
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
CAMBRIDGE RESEARCH CENTER

Technical Report 93-14 July 1993

Randy B. Osborne

osborne@merl.com

Abstract

Speculative computing is a technique to improve the execution time of certain appli-
cations by starting some computations before it is known that the computations are
required. A speculative computation will eventually become mandatory (i.e. required)
or irrelevant (i.e. not required). In the absence of side e�ects irrelevant computations
may be aborted. However, with side e�ects a computation which is irrelevant for the
value it produces may still be relevant for the side e�ects it performs. One problem
that can result is the relevant synchronization problem wherein one computation re-
quires some side e�ect event (a \relevant synchronization") to be performed by another
computation, which might be aborted, before the �rst computation can make progress.
Another problem that can arise is the preemptive delay problem wherein a computation
that will perform some awaited side e�ect event is preempted by a computation whose
importance (e.g. priority) is less than that of computations waiting for the event. In
this paper we show how the sponsor model developed for speculative computation in
Multilisp can be extended to provide a novel solution to these two problems. The idea
is for the computation awaiting some action, such as the production of a value or the
release of a semaphore, to sponsor the computation or set of computations that will
perform the awaited action. This sponsorship ensures that the awaited action executes,
and executes with at least the waiter's level of importance. We show how to apply this
technique to solve the above problems for several producer/consumer and semaphore
applications. The idea extends naturally to other synchronization mechanisms.

To be published in Proceedings of the 1992 Parallel Symbolic Computing Workshop at M.I.T. in

Springer-Verlag Lecture Notes on Computer Science, November 1993.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonpro�t educational and research pur-
poses provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Mitsubishi Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment
of the authors and individual contributions to the work; and all applicable portions of the copyright notice.
Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to
Mitsubishi Electric Research Laboratories. All rights reserved.

Copyright c Mitsubishi Electric Research Laboratories, 1993
201 Broadway, Cambridge, Massachusetts 02139

Publication History:{

1. First printing, MN92-29, October 6, 1992. Presented at Parallel Symbolic Computing
Workshop at M.I.T.

2. Revision, MN92-29a, October 21, 1992

3. Revision, TR93-14, July 1993

Extending the Multilisp Sponsor Model July 1993 1

1 Introduction

Speculative computing is a technique to improve the execution time of appropriate applica-
tions by starting some computations before it is known that the computations are required.
A speculative computation will eventually become mandatory (i.e. required) or irrelevant
(i.e. not required). In previous work [Osb90a, Osb90b, Osb89] we presented a sponsor model
for speculative computation and demonstrated how this model adds expressive and compu-
tational power to Multilisp. However, there were many issues concerning side e�ects that
we did not consider, particularly in the context of aborting irrelevant computations. While
we are primarily interested in side e�ect-free applications (we believe side e�ects should be
used sparingly), there are many applications for which side e�ects add important expressive
power (see, for example, the discussion in Chapter 3 of [AS84]). Thus it is important to ex-
amine the issues with side e�ects. We restrict our scope in this paper to the issues involved
with intertask synchronization side e�ects by which we mean broadly any side e�ect that
can directly a�ect the progress of another task. What we choose to call intertask synchro-
nization depends on the granularity that makes sense in the situation at hand. At the �nest
granularity the only intertask synchronization is that performed by intertask synchroniza-
tion primitives such as the atomic change in the state of a lock or semaphore. At coarser
granularities, it might make sense to regard an object mutation within a critical section (it-
self guarded by intertask synchronization primitives) as an intertask synchronization. The
issues we explore in this paper are similar regardless of the atomicity grain size.

Our sponsor model supports the aborting and preempting of computation. In such an
environment two problems arise:

1. The relevant synchronization problem: a computationA requires some side e�ect event
(a \relevant synchronization") to be performed by another computation B before A
can make progress. However, B might be aborted, preventing progress of A. Thus
the synchronization performed by B is relevant with respect to A.

2. The preemptive delay problem: a computation C may be preempted by a computa-
tion D whose importance (e.g. priority) is less than the importance of other compu-
tations (E,F ,G,: : :) that are waiting for C to perform some side e�ect event. Con-
sequently the waiting computations E,F ,G,: : : may be delayed by a computation of
lessor importance.1 Preemptive delay is a problem in any environment with preemp-
tion, and is not restricted to speculative computation or our sponsor model. For
example, the preemptive delay problem was �rst examined by [LR80] in the context
of monitors.

To illustrate the relevant synchronization and preemptive delay problems we examine
�ve di�erent applications, three involving semaphores and two involving producer-consumer
synchronization. Three of the examples represent popular synchronization paradigms in

1The preemptive delay problem is often called the priority inversion problem (especially in real time
systems) when the importance is described by priorities.

Extending the Multilisp Sponsor Model July 1993 2

parallel computing while the other two illustrate speci�c points. For each example we
demonstrate a novel solution to these problems by extending our earlier sponsor model in
a natural way. In each case the idea is for the task waiting for a value or a semaphore to
sponsor the task or set of tasks that will produce the value or release the semaphore. This
sponsorship ensures that a producer task or a semaphore release task executes, and executes
with an importance which is at least the maximum importance of all the waiters. This
sponsorship idea for solving the relevant synchronization and preemption delay problems
generalizes to other synchronization paradigms.

1.1 Overview

Section 2 briey describes Multilisp and our sponsor model for speculative computation in
Multilisp. Section 3 illustrates the relevant synchronization and preemptive delay problems
by examining two producer-consumer and three semaphore applications. Section 4 solves
the problems with the examples in Section 3 within our sponsor model. Section 5 discusses
related work and Section 6 concludes the paper.

2 Background

2.1 Multilisp

Multilisp [Hal85] is a version of the Scheme programming language [IEE91] extended with
explicit parallelism constructs. Multilisp is based on a shared memory paradigm and in-
cludes all the side e�ects of Scheme.

(future exp) creates a task to evaluate exp and immediately returns a placeholder for the
result. This placeholder (known as a future) may be manipulated just as if it were the
result of evaluating exp. If a task T attempts a strict operation on such a placeholder (i.e.
an operation requiring the value represented by the placeholder), the task suspends until
the placeholder is determined with the result of evaluating exp. Task T is said to touch the
placeholder. We generalize this notion to say that task T touches the task evaluating exp.

(make-future) creates and returns an empty placeholder (future) without an associated
task. Such a placeholder is sometimes convenient for write-once synchronization.

(determine-future fut exp) explicitly determines the undetermined placeholder (future)
fut to the value of exp. It returns an unspeci�ed value. Each task created by a future ends
with an implicit determine-future. It is an error to determine (explicitly or implicitly) a
future more than once.

The following atomic operation is an extension of the set-car! mutator in Scheme. It
may be used for explicit inter-task synchronization | such as locks | as demonstrated by
the example in Section 3.3.

(rplaca-eq pair new old) performs the following eq check and possible swap atomically: If

Extending the Multilisp Sponsor Model July 1993 3

the car of pair is eq to old, the car of pair is replaced by new and pair is returned. If the
car of pair is not eq to old, nil is returned.2

Multilisp has the following semaphore constructs for explicit intertask synchronization:

(make-sema) makes and returns a free binary semaphore object.

(wait-sema sema) makes the semaphore sema busy if sema was free; otherwise, it suspends
and enqueues the executing task on the semaphore sema. These operations are indivisible.

(signal-sema sema) makes the semaphore sema free if no tasks are queued on sema; oth-
erwise, it dequeues and resumes one of the tasks enqueued on sema. These operations are
indivisible. Semaphore requests are queued for resumption in �rst-come-�rst-served (FCFS)
order.

See [Hal85] or [Osb89] for additional Multilisp constructs. For the purposes of this paper
Multilisp does not include Scheme's call-with-current-continuation. In the presence
of side e�ects, continuations pose some di�cult problems in Multilisp (see [KW90]).

2.2 Speculative Computation in Multilisp

In other work [Osb90a, Osb90b, Osb89] we developed a sponsor model for speculative com-
putation in Multilisp. Computation proceeds in this model by specifying both an expression
to be evaluated3 and a sponsorship source (a sponsor). Sponsorship is an abstraction of
machine resources. This sponsorship gives a means to control the allocation of resources
to computations, to favor mandatory computations over speculative ones and promising
speculative computations over less promising ones. This is the general sponsor model.

To date we have considered a special sponsor model subset. In this special sponsor model
sponsorship is associated with tasks and sponsors are agents which supply attributes | such
as priority | to tasks. Each task has zero or more sponsors which contribute attributes to
that task. The attributes contributed are combined according to a combining-rule to yield
the e�ective attributes of the task and these determine the resources allocated to that task.
Notable types of sponsors are:

� Toucher sponsors | When one task touches another, the toucher task sponsors the
touchee task with the e�ective attributes of the toucher task. Touch and determine
automatically trigger the addition and removal, respectively, of toucher sponsors.

� Controller sponsors | Controller sponsors receive sponsorship and actively distribute
it among the tasks in their control domain according to some built-in control strategy.

See [Osb90a] or [Osb89] for further details of this model.

2There is also an analagous rplacd-eq extension of Scheme's set-cdr! mutator.
3The environment for evaluation is the lexical environment in which the expression appears.

