derivatives are now

scaled by the reciprocal of the local contrast variance.

We use the example of Fig. 6 to illustrate the usefulness of these modi�cations. On perturb-

ing the light source direction, the tube-like shapes cause image changes where they are very
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25detectable, in low-contrast regions of the image. Equations (19) and (20) will provide extra

penalty for such image changes.

Fig. 9 (a) shows the input image. (b) is the local image variance. It is brightest near the center

of the blob, as expected. The spatial averaging used was a 2.5 pixel standard deviation gaussian

blur (the image is 128 x 128 pixels). The dynamic range of the local noise variance image was

restricted to be 100 to 1. (g) Shows the calculated probabilities for each shape, based on the

contrast sensitivity model of Eq. (19). Note that the tube-like shapes are penalized much more

with this varying contrast sensitivity model than they were in the calculation of Fig. 6, which

assumed uniform contrast sensitivity.

(a) (b)

2 31 4 5

1.0 1.0

0.10 0.08 0.10

(c)

Figure 9: The e�ect of modeling contrast dependent noise sensitivity. (a) Input image. (b) As-

sumed observation noise variance, calculated from local image variance. This noise distribution

will allow us to model contrast dependent sensitivity to image changes. (c) Resulting posterior

probabilites. Note that the tube-like shapes are now penalized further than they were with the

contrast independent noise sensitivity model of Fig. 6 (e). Perturbing the light source position

with shapes 2 { 4 causes the image to change in regions of low{contrast, which the sensitivity

to changes is assumed to be high.
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264.2 Relationship to Loss Functions

The loss functions of Bayesian decision theory [4] provide an alternate interpretation of the

genericity term in the scene probability equation. This analysis has been described by [24, 23,

65].

We include the generic variables x as well as the scene parameters � into an augmented scene

parameter variable, z. A loss function L(z;~z) speci�es the penalty for estimating ~z when the

true value is z. Knowing the posterior probability, one can select the parameter values which

minimize the expected loss for a particular loss function:

[expected loss] =

Z
[posterior] [loss function] d [parameters]

R(~zjy) = �C
Z
[exp [� �

2�2
ky� f(z)k2] Pz(z)] L(z;~z) dz; (21)

where we have substituted from Bayes' rule, Eq. (4), and the noise model, Eq. (3). The optimal

estimate is the parameter ~z of minimum risk.

We have not specied what loss function is to use with the posterior probability of the scene

probability equation, Eq. (10). For this comparison, we will assume MAP estimation, Eq. (14),

where we choose the scene parameters � which maximize the posterior probability. The com-

parison for other estimators is analogous.

The integral to be minimized for the expected loss in Eq. (21) can be made equivalent to the

integral to be maximized for the marginal posterior in Eq. (5). We must choose the proper loss

function: L(z;~z) = ��(�� ~�) . This means we don't care at all about the generic variables x,

but we care about the scene parameter components, �, to in�nite precision. This loss function

is plotted in Fig. 10 (b). Figure 10 (a) explains the loss function plot format. MAP estimation

using the marginal posterior after integrating out the generic variables is equivalent to �nding

the parameter of minimum risk using the loss function of Figure 10 (b).

Figure 10 (c) shows another possible form for the loss function, allowing di�erent parameters

to be estimated with di�erent requirements for precision. Generic variables could be estimated

with coarse precision, and scene parameters with high precision. See [11, 23, 24, 65] for

examples of this approach. An advantage is that it avoids dividing the world parameters

into two groups, generic variables and scene parameters. A disadvantage is that integration

over scene parameters, as prescribed by the loss function of (c), might be di�cult for scene

parameters of high dimensionality.

MERL-TR-93-15a February 1996



27

loss

estimate

true value

(a)

ge
ne

ric
va

ria
bl

es

sceneparameters

(b)

0

0.25

0.5

0.75

1

0

25

.5

5

1

(c)

Figure 10: Loss function interpretation of generic viewpoint assumption. (a) shows the general

form for a shift invariant loss function. The function L(z;~z) describes the penalty for guessing

the parameter ~z when the acutal value was z. The marginalization over generic variables of

Eq. (5) followed by MAP estimation is equivalent to using the loss function of (b). (c) Shows

another possible form for the loss function, discussed in [11, 23, 24, 65].

5 Summary

The generic view assumption is commonly used to label scene interpretations as either \generic"

or \accidental" in a world of geometrical objects. Here, we extend this to a complementary,

continuous domain by assigning relative probabilities to di�erent scene interpretations.

The visual input can be greyscale images or other visual data. We divide the parameters into

two groups: scene parameters, and generic variables. Scene parameters are the parameters

such as shape or velocity that we want to estimate. We marginalize over the generic variables,

which can include lighting direction, object orientation, or viewpoint.