Extending the Multilisp Sponsor Model July 1993 4

We have extended Multilisp to include an initial subset of the special sponsor model in
which the only attributes are priorities. The e�ective priority at which a task runs is the
maximum of all the priorities contributed by the task's sponsors. Scheduling is preemptive
based on e�ective priority, except tasks with e�ective priority 0 (the minimum priority) are
not runnable; they are stayed. The computational state of a stayed task is retained (until
it becomes inaccessible and is garbage collected). Thus a stayed task may be restarted by
re-sponsoring the task so that the task's e�ective priority becomes greater than 0.

Of the many language extensions to Multilisp to implement this sponsor model subset
we discuss only those few that are pertinent to the discussion in this paper. See [Osb89,
Osb90b, Osb90a] for the full set of extensions.

(make-sponsor-class class-type) creates and returns a class object. A class is a collection of
tasks and a controller sponsor. We have implemented three types of classes | distinguished
by sponsor policy: sponsor-all, in which the class sponsor sponsors all the members of the
class, sponsor-any, in which the class sponsor sponsors an arbitrary member of the class,
and sponsor-max-priority, in which the class sponsor sponsors only the top e�ective priority
task in the class.

(add-to-class task class) atomically adds the task task to the class class and returns an
unspeci�ed value. (remove-from-class task class) atomically removes task from class and
returns task.

(make-future . class) creates and returns a placeholder (as described in Section 2.1 and
sponsors the class class (if speci�ed) with the maximum priority task blocked on the place-
holder. This sponsorship is removed when the placeholder is determined.

3 The Problem

3.1 Example 1: Simple Mutual Exclusion | serializers

In a semaphore serializer, each task wishing to serialize some action (with respect to other
tasks) executes the following simple code sequence:

(wait-sema sema)

some action ; critical section (mutual exclusion region)
(signal-sema sema)

In addition to mutual exclusion, the usual requirements for such a serializer (see, e.g. [SG91])
include bounded waiting which implies bounded access time and fairness (in the sense
that no process can wait inde�nitely for access while others proceed). We assume that
these requirements are met in the absence of speculative computation (i.e. in conventional
Multilisp).4 However, with speculative computation tasks can be stayed (aborted), and thus
fail to make forward progress, and tasks have di�erent \importance" levels (i.e. priorities)

4These assumptions correspond to assuming that the semaphore serializer application is \correct" in the
absence of speculative computation. The FCFS queueing policy of semaphore operations in conventional
Multilisp assures fairness.

Extending the Multilisp Sponsor Model July 1993 5

respected by a preemptive scheduler. Thus with speculative computation such a serializer
has the following problems:

1. Speculative deadlock: A task in the critical section can be stayed, leading to un-
bounded access time.5 6 This is an instance of the relevant synchronization problem:
speculative deadlock occurs because a task is considered irrelevant and stayed when,
in fact, it is relevant for a synchronization event (releasing a semaphore).

2. Preemptive delay: A task in the critical section can be preempted, perhaps inde�nitely,
by tasks with priority less than the priority of tasks waiting to enter the critical section.
For example, suppose that task Tcs in the critical section has priority pcs and a waiter
task Tw has priority pw > pcs. Then a task Tp, with priority pw > pp > pcs can
preempt Tcs, causing Tw to wait further, even though pw > pp. In fact, there can be
a continual stream of tasks Tpi , preempting Tcs, each with priority pi such that such
that pw > pi > pcs 8i. Thus the priority assignment of Tw has been subverted: it
e�ectively has priority pcs.

3. Unfair access: An access policy that ensures a bounded wait time (e.g. FCFS) may
admit low priority tasks before high priority tasks and thus ignore the relative impor-
tance of tasks de�ned by the priorities.

Critical section-based serializers, whether implemented by semaphores or locks, are the
most common of all intertask synchronization paradigms.

3.1.1 Solution alternatives

One alternative is to avoid critical sections entirely by using an atomic compare-and-swap
pointer operation. The idea is to convert the critical section operation to an operation on
a copy of the original object and then use the compare-and-swap to atomically install the
modi�ed object in place of the original if no updates have occurred to the original in the
meantime. Thus there is no critical section in which a task can be stayed or preempted.
(This compare-and-swap technique is the basis of \wait-free" synchronization [Her91].) For
example, a semaphore-enforced critical section operation to add an element element to the
head of a di�erence list (a list represented by a pair with pointers to the head and tail of
the list) can be transformed to a copy-and-compare pointer operation as shown below (we
assume the di�erence list, denoted by dlist is non-empty).

; Semaphore solution ; Compare-and-swap solution
(wait-sema sema) (define (add-to-head dlist element)

(let* ((head (car dlist))) (let* ((head (car dlist))

(new-head (cons element head))) (new-head (cons element head)))

(set-car! dlist new-head) (if (not (rplaca-eq dlist new-head head))

(signal-sema sema)) (add-to-head dlist element))))

5There is no circular waiting so technically it is not deadlock.
6Staying a task in the critical section is only a problem if there are non-stayed waiters since stayed waiters

do not attempt to enter the critical section.

Extending the Multilisp Sponsor Model July 1993 6

This compare-and-swap technique trades copying and looping (i.e. busy-waiting) for block-
ing. Thus, while this technique may have low overhead for short critical sections, it can
be ine�cient for long critical sections with high contention. Compare-and-swap is also not
appropriate for synchronized access to objects which cannot or should not be copied, such
as reading input from an external device. 7 Finally, the compare-and-swap technique does
not ensure fairness.

Within the conventional critical section paradigm there are two main approaches to solv-
ing the speculative deadlock/relevant synchronization problem: roll-back and roll-forward.
In the roll-back approach a task is prevented from being stayed (aborted) in a critical sec-
tion by \rolling back", undoing any side e�ects, until it is outside the critical section, at
which point it can be stayed. In the roll-forward approach a task is prevented from being
stayed (aborted) in a critical section by \rolling forward" until it is outside the critical
section, at which point it can be stayed. The roll-forward approach has the advantage that
no side e�ects have to be undone. In both approaches a critical section task may be rolled
whenever it is stayed or just when other non-stayed tasks are waiting to enter the critical
section. The former alternative with roll-forward yields a \non-stayable" region. This is a
conservative approach since it prevents a task from being stayed even when there are no
non-stayed waiters.

There are three approaches to the preemptive delay problem. One approach is to make
tasks non-preemptable in the critical section, but like the non-stayable region, this is overkill
because it prevents preemptions if there are no waiters of higher priority. A second approach,
used by Mesa [LR80], is to execute the task in the critical section at a priority higher than
that of all tasks that could ever attempt to ever the critical section. However, priorities
are dynamic in our model for speculative computation, making it possible for any task to
have the maximum priority, which is non-preemptable. Thus this second approach reduces
to the �rst approach. The third approach is a \parameterized" non-preemptable region in
which only tasks with priority greater than the current maximum priority waiter task can
preempt the critical section task. This approach uses the set of actual waiter tasks, not
potential waiter tasks, in determining the priority of the critical section task. Hence in this
parameterized non-preemptable region approach, the critical section task executes at the
smallest priority possible to prevent preemptive delay with the actual waiter tasks.

With speculative computation, fairness should be based on the relative priority of tasks,
and not, for example, on access order (except for tasks of the same priority). Thus access
to the critical section by waiters should be in priority order.

3.2 Example 2: Readers and writers problem

In this problem, a variation of the simple mutual exclusion problem, there are two types
of tasks accessing a shared object. The �rst type (the \readers") may access the object

7One could compare-and-swap on a proxy object but then the operation on the original object and the
update to the proxy object could not be done atomically. Thus the proxy object reduces to a lock, and
therefore there exists a critical section with the speculative deadlock and preemptive delay problems.

Extending the Multilisp Sponsor Model July 1993 7

Initialization:
(define readcount 0)

Readers execute:
(wait-sema mutex) ; (1)
(incr1 readcount) ; (2) increment readcount by 1
(if (= readcount 1)

(wait-sema wrt)) ; (3) �rst reader in epoch waits for writer to �nish
(signal-sema mutex) ; (4)
read operation
(wait-sema mutex) ; (5)
(decr1 readcount) ; (6) decrement readcount by 1
(if (= readcount 0)

(signal-sema wrt)) ; (7) last reader in epoch lets a writer proceed
(signal-sema mutex) ; (8)

Writers execute:
(wait-sema wrt) ; (9)
write operation
(signal-sema wrt) ;(10)

Figure 1: An example readers and writers problem

concurrently so long as all tasks of the second type are excluded. The second type (the
\writers") require exclusive access to the shared object. This readers and writers paradigm
is fairly common, especially in database applications.

Figure 1 shows a solution to a variant of the readers and writers problem. readcount

indicates the number of current readers and mutex is a binary semaphore for updating
readcount atomically. wrt is a binary semaphore for the mutual exclusion of readers and
writers. When readcount is 0 the next reader to arrive de�nes the start of a read \epoch".
Such a reader enters the readcount serializer and blocks on wrt (line 3) waiting for a writer
(if any) to �nish. Any subsequent readers during this time block on mutex. When a writer
�nishes, it releases wrt and all the readers may read concurrently. As readers �nish reading
they decrement readcount. The last reader to do so returns readcount to 0 which de�nes
the end of read \epoch" and then a writer may proceed (line 7). In this variant of the
readers and writer problem a writer must wait until there are no pending readers (thus
writers may starve).8

The solution in Figure 1 contains three serializers: lines 1 through 4 and lines 5 through
8 for updating readcount and lines 9 through 10 for writing. Thus this solution su�ers
from the same speculative deadlock and preemptive delay problems as simple serializers.

Figure 1 contains another critical region: from the (wait-sema wrt) in line 3 through

8We assume that waiters for a semaphore are granted the semaphore in �rst-come-�rst-served (FCFS)
order, thus readers do not starve.

Extending the Multilisp Sponsor Model July 1993 8

(signal-sema wrt) in line 7. This critical region is fundamentally di�erent from the critical
regions in the simple serializers so far: there may be more than one task in the critical region
simultaneously. Furthermore, only the �rst and last tasks to enter and exit this critical
region in a read \epoch" do so via (wait-sema wrt) and (signal-sema wrt) respectively.
No one task necessarily holds the wrt semaphore for the entire duration of a read epoch.

Coupling between the simple serializers and this new critical region introduces three new
possibilities for speculative deadlock: 1) if a writer is stayed in the write serializer, all readers
blocked (on wrt for the �rst reader and on mutex for the rest) and the remaining writers
are deadlocked; 2) if any reader is stayed between lines 3 and 7, the writers are deadlocked;
and 3) if a reader is stayed in either readcount serializer all readers are deadlocked.

We draw the following observations from this example:

� Roll-back can be far from trivial. If a reader in this example is stayed between lines
4 and 5 it must be rolled back to before line 1, through a readcount serializer. This
requires 1) preventing other tasks from entering the serializer and 2) decrementing
readcount.

� Non-stayable/non-preemptable regions can be unacceptable. A reader between lines
4 and 5 is not in any serializer and may be there a long time | much longer than we
may be willing to have it unstayable or non-preemptable.

� It is not always possible to identify the task that releases a semaphore. Here the
wrt semaphore is passed from task to task. Thus a reader cannot necessarily identify
which task is responsible for its lack of progress (by failing to release the semaphore).
We will discuss the consequence of this later.

3.3 Example 3: Multiple Potential Determiners

Multiple potential determiners for a placeholder is an example of multiple-approach spec-
ulative computation (see [Osb90b] or [Osb90a]), a fairly common instance of speculative
computing. Figure 2 shows such an example where we are interested only in the �rst so-
lution to a set of problems. For simplicity, we assume that a solution will be found for at
least one of the problems. Unlike in the previous two examples there are no semaphores in
this example.

There are two problems with this example. First, a solver task may be stayed or pre-
empted in the interval between obtaining the lock and before determining the placeholder,
leading to speculative deadlock or preemptive delay. The roll-forward analog in this case is
to ensure that the solver task indivisibly enters a non-stayable and non-preemptable region
upon grabbing the lock. Other options such as parameterizing the task by the priority of
tasks waiting for the result or roll-back will have too much overhead.

The second problem is that we do not know which solver task will determine the place-
holder. The solver tasks are in essence producer tasks and all tasks which access the

Extending the Multilisp Sponsor Model July 1993 9

(define first (cons 0 nil)) ; initialize lock

(define first-solution (make-future)) ; create synchronization placeholder

;; attempt to solve the given problem

(define (solve problem)

(let ((a-solution (work-on-problem problem)))

(if (solution? a-solution) ; was a solution found?

(if (rplaca-eq first 1 0) ; if so, is it the first solution?

;; if first, determine placeholder to solution

(determine-future first-solution a-solution)))))

;; attempt to solve all problems simultaneously

(define (find-first-solution problems)

(map (lambda (prob) (future (solve prob))) problems) ; fork solvers

first-solution) ; return first solution

Figure 2: A placeholder example with multiple potential determiners

placeholder first-solution are consumer tasks. If the \successful" solver tasks are stayed
or preempted before determining this placeholder, speculative deadlock9 or preemptive de-
lay may occur. Since we do not know a priori which tasks are the \successful" solvers, we
must use a roll-forward strategy and ensure that none of the potential solver tasks is stayed.
Rolling-back stayed tasks does not work since we may roll-back a \successfull" task. One
solution is to make all the solvers non-stayable and non-preemptable until the placeholder
is determined. Not only is this solution too strong but it also is complicated by the need
to re-enable preemption and staying in all the solvers still running after the �rst solution is
found.

3.4 Example 4: Producer-Consumer Problem

The producer-consumer problem consists of some number of tasks synchronizing the pro-
duction and consumption of values via a �nite bu�er. In this very common synchronization
paradigm, a producer task computes a value and inserts it in the bu�er where a consumer
task later retrieves it. Figure 3 shows the code for a producer-consumer problem involving
a bu�er of size N. mutex is a binary semaphore for atomic insertion and deletion to/from
the bu�er. empty is a general semaphore, with initial value N, which counts the number of
empty slots in the bu�er. Complementing empty is the general semaphore full. Its initial
value is 0 and it counts the number of full slots in the bu�er.10

9This time without involving a critical section.
10We take the liberty to generalize the binary semaphores described in Section 2.1 to general semaphores.

(Multilisp presently only supports binary semaphores.) This generalization only requires adding an op-
tional semaphore initial value to make-sema and changing the semantics of wait-sema and signal-sema

appropriately.

Extending the Multilisp Sponsor Model July 1993 10

Producer Consumer

(wait-sema empty) ;(P1) wait for an empty slot (wait-sema full) ;(C1) wait for a full slot
(wait-sema mutex) ;(P2) indivisibly add item (wait-sema mutex) ;(C2) indivisibly delete item
insert in bu�er delete from bu�er
(signal-sema mutex) ;(P3) (signal-sema mutex) ;(C3)
(signal-sema full) ;(P4) indicate a full slot (signal-sema empty) ;(C4) indicate an empty slot

Figure 3: A solution to a producer-consumer problem

This formulation11 has the familiar two problems associated with a simple serializer like
mutex. It also has the additional problem that a consumer could be deadlocked waiting on
full if every producer is in one of the following three states: 1) stayed before line P1, 2)
stayed between lines P1 and P4, or 3) blocked on empty. Likewise, a producer could be
deadlocked waiting on empty if every consumer is in one of the following three states: 1)
stayed before line C1, 2) stayed between lines C1 and C4, or 3) blocked on full.

These problems are unique among the semaphore examples presented so far: they involve
tasks (the producers and consumers) outside the semaphore regions. Therefore methods
which concentrate on preventing staying or preemption solely within a critical section won't
work. As with the producer-consumer interaction in Example 3, a roll-back strategy does not
work here, so we must use a roll-forward strategy where we prevent all potential producers
and consumers from being stayed. We could make all potential producers and consumers
non-stayable but this would prevent staying the whole producer-consumer interaction if it
was embedded in a larger irrelevant computation. Making all the potential producers and
consumers non-preemptable has a similar problem plus all the tasks involved would have
the same priority, defeating the purpose of the task priorities.

In addition, we would like tasks blocked on empty and full to enter their respective
critical regions in correspondence with their priority order.

3.5 Example 5: Modi�ed Readers and Writers Problem

This example combines the producer-consumer avor of Examples 3 and 4 with the semaphore
avor of Examples 1 and 2 to illustrate a more complex situation.

Consider a reader/writer problem in which at most one reader or writer may access a
database at a time. The database contains some number of units, consumed by readers
(one unit per reader) and replenished by writers. The database thus has two states: ready
to read (� 1 unit present) and not ready to read (no units present). If the database is
not ready when a reader enters the critical section then the reader exits the critical region
and joins a queue of readers to wait until the database is ready. Queued readers have
priority on admission to the critical region over new readers. When a writer enters the

11Streams [AS84] provide a more elegant way to achieve producer-consumer synchronization. However,
bu�er-based formulations o�er better control over storage use.

Extending the Multilisp Sponsor Model July 1993 11

Initialization:

(define queuecount 0)

Readers execute:

(wait-sema mutex) ; (1) enter critical section
(let loop ()

(if ready-to-read? ; (2)
(begin

read operation ; (3)
(if (> queuecount 0) ; (4) check for any queued readers

(signal-sema waiters) ; (5) start one up & exit critical section
(signal-sema mutex))) ; (6) else exit critical section

(begin

(incr1 queuecount) ; (7) join queued readers
(signal-sema mutex) ; (8)
some action ; (9) arbitrary operation before queueing
(wait-sema waiters) ;(10) queue to reenter critical section
(decr1 queuecount) ;(11)
(loop)))) ;(12) try again

Writers execute:

(wait-sema mutex) ;(13) enter critical section
write operation ;(14) write and set ready-to-read
(if (> queuecount 0) ;(15) check for any queued readers

(signal-sema waiters) ;(16) start one up & exit critical section
(signal-sema mutex)) ;(17) else exit critical section

Figure 4: The modi�ed readers and writers problem

critical section it adds some number of units to the database and makes the database ready
to read. Within this problem is a producer-consumer synchronization problem (writers =
producers and readers = consumers) which leads to rami�cations, similar to those with the
producer-consumer problem in 3.4, which we discuss later.

Figure 4 shows an implementation of this readers and writers problem using semaphores.12

New readers must grab the binary semaphore mutex to enter the critical region whereupon
the readers determine the state of the database and either read and then exit the critical
region or increment a count of the number of queued readers and then exit. Queued readers
block on the binary semaphore waiters until a satis�ed reader or a writer exits the critical
region, at which time one queued reader can enter the critical region. Writers must grab
the mutex semaphore before entering the critical region.

A satis�ed reader or a writer e�ectively \passes" permission to be in the database critical
section on to a queued reader by (signal-sema waiters) in line 5 or 16. Thus a reader
task can e�ectively be in the critical section without \possessing" any semaphores. Suppose,
for example, that there is a single reader in the system at line 9 and suppose that before

12This contrived example is a simpli�cation of a real problem | the implementation of monitors with
semaphores [SG91]. See [Osb89] for details.