We apply this in a Bayesian framework. The prior probabilities for generic variables are

typically well-known and simple. We integrate the joint posterior distribution over the generic

variables to gain extra information about the scene parameters. We use a commonly employed

low-noise approximation to obtain an analytic result. The resulting scene probability equation

gives the probability of a set of scene parameters, given an observed image. It has three terms:

a �delity term, which requires that the scene parameters explain the observed visual data;

the prior probability, which accounts for prior expectations of the scene parameters;

the genericity term, which quanti�es how accidental our view of a particular scene is.

It re
ects the probability that a given scene would have presented us with the observed

image. This term occurs in Bayesian analysis applied to other domains. Including its
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28 e�ects may lessen the reliance on the prior probabilities, for example, in choosing between

explanations which account for the image data equally well.

We show various applications to shape from shading. The scene probability equation gives

the probability of di�erent shape and re
ectance function combinations to explain a given

image. The scene probability equation, Eq. (10), gives a principled way to select shape and

light direction or re
ectance function calibration in cases where these are otherwise ambiguous.

The genericity term in the scene probability is important; one can have a shape from shading

solution which is faithful to the data, but unlikely, and one which is less faithful but more

likely. We draw connections between the scene probability equation and the loss functions of

Bayesian decision theory.

This approach may have many applications in vision. The scene probability equation derived in

this paper could be incorporated into algorithms of, for example, shape from shading, motion

analysis, and stereo. This may result in vision algorithms of greater power and accuracy.
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33A Asymptotic expansion of marginalization integral

We want to examine the asymptotic behavior of the integral of Eq. (6) in Eq. (5) when the

observation noise covariance becomes small, or 1
�
becomes large. For an integral of the form

B(�) =

Z
exp [���(x)] g(x) dx; (22)

one can show [8] that the leading order term in an asymptotic expansion for large � is:

B(�) �
e���(x0)q

jdet(�xixj(x0))j
(
2�

�
)
n
2 g(x0); (23)

where x0 minimizes �(x) and n is the dimensionality of x.

We can put our integral into the form of Eq. (22) if we identify g(x) = Px(x), � = 1

�
, and

�(x) =
1

2�2
k(y � f(x; �))k2: (24)

Substituting these into Eq. (23) gives Eq. (10). Twice di�erentiating �(x) in Eq. (24) gives

Eq. (11).

B Scene probability equation under general object pose

We want to �nd the scene probability P (� j y) for a shaded image under the condition of

general object pose. Here the re
ectance mapm(p; q) and the shape Z(X;Y ) make up the scene

parameter �. (We use capitalX , Y , and Z for the Cartesian coordinates of the object surface).

The re
ectance map tells the image brightness as a function of object slopes p = @Z(X;Y )

@X
and

q = @Z(X;Y )

@Y
.

The generic variable is the rotation angle � about the unit vector rotation axis !̂. We assume

the prior probability density for rotation angle � is uniform and we integrate over all possible

axes, !̂. Equations (5) and (6) give

P (�jy) = k1P�(�)

Z
all unit !̂

Z
all �

e
�ky�f(!̂;�;�)k2

2�2 d!̂d�: (25)

The expansion of Appendix A gives

P (�jy) = k2P�(�) exp
�ky � f(�)k2

2�2

Z
all unit !̂

Z
all �

1p
f 0 � f 0 � (y� f(�)) � f 00

d!̂d�: (26)
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34where we have written f(�0 = 0; �) = f(�). For this treatment, we set (y � f(�)) � f 00 = 0, for

the reasons cited below Eq. (11).

We seek f 0 = dI
d�
. Given the surface height, Z and slopes p, q at each pixel, we want to �nd

the derivative of the image intensity I with respect to rotation in � about the unit vector !̂.

By straightforward manipulations we show in Appendix C that

dI

d�
= Q!X +R!Y + S!Z ; (27)

where !a is the a component of the unit vector !̂ and

Q =
@I

@Y
Z + pq

@m

@p
+ (1 + q2)

@m

@q

R = �
@I

@X
Z � pq

@m

@q
� (1 + p2)

@m

@p

S = Y
@I

@X
�X

@I

@Y
+ p

@m

@q
� q

@m

@p
: (28)

For brevity, we have suppressed the X and Y dependence of the symbols on both sides of

Eq. (28). By @m
@p

we mean @m(p;q)

@p
jp=p(X;Y ).