Extending the Multilisp Sponsor Model July 1993 12

this reader arrives at line 10 a writer enters the critical section, updates the database, and
exits the critical section. Since queuecount is 1, the writer will not release the semaphore
mutex upon exiting the critical section, but will instead signal the semaphore waiters.
Consequently the reader can immediately enter the critical section when it gets to line
10 but in the meantime no other task can enter the critical section since the mutex is still
locked (and will remain so until the reader reaches line 6). Thus there is e�ectively a critical
section beween lines 8 and 10. This leads to an interesting new possibility for speculative
deadlock: a reader may be stayed at line 9 while not formally in any critical section and
yet no other tasks will be able to enter the database critical section.

Another possibility for speculative deadlock occurs if all the potential writer tasks are
stayed: any queued readers will be blocked inde�nitely. We saw this sort of speculative
deadlock in the two previous examples involving producer-consumer synchronization.

There are also the usual sources of speculative deadlock: a reader or writer could be
stayed in the critical section. The Appendix gives a formal state description of this modi�ed
readers and writers problem and analyzes all the possible transitions.

Roll-back does not work here for either new source of speculative deadlock. Consider �rst
the case of a reader stayed in the \e�ective critical section". A reader at line 9 must be rolled
back through the database critical section to before line 1 and queuecount decremented
before the reader can be safely stayed. To perform this roll-back the reader must �rst enter
the critical section by grabbing mutex. However, a write may have occurred and locked
mutex once the reader reached line 9. Thus mutex may or may not be locked when we
attempt to roll-back the reader and we have no way of telling which (without violating
abstraction barriers), so the reader cannot be assured of grabbing mutex and roll-back
cannot safely proceed. Of course, it may be possible to perform roll-back using some sort
of checkpointing scheme (e.g. recovery blocks [Ran75]), wherein the system state is restored
to the state at some previous checkpoint. This seems unduly expensive.

Now consider the case of the stayed producers in the producer-consumer synchronization
between writers and readers. When the last potential writer is stayed, what task do we roll-
back? Rolling-back the stayed writer will not free the queued reader. (Besides, how far do
we roll-back the stayed waiter?) Rolling-back the queued readers has the same problem as
described above.

A non-stayable region is not an attractive solution either for these two cases. In the
\e�ective critical section" case a non-stayable region between lines 8 and 10 is unattractive
because a reader may spend an arbitrary amount of time there (it's not in any real critical
section). Thus an irrelevant task in this region would be kept running just because itmight

lead to deadlock if stayed. For the producer-consumer synchronization case a non-stayable
region is unattractive for the same reasons as discussed in Section 3.4.

Extending the Multilisp Sponsor Model July 1993 13

3.6 Summary

In Example 1 roll-back, roll-forward with non-stayable regions (if the critical section is
short), and roll-forward with parameterized non-preemptable regions are all viable solutions
to the speculative deadlock/relevant synchronization problem. Non-preemptable regions (if
the critical section is short enough again) and parameterized non-preemptable regions are
both viable solutions for the preemptive delay problem. In Examples 2 through 5 roll-
back does not work and hence is not a general solution to solving speculative deadlock.
(Furthermore, roll-back does not address the preemptive delay problem: roll-back only
occurs when a task is stayed.) The non-stayable and non-preemptable region approaches
are unattractive for situations where tasks spend a long time in the critical section and for
producer-consumer synchronization paradigms.

4 Solutions

In this Section we show how to solve the speculative deadlock/relevant synchronization and
preemptive delay problems with each of the examples in Section 3. We provide a general
solution using roll-forward and parameterized preemption by extending our sponsor model.

4.1 The Sponsor Solution

The speculative deadlock problem and the preemptive delay problems both result from
a failure in sponsorship: the critical task | the task which is blocking the progress of
other tasks | is either unsponsored or not su�ciently sponsored. The problem in both
cases is that the sponsorship of waiting tasks is not transmitted transitively to the task
responsible for the lack of progress. Our solution is to generalize the \demand transivity"
of sponsorship exhibited by toucher sponsors so that whenever a task blocks (or fails to
make forward progress) that task should sponsor the task(s) responsible for ensuring its
forward progress. In the case of semaphores this means that a blocked task should sponsor
the task(s) responsible for releasing the semaphore. Since the blockee task then has at least
the sponsorship level of the blocker, the blockee cannot be stayed (unless all the blockers
are stayed) and cannot be preempted by a task with priority less than the blocker's priority.
Thus the sponsor model provides an elegant framework in which to provide a uni�ed roll-
forward solution to both the speculative deadlock and preemptive delay problems.

In the case of simple serializers we can always implicitly identify the task responsible for
a waiters lack of progress: it is simply the task holding the semaphore. However, as we saw
with the two readers/writers problems and the producer-consumer problems it is not always
possible to implicitly identify the responsible task: it might be any task in some collection.
Thus we have to conceptually sponsor all the tasks in the collection. The sponsor solution
now becomes: Ensure that any critical task (such as a task in the critical section) is the
member of a class and ensure that any task requiring some action of the critical task (such
as exitting the critical section or producing a value) sponsors that class (e.g. by waiting

Extending the Multilisp Sponsor Model July 1993 14

on a semaphore for access to the critical section). This class in turn sponsors the critical
task until it performs the necessary action (such as releasing a semaphore). In general, we
have to de�ne a set of classes for tasks and the transitions between these classes, reecting
each task's possible trajectory through the system. In the case of a critical section, the
critical task is the task in the critical section: tasks blocked waiting to enter the critical
section should sponsor a class containing the task in the critical section. In the case of
producer-consumer synchronization, consumers waiting for a producer should sponsor a
class containing potential producers. Then at least one producer must remain active while
a consumer waits. This sponsoring idea generalizes beyond the synchronization methods of
semaphores, locks, and placeholders in the �ve examples in Section 3.

4.2 Extensions to the Sponsor Model

To solve the problems with semaphores, we introduce the following extensions to the sponsor
model. The �rst three are modi�cations of the constructs in Section 2.1.

(make-sema class) creates and returns a binary semaphore object which contains a priority
queue for tasks waiting to enter the critical region, and a class for waiting tasks to sponsor,
which we call the sema class (or semaphore sponsor class).13 The maximum priority task
in the priority queue sponsors the sema class. The sema class is initialized to class and is
accessible for a binary semaphore sema via the construct (get-sema-class sema) and may
be set via (set-sema-class sema class). Thus, the class that waiting tasks sponsor may
change dynamically.

(wait-sema sema entry-thunk) is a standard semaphore wait operation augmented with a
\entry thunk". entry-thunk must be a procedure with no arguments.14 wait-sema performs
the following operations indivisibly: if sema is free it makes sema busy and makes the
executing task non-stayable and non-preemptable; and if sema is busy it suspends and
priority enqueues the executing task on sema. If the task was not queued (i.e. sema was
free and became busy), the executing task evaluates entry-thunk and becomes stayable and
preemptable again before wait-sema returns. Otherwise, entry-thunk is evaluated when the
task is �nally dequeued as the result of a (signal-sema sema) (as described below).

(signal-sema sema . exit-thunk) is a standard semaphore signal operation augmented with
an optional \exit thunk". exit-thunk must be a procedure with no arguments. signal-sema
performs the following operations indivisibly: if no tasks are queued on sema, it makes
sema free; otherwise it dequeues the top priority task and resumes its continuation. Doing
so causes that task to evaluates entry-thunk (the entry-thunk captured by the wait-sema

originally invoked by that task).

13In Section 4.6 we generalize the semaphore constructs here to general semaphores. make-sema then takes
an optional second argument which speci�es the initial value of the general semaphore.

14Such a parameterless procedure is known as a \thunk". By wrapping a section of code in such a
parameterless procedure, the code can be passed as an argument to a procedure such as wait-sema but not
evaluated until the thunk argument is explicitly applied.

Extending the Multilisp Sponsor Model July 1993 15

(define (wait-sema sema entry-thunk)

check arguments
enter non-stayable/non-preemptable region
lock sema
call with current continuation c:

if sema state not free
(
priority enqueue task continuation c on sema
unlock sema
quit ; �nd another task to run
)

make sema state busy ; start of task continuation
unlock sema
apply entry-thunk
exit non-stayable/non-preemptable region
)

Figure 5: Pseudo-code implementation of wait-sema

Thus entry-thunk and exit-thunk execute in a non-stayable and non-preemptable region.
This enables entry-thunk and exit-thunk to perform critical operations, such as changing
the sema class of sema or adding the task to the sema class of sema, without danger
of being stayed. Figures 5 and 6 show a pseudo-code implementation of wait-sema and
signal-sema respectively. Bold typeface highlights di�erences from the original Multilisp
implementation.

The call with current continuation in this �gure is for expository purposes only. The
implementation only needs some way to access the representation of a task in order to
enqueue and dequeue it, so the full power of Scheme's call-with-current-continuation
is not required.

(enter-class class) adds the evaluating task to the given class. (exit-class class) removes
the evaluating task from the given class. These can be built out of the add-to/remove-from-class
constructs described in Section 2.2.

No additional extentions are required to solve the problems with Example 3, the sin-
gle non-semaphore example. The sponsor model constructs described in Section 2.2 are
su�cient.

4.3 Solution for Simple Mutual Exclusion | serializers

The problems with simple semaphore serializers are solved straightforwardly:

(wait-sema sema (lambda () (enter-class cr-class)))

some action
(signal-sema sema)

(exit-class cr-class)

Extending the Multilisp Sponsor Model July 1993 16

(define (signal-sema sema . exit-thunk)

check arguments
enter non-stayable/non-preemptable region
apply (car exit-thunk)
lock sema
if sema task queue empty

make sema free
unlock sema
exit non-stayable/non-preemptable region

else
dequeue top priority task from sema
resume dequeued task continuation ; continue queued task
exit non-stayable/non-preemptable region ; continue signaller

)

Figure 6: Pseudo-code implementation of signal-sema

where cr-class is initialized by (make-sponsor-class 'sponsor-all) and sema is initial-
ized by (make-sema cr-class). The exact timing of exitting the cr-class is unimportant
as long as it happens after the task exits the critical section. Thus it is not necessary to
evaluate the exit-class in the exit thunk of signal-sema.15

Each task enters and exits cr-class as it enters and exits the critical section respectively.
The maximum priority task blocked on sema sponsors the task(s) in the critical section via
its membership in cr-class. wait-sema maintains a priority queue of tasks waiting to
enter the mutual exclusion region and admits them in priority order.

The following interface hides the notion of classes from the user.

(define (make-serializer)

(let* ((mutex-class (make-sponsor-class 'sponsor-all))

(sema (make-sema mutex-class)))

(lambda (thunk)

(wait-sema sema (lambda () (enter-class mutex-class)))

(thunk)

(signal-sema sema)

(exit-class mutex-class))))

This makes and returns a \serializer" procedure which takes an thunk argument and eval-
uates the thunk in a mutual exclusion region.

4.4 Solution for the readers and writers problem

The readers and writers problem in Section 3.2 may now be solved as shown in Figure 7.
The additions and modi�cations to Figure 1 are marked to the right of each line. The main

15However, doing so might lead to a more e�cient implementation since one could then show that there
can never be more than one task in the cr-class and thus use a simpler and cheaper sponsor-any sponsor
policy.

Extending the Multilisp Sponsor Model July 1993 17

idea is to have two classes: one for the readers or writer in the read/write critical region
(i.e. with access to the shared object) | we call this the accessor-class | and one for
the mutual exclusion region of the readcount serializer | we call this the mutex-class.
Any tasks blocked awaiting access to the critical region sponsor the readers or writer in
the critical region. Any readers blocked awaiting entry to the readcount mutual exclusion
region sponsor the task in that region. These sponsorships prevent speculative deadlock
and preemptive delay. The semaphores admit tasks to the critical and mutual exclusion
regions in priority order. This solution does not, however, guarantee this priority access
order to the critical region across readers and writers.

We now give a line by line description of the solution in Figure 7. Readers blocked on
the mutex semaphore region in line 1 sponsor mutex-class.16 As a reader enters this mutex
mutual exclusion region in line 1, line 2 adds the reader to mutex-class. If this reader is
the �rst in a read epoch, it tests the wrt semaphore in line 5 for entry to the read/write
critical region. If successful, line 6 adds the reader to accessor-class. If unsuccessful,
the reader blocks on the wrt semaphore and sponsors accessor-class via the sema class
of wrt. In this case, note that any readers blocked on mutex (in lines 1 or 10) sponsor
this reader, which in turn sponsors accessor-class. This transitivity ensures that the
maximum-priority waiting reader always sponsors accessor-class. If the reader is not the
�rst in a read epoch, line 7 simply adds it to accessor-class. Finally, the reader exits the
mutex mutual exclusion region and mutex-class in lines 8 and 9 respectively. The reader,
now in the read/write critical region, remains in accessor-class.

When we sponsor tasks in accessor-class, we are careful to only sponsor the maximum-
priority task in this class (by virtue of the sponsor-max-priority class type). This ensures
that the relative order of readers established by their priorities in line 1 is not subverted
when accessor-class is sponsored. (Note that there is never more than one writer in
accessor-class, except possibly momentarily after a writer exits the critical region in line
19 but before it exits accessor-class in line 20.) For example, if accessor-class had
class type sponsor-all, all the readers between lines 9 and 10 could have the same priority
(from a high priority writer blocked on wrt) and thus readers would gain access to the sec-
ond mutex mutual exclusion region in FCFS order rather than in the order of their original
priorities.

The exit of readers from the read/write critical region is straightforward. Readers
blocked on mutex in line 10 again sponsor mutex-class. Readers �nally exit accessor-class
in line 14.

Writers blocked on wrt in line 17 sponsor accessor-class. Lines 19 and 20 are straight-
forward.

Note the two parts of this solution as described earlier. We de�ned a set of classes
| accessor-class and mutex-class | so that each task in a critical/exclusion region
is in one or more classes and we de�ned transitions between these classes to match the

16When we say that the waiting tasks blocked on a semaphore sponsor a class, we mean that the maximum-
priority waiter task sponsors the class.

Extending the Multilisp Sponsor Model July 1993 18

Initialization:

(define accessor-class (make-sponsor-class 'sponsor-max-priority)) ; new
(define wrt (make-sema accessor-class)) ; modi�ed
(define mutex-class (make-sponsor-class 'sponsor-all)) ; new
(define mutex (make-sema mutex-class)) ; modi�ed
(define readcount 0)

Readers execute:

(wait-sema mutex ; (1)
(lambda () (enter-class mutex-class))) ; (2) new

(incr1 readcount) ; (3)
(if (= readcount 1) ; (4)

(wait-sema wrt ; (5)
(lambda ()

(enter-class accessor-class))) ; (6) new
(enter-class accessor-class)) ; (7) new

(signal-sema mutex) ; (8)
(exit-class mutex-class) ; (9) new
read operation
(wait-sema mutex ; (10)

(lambda () (enter-class mutex-class))) ; (11) new
(decr1 readcount) ; (12)
(if (= readcount 0)

(signal-sema wrt)) ; (13)
(exit-class accessor-class) ; (14) new
(signal-sema mutex) ; (15)
(exit-class mutex-class) ; (16) new

Writers execute:

(wait-sema wrt ; (17)
(lambda ()

(enter-class accessor-class))) ; (18) new
write operation
(signal-sema wrt) ; (19)
(exit-class accessor-class) ; (20) new

Figure 7: Sponsor solution to the readers and writers problem

Extending the Multilisp Sponsor Model July 1993 19

(define (make-rw-serializer)

(let* ((accessor-class (make-sponsor-class 'sponsor-max-priority))

(wrt (make-sema accessor-class))

(serialize (make-serializer))

(readcount 0))

(cons

(lambda (read-thunk)

(serialize

(lambda ()

(incr1 readcount)

(if (= readcount 1)

(wait-sema wrt (lambda () (enter-class accessor-class)))

(enter-class accessor-class))))

(read-thunk)

(serialize

(lambda ()

(decr1 readcount)

(if (= readcount 0)

(signal-sema wrt))

(exit-class accessor-class))))

(lambda (wrt-thunk)

(wait-sema wrt (lambda () (enter-class accessor-class)))

(wrt-thunk)

(signal-sema wrt)

(exit-class accessor-class)))))

Figure 8: A user interface for the readers and writers problem

trajectory of tasks through the semaphore system. Then we ensured that the tasks blocked
on a semaphore always sponsor the class of tasks responsible for releasing the semaphore.

The use of mutex and mutex-class in Figure 7 mirrors in every way the previous
serializer example, and thus we could use the make-serializer abstraction here.

As before, we can easily de�ne an interface that hides the notion of classes from the user.
Figure 8 shows one possibility which incorporates our earlier make-serializer abstraction.
make-rw-serializer makes and returns a pair consisting of a reader serializer and a writer
serializer. Each of these serializers takes an argument thunk to evaluate in the read/write
critical region. The following example illustrates their use.

Initialize:

(define rw-serializer (make-rw-serializer))

(define reader (car rw-serializer))

(define writer (cdr rw-serializer))

Readers execute: Writers execute:

: : : : : :

; perform a read: ; perform a write:

(reader (lambda () read-operation)) (writer (lambda () write-operation))

: : : : : :

Extending the Multilisp Sponsor Model July 1993 20

(define determiners

(make-sponsor-class 'sponsor-all)) ; or sponsor-max-priority ; 1

(define first (cons 0 nil)) ; initialize lock

;; create synchronization placeholder

(define first-solution (make-future determiners)) ; 2

;; attempt to solve the given problem

(define (solve problem)

(let ((a-solution (work-on-problem problem)))

(if (solution? a-solution) ; was a solution found?

(if (rplaca-eq first 1 0)

;; if first, determine placeholder to solution

(determine-future first-solution a-solution)))))

;; attempt to solve all problems simultaneously

(define (find-first-solution problems)

(map (lambda (prob)

(add-to-class (future (solve prob)) determiners)) ; 3

problems) ; fork solvers

first-solution) ; return first solution

Figure 9: Sponsor solution for multiple potential determiners problem

4.5 Solution for the Multiple Potential Determiners Problem

To solve the problem with the multiple potential determiners example, we sponsor all the
solver tasks until the placeholder is determined, i.e. the �rst solution is found. Thus we
need the tasks blocked on a placeholder to sponsor a de�ned class of potential determiner
tasks. This is the reason for the optional class argument to make-future in Section 2.1.
Figure 9 shows how to solve the problem with the multiple potential determiners example
in Section 3.3 using classes.