One can parameterize the direction of the unit vector !̂ by angle � in the X-Y plane, and

angle 
 with the Z axis. The integral over all !̂ of Eq. (26) is straightforward to evaluate

numerically in terms of dot products of the images Q, R, and S which appear in the square

root:

P (� j y) = k2P�(�) exp
�ky� f(�)k2

2�2

Z �

0

d�

Z
2�

0

d

sin(
)p

2��2kQ cos � sin
 +R sin � sin 
 + S cos
k2
:

(29)

If we add another generic variable, that of the light direction azimuthal angle  , we can follow

an analogous derivation scene probability equation. The result is

P (� j y) = k2P�(�) exp
�ky� f(�)k2

2�2

Z �

0

d�

Z
2�

0

d

sin(
)vuuut2��2 det

������
dI
d�

� dI
d�

dI
d�

� dI
d 

dI
d�

� dI
d 

dI
d 

� dI
d 

������

: (30)

Only dI
d�

is a function of � or 
 and numerical integration over � and 
 is straightforward.

Finally, we need to specify the origin, X0, Y0, Z0 of the object's rotation. We set X0 = Y0 = 0,

the center of the image. For the Z origin, we want a value which doesn't introduce spurious

image change because of the origin placement. We take Z0 to be that value which minimizes

the average squared derivative over all orientations for !Z = 0. That is the Z0 which minimizes

X
pixels

(Q2 +R2) =
X

pixels

(
@I

@Y
(Z � Z0) + pq

@m

@p
+ (1 + q2)

@m

@q
)2 +

MERL-TR-93-15a February 1996



35
(
@I

@X
(Z � Z0) + pq

@m

@q
+ (1 + p2)

@m

@p
)2: (31)

The dependence on the variables X and Y has been suppressed. Minimizing this quadratic

equation with respect to Z0 gives

Z0 =
1P

pixels((
@I
@X

)2 + ( @I
@Y

)2)
(
X

pixels

@I

@Y
(
@I

@Y
Z + pq

@m

@p
+ (1 + q2)

@m

@q
) +

X
pixels

@I

@X
(
@I

@X
Z + pq

@m

@q
+ (1 + p2)

@m

@p
): (32)

C Image Derivatives for General Object Pose

Given the surface height, Z and slopes p, q at each pixel, we want to �nd dI
d�
, the change in

the image intensity with respect to rotation in the angle � about an axis !̂ under orthographic

projection. We use this result in Appendix B and in Section 3.1. The change in image intensity

comes from two e�ects:

1 the change in image intensity because a new surface element comes into view at the

position X , Y .

2 the change in image intensity due to the change in slopes p, q caused by the rotation.

The total derivative of the image intensity is the sum of those two changes,

dI

d�
= [

@I

@X

@X

@�
+
@I

@Y

@Y

@�
] + [

@I

@p

@p

@�
+
@I

@q

@q

@�
]: (33)

Consider the �rst term of Eq. (33). The desired image intensity change is the dot product of

the spatial gradient of the image with the projected velocity due to the rotation. The rotation

velocity is !̂ � r(X; Y ), where r(X; Y ) is the position vector of the point seen at X; Y . Its

velocity relative to the stationary observed image is �!̂ � r(X; Y ). Thus

@I

@X

@X

@�
+
@I

@Y

@Y

@�
=

@I

@X
(!ZY � !Y Z) +

@I

@Y
(!XZ � !ZX): (34)

Consider the second term of Eq. (33). To determine @p
@�

and @q
@�

we look at the change in the

local surface normal vector, n̂, under rotation and then relate that to the change in p and q.

From the de�nitions of p, q, and n̂, we have

p = �
nX

nZ

q = �
nY

nZ
; (35)
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36where n̂ = nX î+ nY ĵ + nZ k̂. For a rotation in angle � about the unit vector !̂, we have

dn̂

d�
= !̂ � n̂: (36)

If we di�erentiate Eq. (35) for p and q with respect to � and use Eq. (36) for the components

of dn̂
d�
, we �nd

@p

@�
= �

nZ(!Y nZ � nY !Z)� nX(!XnY � nX!Y )

n2Z
; (37)

and
@q

@�
= �

nZ(!ZnX � nZ!X)� nY (!XnY � nX!Y )

n2Z
: (38)

Using Eq. (35) in Eqs. (37) and (38) above we have

@p

@�
= pq !X � (1 + p2)!Y � q !Z ; (39)

and
@q

@�
= p !Z + (1 + q2)!X � qp !Y : (40)

Combining Eq. (34) for the �rst term of Eq. (33) with Eqs. (39) and (40) for the second we

have,

dI

d�
=

@I

@X
(!ZY � !Y Z) +

@I

@Y
(!XZ � !ZX) +

@m

@p
(pq!X � !Y (1 + p2)� q!Z) +

@m

@q
(p!Z + !X(1 + q2)� qp!Y ) (41)

where we have substituted @m
@p

= @m(p;q)

@p
jp=p(X;Y ) for @I

@p
(and similarly for q) in Eq. (33).

Grouping these terms by components of !̂ gives Eq. (28), as desired.
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