The line numbers indicate lines with changes from Figure 2. Line 1 creates a class for
all the potential determiners. Line 2 creates a placeholder which sponsors these potential
determiners. Thus any task blocked on this placeholder sponsors the potential determiners
and thereby propagates the demand for the placeholder result to the potential determiners.
Line 3 creates and adds each problem solver to the potential determiners class. With these
additions any demand for the placeholder value sponsors all the potential determiners and
thus prevents speculative deadlock and preemptive delay. Conveniently, this sponsoring also
solves the speculative deadlock and preemptibe delay problems associated with a solver task
being stayed or preempted in the interval between obtaining the lock and determining the
placeholder.

Extending the Multilisp Sponsor Model July 1993 21

4.6 Solution for the producer-consumer problem

To solve the problems with the producer-consumer problem in Figure 3 of Section 3.4 we
would like:

1. The consumers blocked on full to sponsor any producers before the signal of full
in line P4.

2. The producers blocked on empty to sponsor any consumers before the signal of empty
in line C4.

Figure 10 shows such a solution. There are two classes: producer-class for all the potential
producer tasks and consumer-class for all the potential consumer tasks. Producer and
consumer tasks must be added to these respective classes as soon as the tasks are generated.
We use the make-serializer abstraction de�ned earlier in Section 4.3 to ensure proper
sponsorship of tasks in the mutual exclusion region and priority access to this region. If
all the producer (consumer) tasks continually cycle producing (consuming) items from the
bu�er, then line P4 (C4) to exit the producer-class (consumer-class) is not necessary |
the tasks can remain in the class for the next iteration. Consumers blocked on full sponsor
producer-class until an item is added to the bu�er and its availability is indicated to the
consumer by signalling full in line P3. Similarily, producers blocked on full sponsor
consumer-class until an item is added to the bu�er and its availability is indicated to the
producer by signalling empty in line C3. producer-class and consumer-class have class
type sponsor-max-priority so that we do not disrupt the priority ordering of tasks in
these classes. To make progress we only need to sponsor a task in each of these classes, not
all the tasks.

4.7 Sponsor solution for the modi�ed readers and writers problem

The problems identi�ed earlier with the modi�ed readers and writers problem may now be
solved as shown in Figure 11. Although the solution looks complicated, it is fairly easy
to explain (most of the apparent complexity is in the initialization). First we describe the
class de�nitions, then the class transitions, and �nally the sponsorship.

Class de�nitions: The solution has a class accessor-class for any reader or writer task in
the critical sections, a class waiter-class for all queued readers, and a class writers-class
for all potential writer tasks.

Class transitions: A writer is initially in writers-class. On entry into the critical
section via lines 6 or 22 a reader or writer (respectively) enters the accessor-class (line
3). If the task is a writer, it then exits the writers-class. If the task is a reader and the
database is not ready for reading, the reader enters the waiter-class in line 14 and then
exits the accessor-class in line 16. Note the overlapping class membership here | there
is no need for an atomic transition between the writer and accessor classes or the accessor
and waiter classes. Readers and writers otherwise exit accessor-class in lines 16 and 27

Extending the Multilisp Sponsor Model July 1993 22

Initialization
(define producer-class

(make-sponsor-class 'sponsor-max-priority)) ; producer class
(define consumer-class

(make-sponsor-class 'sponsor-max-priority)) ; consumer class
(define empty (make-sema consumer-class N)) ; bu�er size is N
(define full (make-sema producer-class 0))

(define serialize (make-serializer)) ; serializer from Section 4.3

All potential producers
(enter-class producer-class) ; all potential producers

All potential consumers
(enter-class consumer-class) ; all potential consumers

Producer
(wait-sema empty) ; (P1) wait for an empty slot
(serialize (lambda () add to bu�er)) ; (P2) indivisibly add an item
(signal-sema full ; (P3) indicate a full slot

(lambda () (exit-class producer-class))) ; (P4) optional

Consumer
(wait-sema full) ; (C1) wait for a full slot
(serialize (lambda () delete from bu�er)) ; (C2) indivisibly delete an item
(signal-sema empty ; (C3) indicate an empty slot

(lambda () (exit-class consumer-class))) ; (C4) optional

Figure 10: Sponsor solution for the producer-consumer problem

Extending the Multilisp Sponsor Model July 1993 23

Initialization:
(define accessor-class (make-sponsor-class 'sponsor-all))

(define mutex (make-sema accessor-class))

(define writers-class (make-sponsor-class 'sponsor-all))

(define waiter-class (make-sponsor-class 'sponsor-max-priority))

(define waiters (make-sema writers-class))

(define enter-thunk (lambda ()

(set-sema-class mutex accessor-class) ; (1) atomically enter class and
(set-sema-class waiter accessor-class) ; (2) have remaining tasks sponsor it
(enter-class accessor-class))) ; (3)

(define exit-thunk (lambda ()

(set-sema-class mutex waiters-class)) ; (4) atomically redirect sponsorship
(define exit-thunk2 (lambda ()

(set-sema-class waiter writers-class)) ; (5) atomically redirect sponsorship
(define queuecount 0)

Readers execute:
(wait-sema mutex enter-thunk) ; (6)
(let loop ()

(if ready-to-read? ; (7)
(begin

read operation ; (8)
(if (> queuecount 0) ; (9) check for any queued readers

(signal-sema waiters exit-thunk) ;(10) start one up
(signal-sema mutex exit-thunk2)) ;(11) else exit

(exit-class accessor-class)) ;(12) exit class
(begin

(incr queuecount) ;(13) join queued readers
(enter-class waiter-class) ;(14)
(signal-sema mutex exit-thunk2) ;(15)
(exit-class accessor-class) ;(16)
some action ;(17) arbitrary operation before queueing
(wait-sema waiters enter-thunk) ;(18) queue
(exit-class waiter-class) ;(19)
(decr queuecount) ;(20)
(loop)))) ;(21) try again

Writers execute:
::: writers initially in writers-class :::

(wait-sema mutex enter-thunk) ;(22)
(exit-class writers-class)

write operation ;(23) write and set ready-to-read
(if (> queuecount 0) ;(24) check for any queued readers

(signal-sema waiters exit-thunk) ;(25) start one up
(signal-sema mutex exit-thunk2)) ;(26) else exit

(exit-class accessor-class)) ;(27) exit class

Figure 11: Sponsor solution for the modi�ed readers and writers problem

Extending the Multilisp Sponsor Model July 1993 24

Task state Task sponsors

Blocked on mutex Task in critical section (i.e. task in accessor-class), if any
Otherwise, queued readers (i.e. tasks in waiter-class)

Blocked on waiters Task in critical section (i.e. task in accessor-class), if any
Otherwise, potential writers (i.e. tasks in writers-class)

Critial section state Sponsorship

Critical section occupied Tasks blocked on mutex and waiters sponsor
reader or writer in critical section

Critical section empty Tasks blocked on mutex sponsor queued readers
Tasks blocked on waiter sponsor potential writers

Figure 12: Sponsorship invariants

respectively. Queued readers remain in the waiter-class until admitted into the critical
section in line 18 where they transit to the accessor-class. Although not shown, any
tasks that may potentially become writers after leaving the critical section must enter the
writers-class.

Sponsorship: Figure 12 lists the sponsorship invariants. Tasks blocked on mutex spon-
sor accessor-class if it contains a task and waiter-class otherwise. We implement
this by updating the sema class indirection cell for mutex in line 1 when a task enters
accessor-class and in line 4 when a task exits accessor-class (but passes mutex to a
queued reader task). Queued readers blocked on waiters sponsor accessor-class if it
contains a task and writers-class if it does not (to ensure that writers are sponsored to
eventually free the queued readers). We implement this functionality by updating the sema
class indirection cell for waiter in line 2 when a task enters the critical section and line 5
when a task exits the critical section. The transition into the accessor-class and the
update of mutex's and waiter's sema classes (lines 1 to 3) must be atomic since these must
happen simultaneously to avoid speculative deadlock. Finally, waiter-class has class type
sponsor-max-priority so that we do not disrupt the priority ordering of queued readers.

We give a formal derivation of correctness of this solution in another paper [Osb92].

4.8 Summary and Discussion

Through our �ve examples, we have illustrated the relevant synchronization and preemptive
delay problems and shown how to extend our sponsor model to solve these problems in each
case. Each example makes a di�erent point. The simple serializer example is an extremely
common and important paradigm in parallel computing. We showed how to solve the
relevant synchronization and preemptive delay problems with it in the most general sense
by sponsoring the critical section task. In many cases, the duration within the critical section
of a simple serializer will be short enough that alternative methods such as compare-and-
swap, roll-back, or non-stayable/non-preemptable regions will be more e�cient than the

Extending the Multilisp Sponsor Model July 1993 25

overhead associated with sponsoring. The point of the remaining examples is that such
alternatives do not work in more complicated situations.

In the readers/writers example | also a fairly common paradigm in parallel computing
| it is no longer possible to implicitly determine the task that will release a semaphore,
so roll-back and non-stayable/non-preemptable regions are not acceptable. We exhibited a
more general solution using classes and our extensions of wait-sema and signal-sema.

The producer-consumer example (Sections 3.4 and 4.6) takes this one step further: it is
only possible to identify a set of tasks responsible for lack of progress, and none of them may
even be in a critical region. Thus solutions oriented towards simple serializer critical regions,
such as roll-back and non-stayable/non-preemptable regions either simply won't work or are
reduce the ability to stay or preempt tasks to such a degree as to be totally unacceptable.
In contrast, our sponsor-based method using classes and our extensions of wait-sema and
signal-sema solve the problems with this popular synchronization paradigm in a simple
and elegant fashion.

Although the modi�ed readers and writers problem is arti�cial, it does represent a sim-
pli�cation of a real problem (the implementation of monitors). This example demonstrates
the need, in general, to have the exibility to have tasks transit between classes and the
ability to modify the class a semaphore's waiters sponsor since the class responsible for
releasing a semaphore may change with time. Figure 11 illustrates this last point rather
dramatically where two classes (waiter-class and writers-class) are outside any region
guarded by semaphores. This observation motivated the set-sema-class construct.

The multiple potential determiner example represents a common paradigm in speculative
computation wherein one is pursuing multiple approaches simultaneously where the �rst
successful result will su�ce (e.g. disjunction). The main point of this example was to
illustrate that the relevant synchronization and preemptive delay problems arise even in
non-semaphore situations.

We have presented a general solution to the relevant synchronization and preemptive
delay problems. Such a general solution is important because special case solutions cannot
always capture all the complicated ways people might perform synchronization. For ex-
ample, special case solutions based on simple serializer use of semaphores cannot solve the
problems that might arise with more complicated use of semaphores, such as in the mod-
i�ed readers and writers problem. However, general solutions can be expensive. In some
cases the mechanisms we are proposing here are likely to have worse performance than with
simple unstayable/non-preemption regions. Many real uses of semaphores involve short
critical sections, for example. However, we expect that our sponsor model extensions are
viable alternatives for producer-consumer synchronization problems, such as in our multi-
ple determiners and producer-consumer examples, where choices other than parameterized
roll-forward are unsuitable.

Our extended sponsor model approach can also be expensive in terms of complexity, as
in the modi�ed readers and writers problem. It becomes di�cult in such non-trivial appli-

Extending the Multilisp Sponsor Model July 1993 26

cations to determine if the solution is correct. Of course, one could accept less performance
| by accepting long non-stayable/non-preemptable regions for example | in exchange for
reduced complexity. Another possibility is to amortize the complexity and alleviate the
burden on the programmer by having a library of solutions for common paradigms. Finally,
perhaps the correct viewpoint to have is that dealing with side e�ects is rarely easy.

We have implemented these semaphore operations and tested them on the examples
(except for the producer-consumer example) discussed in this paper with suitable \driver"
stubs specifying task activity inside and outside the critical sections. We have not investi-
gated performance issues since at this time we have only implemented these operations in
an interpreted version of Multilisp (running on top of a sequential Scheme) which does not
provide accurate performance data.

5 Related Work

The simultaneous presence of both relevant synchronization and preemptive delay problems
is unique to a situation with both aborting of tasks and prioritization of tasks, as in our
approach to speculative computation. We are not aware of any other work which solves
both problems in one framework like ours.17

There has been much work dealing with the aborting of tasks, though in most work
aborting is a rare, exceptional event so conservative solutions like \no-abort" regions are
frequently acceptable. In contrast, aborting is a common event in speculative computation
so more liberal solutions are necessary. The works closest in spirit to ours are Multi-
Scheme [Mil87] and Qlisp [GM87, GG89] which both have some support for speculative
styles of computation. Both provide support for aborting tasks and thus su�er from the
speculative deadlock/relevant synchronization problem. MultiScheme uses \�nalization" to
solve this problem. One garbage collection cycle before an object (e.g. a task object) is
collected, user-supplied code can be invoked to \�nalize" the object, releasing locks and
cleaning up. This �nalization amounts to a roll-back mechanism and thus is not powerful
enough to solve the problems with Examples 3, 4, and 5. Qlisp has a unwind-protect

form. (unwind-protect form cleanup) evaluates form and always evaluates cleanup be-
fore returning, even if the task evaluating unwind-protect is aborted. The normal use of
unwind-protect is as a roll-back mechanism. However, it may also be used as a roll-forward
mechanism by putting everything in the cleanup form, thus providing an \no-abort region".
Thus Qlisp o�ers a choice between underpowered roll-back and conservative roll-forward.

The real-time system and Ada communities have been concerned with the preemptive
delay problem (which they call the priority inversion problem) for some time. Sha et al
suggested priority inheritance protocols in which a task in a critical section executes at
the priority of at least the maximum priority task waiting to enter that region [SRL87,
RSL88]. Sha et al considered only simple applications, such as the semaphore serializer in

17Kornfeld and Hewitt proposed the idea of sponsors in [KH81] but to our knowledge neither they nor
anyone else has used sponsors to solve the relevant synchronization and preemptive delay problems.

Extending the Multilisp Sponsor Model July 1993 27

Example 1, for which the tasks producing a synchronizing event (the synchronizer tasks) are
implicitly well-de�ned. They did not consider how to solve the preemptive delay problem
in more complicated synchronization problems, such as Examples 2 and 5, for which the
synchronizer task may not even be in a critical section. Solving the preemptive delay
problem for producer-consumer synchronization requires more than priority inheritance for
instance.

6 Conclusions

In the context of speculative computation side e�ects, particularly intertask synchronization
side e�ects, can lead to speculative deadlock/relevant synchronization and preemptive de-
lay problems. We demonstrated these problems in �ve di�erent examples. These examples
covered a range of di�erent synchronization types (serializer, readers and writers, producer-
consumer), di�erent primitive synchronization mechanisms (semaphores and placeholders),
and di�erent complexities (simple serializer vs. the modi�ed readers and writers problem).
For simple cases like the critical sections of serializers, there are several alternatives such as
roll-back, roll-forward, non-stayable, and non-preemptable regions for preventing the spec-
ulative deadlock/relevant synchronization and preemptive delay problems. Such a choice of
alternatives exists for such simple cases because it is possible to implicitly identify task the
responsible for the lack of progress causing speculative deadlock or preemptive delay: it's
always the task in the critical section. For other cases there are much fewer alternatives:
di�culties arise because there is no task in the critical section or there is no critical section.
In four examples we saw that roll-back did not work and non-stayable and non-preemptable
regions were unattractive.

To solve the speculative delay/relevant synchronization and preemptive delay problems
demonstrated by these examples we proposed a natural extension of our sponsor model.
The basic idea of this novel approach is for a task waiting for some side e�ect event, such as
the release of a semaphore or the production of a value, to sponsor the task or set of tasks
responsible for performing the event. The key is to ensure the transivity of sponsorship from
tasks whose forward progress is impeded to the task(s) responsible for the impediment.

We introduced language constructs to implement this sponsor model extension and
showed how to use them to solve the speculative delay/relevant synchronization and pre-
emptive delays problems for each of the �ve examples mentioned above. For semaphores,
the solution is for the tasks blocked on a semaphore to sponsor the task(s) responsible for
releasing the semaphore. To handle complicated applications where it may not be pos-
sible to implicitly identify the responsible task(s) we developed a model in which tasks
belong to explicitly identi�ed classes and tasks transit through these classes, redirecting
the sponsorship of blocked tasks as necessary. The result is a parameterized roll-forward
approach that can solve problems roll-back approaches cannot easily solve, such as with
producer-consumer synchronization, and is potentially more attractive performance-wise
than non-parameterized roll-forward (i.e. non-stayable) approaches for some applications.

Extending the Multilisp Sponsor Model July 1993 28

We introduced

The sponsor model provides a general technique for solving the speculative deadlock/relevant
synchronization and preemptive delay problems. One only needs to provide the appropriate
language constructs so that the demand for some action can be transmitted into the sponsor
of some task that will perform the action.

References

[AS84] H. Abelson and G. Sussman. Structure and Interpretation of Computer Programs.
M.I.T. Press, Cambridge, MA., 1984.

[GG89] R. Goldman and R. Gabriel. Qlisp: Parallel processing in Lisp. IEEE Software,
pages 51{59, July 1989.

[GM87] R. Gabriel and J. McCarthy. Qlisp. In J. Kowalik, editor, Parallel Computation
and Computers for Arti�cial Intelligence. Kluwer Academic Publishers, 1987.

[Hal85] R. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Trans. on Prog. Languages and Systems, pages 501{538, October 1985.

[Her91] M. Herlihy. Wait free synchronization. ACM Trans. on Prog. Languages and
Systems, January 1991.

[IEE91] IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Language. In-
stitute of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[KH81] W. Kornfeld and C. Hewitt. The scienti�c community metaphor. IEEE Trans. on

Systems, Man, and Cybernetics, pages 24{33, January 1981.

[KHM89] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A high-performance parallel Lisp. In
SigPlan Conf. on Prog. Language Design and Implementation, pages 81{90, 1989.

[KW90] M. Katz and D. Weise. Continuing into the Future: On the interaction of Fu-
tures and First-class Continuations. In ACM Conference on Lisp and Functional

Programming, 1990.

[LR80] B. Lampson and D. Redell. Experience with Processes and Monitors in Mesa.
Communications of the ACM, pages 105{117, February 1980.

[Mil87] J. Miller. MultiScheme: A parallel processing system based on MIT Scheme. Tech-
nical Report TR-402, Laboratory for Computer Science, M.I.T., September 1987.

[Osb89] R. Osborne. Speculative computation in Multilisp. Technical Report TR-464,
Laboratory for Computer Science, M.I.T., November 1989.

Extending the Multilisp Sponsor Model July 1993 29

[Osb90a] R. Osborne. Speculative computation in Multilisp. In T. Ito and R. Halstead, ed-
itors, Parallel Lisp: Languages and Systems, Proceedings of U.S./Japan Workshop
on Parallel Lisp. Lecture Notes in Computer Science, Springer-Verlag, Number
441, July 1990.

[Osb90b] R. Osborne. Speculative computation in Multilisp: An overview. In ACM Con-

ference on Lisp and Functional Programming, 1990.

[Osb92] R. Osborne. Details on Extending the Multilisp Sponsor Model to Handle
Semaphore-based Intertask Synchronization. Mitsubishi Electric Research Labs,
Technical Note, October 1992.

[Ran75] B. Randell. System Structure for Software Fault Tolerance. In International Con-

ference on Reliable Software, pages 437{449, 1975.

[RSL88] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-Time Synchronization Protocols
for Multiprocessors. In Proceedings of Real-time Systems Symposium, December
1988.

[SG91] J. Silberschatz, A. Peterson and P. Galvin. Operating System Concepts, 3rd Edition.
Addison-Wesley, 1991.

[SRL87] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. Technical Report CMU-CS-87-181, CMU,
November 1987.

Extending the Multilisp Sponsor Model July 1993 30

7 Appendix: State Description of Example 5

This Appendix gives a formal state description of the modi�ed readers and writers problem presented in
Section 3.5 and analyzes all the possible transitions. For space reasons the presentation is terse.18 For more
expansive details see [Osb92].

We only model the state with respect to whether or not tasks are inside the critical section, waiting
to get inside the critical section, or outside the critical section. We are not concerned with task activities
otherwise. This amounts to modeling the state at the points of entering and exitting semaphores.

The state tuple for Example 5 is:

S = (ncr ;mutex;mq; q; waiter;wq)

where:

ncr is the number of tasks in the database critical region. ncr = f0; 1g. There are three entry points to
the database critical region: (wait-sema mutex) in lines 1 and 13 and (wait-sema waiters) in line 10.
Likewise, there are three exit points from the database critical region: line 5 or 6, line 8, and line 16 or 17.

mutex denotes whether the mutex semaphore guarding the database critical section is in the locked state or
free state. mutex = flocked; freeg.

mq is the number of tasks blocked on the mutex semaphore. mq = f0; 1; 2; 3; :::g.

q is the number of queued readers that have exitted the critical section in line 8 but have not yet entered
the critical section at line 10 (these readers are either at line 9 or blocked at line 10). q = f0; 1; 2; 3; :::g.

waiter denotes whether the waiters semaphore is in the locked state or free state. waiter = flocked; freeg.

wq is the number of tasks blocked on the waiter semaphore. wq = f0; 1; 2; 3; :::g.

The possible events that can cause a change in the state are:

1. A reader arrives at line 1 and executes (wait-sema mutex)

2. A reader exits the critical section via line 5

3. A reader exits the critical section via line 6

4. A reader exits the critical section via line 8

5. A reader arrives at line 10 and executes (wait-sema waiters)

6. A writer arrives at line 13 and executes (wait-sema mutex)

7. A writer exits the critical section via line 16

8. A writer exits the critical section via line 17

Since for the purposes of the state description we do not distinguish readers and writers we can fold
events 6, 7, and 8 involving writers into events 1, 2, and 3 respectively.

The �ve remaining events lead to the following possible state transitions (a � means \don't care"):19

1. A reader or writer executes (wait-sema mutex) in line 1 or 13:
There are two possibilities. Either a reader (writer) gains immediate access to the critical section
(hence mutex = free, mq = 0, and ncr = 0) as below:

(0; free; 0; �; �; �)! (1; locked;0; �; �; �)

18And in small font.
19All transitions obey the implicit constraints that all state variables are within their legal ranges as

de�ned above.

Extending the Multilisp Sponsor Model July 1993 31

or mutex is locked and the reader (writer) is queued (hence mutex = locked):

(�; locked;mq; �; �; �)! (�; locked;mq + 1; �; �; �)

2. A reader exits the critical section via line 5 or a writer exits the critical section via line 16:
Since the reader (writer) is in the critical section, we must have ncr = 1 and mutex = locked. In
order to make the transition we must have q+wq > 0. waiter may either be locked (the normal case)
or free (if waiters has been previously signalled but no task has yet entered at line 10). Thus we
have:

(1; locked;�; q; locked;wq); q + wq > 0!

�
(0; locked;�; q; free; 0) if wq = 0
(1; locked;�; q; locked;wq � 1) if wq > 0

The top clause on the right corresponds to the queued reader task(s) not having made it to line 10 yet.
The bottom clause corresponds to a task waiting on waiters and immediately entering the critical
section when reader (writer) exits.

And we could also have:

(1; locked;�; q; free; 0); q > 0! (0; locked;�; q; free; 0)

However, some thought reveals that it is not possible to get to the state on the left and thus this
transition cannot occur. waiters can only become free as the result of some reader (writer) executing
line 5 (16). Once this occurs, mutex is still locked and thus no other read (writer) can enter the critical
section to signal waiters until some queued reader enters the critical section at line 10 and exits at
line 6. And as soon as a queued reader enters at line 10, waiters becomes locked. Therefore ncr = 1
and waiter = free are in conict.

3. A reader exits the critical section via line 6 or a writer exits the critical section via line 17:
Since the reader (writer) is in the critical section, we must have ncr = 1 and mutex = locked.

(1; locked;mq; �; �; �)!

�
(0; free; 0; �; �; �) if mq = 0
(1; locked;mq � 1; �; �; �) if mq > 0

The result is either mutex is free with no tasks blocked on it or mutex is locked and one of the tasks
previously blocked on mutex is now inside the critical section.

4. A reader exits the critical section via line 8:
Once again, since the reader is in the critical section, we must have ncr = 1 and mutex = locked.
Thus:

(1; locked;mq; q; �; �)!

�
(0; free; 0; q + 1; �; �) if mq = 0
(1; locked;mq � 1; q + 1; �; �) if mq > 0

5. A reader executes (wait-sema waiters) in line 10:
There are two possibilities in this case. Either waiters is free and the reader gains immediate access
to the critical section or waiters is locked and the reader is queued. In the former case we must have
q > 0, mutex locked, and ncr = 0 (since waiters can only be made free by a reader (writer) when
queuecount > 0 and thereafter mutex stays locked until a queued reader reenters the critical section
and unlocks it). Thus:

(0; locked; �; q; free; 0); q > 0! (1; locked;�; q � 1; locked;0)

In the latter case we must have q > 0, but mutex could be either free (if the reader just arrived from
line 8) or locked (if some other reader or writer then enters the critical section).

(�; �; �; q; locked;wq); q > 0! (�; �; �; q � 1; locked;wq + 1)

The following table summarizes all the possible state transitions:

Extending the Multilisp Sponsor Model July 1993 32

(0; free; 0; �; �; �)! (1; locked;0; �; �; �)

(�; locked;mq; �; �; �)! (�; locked;mq + 1; �; �; �)

(1; locked;�; q; locked;wq); q +wq > 0!

�
(0; locked;�; q; free; 0) if wq = 0
(1; locked;�; q; locked;wq � 1) if wq > 0

(1; locked;mq; 0; �; �)!

�
(0; free;0; 0; �; �) if mq = 0
(1; locked;mq � 1; 0; �; �) if mq > 0

(1; locked;mq; q; �; �)!

�
(0; free; 0; q + 1; �; �) if mq = 0
(1; locked;mq � 1; q + 1; �; �) if mq > 0

(0; locked;�; q; free;0); q > 0! (1; locked;�; q � 1; locked; 0)
(�; �; �; q; locked;wq); q > 0! (�; �; �; q � 1; locked;wq + 1)

Legal states obey the following constraints: 1) mq > 0 if and only if mutex = locked, and 2) wq > 0 if
and only if waiter = locked. These two constraints correspond to assuming that the semaphores \work".

In addition, an important invariant that must be preserved to avoid deadlock is that mutex and waiter

must not be locked at the same time unless there is no task in the critical region: i.e. we must have

mutex = locked and waiter = locked only if ncr = 0

Otherwise, no task can enter the critical region and no task can exit the critical region to change the state
of the two semaphores.

The initial state is (0; free; 0; 0; locked; 0). See [Osb92] for a picture of the state transition diagram.

Note that all tasks in Example 5 are in one of �ve states:

1. in the critical section

2. blocked on mutex

3. blocked on waiters

4. loitering between lines 8 and 10, or

5. somewhere outside the critical section uninvolved with the modi�ed readers and writers problem.

Speculative deadlock can arise if a task in the critical section is stayed. Staying tasks blocked on either
semaphore causes no immediate problem. Such a stayed task may eventually enter the critical section when
the semaphore is signalled and then cause speculative deadlock, but this is just state 1 again. As discussed
in Section 3.5, staying a task in state 4 can also lead to speculative deadlock for reader tasks blocked on
waiters if the stayed task would otherwise enter the critical section and signal waiters. The �fth state
gives rise to the producer-consumer form of speculative deadlock noted in Section 3.5 caused when a task
that will signal waiters is stayed outside any critical section.

Staying tasks thus causes speculative deadlock in Example 5 under the following conditions:

1. when a task in the critical section is stayed,

2. when a task loitering between lines 8 and 10 is stayed, and

3. when a waiters signaler task is stayed.

