
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
CAMBRIDGE RESEARCH CENTER

Technical Report 93-12 July, 1993

Yves Schabes and Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway; Cambridge, MA 02139

e-mail: schabes@merl.com & dick@merl.com

Abstract

Stochastic lexicalized context-free grammar (SLCFG) is an attractive compro-
mise between the parsing e�ciency of stochastic context-free grammar (SCFG)
and the lexical sensitivity of stochastic lexicalized tree-adjoining grammar
(SLTAG). SLCFG is a restricted form of SLTAG that can only generate context-
free languages and can be parsed in cubic time. However, SLCFG retains the
lexical sensitivity of SLTAG and is therefore a much better basis for capturing
distributional information about words than SCFG.

To appear in the 1993 International Workshop on Parsing Technology

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonpro�t educational and research pur-
poses provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Mitsubishi Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment
of the authors and individual contributions to the work; and all applicable portions of the copyright notice.
Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to
Mitsubishi Electric Research Laboratories. All rights reserved.

Copyright c Mitsubishi Electric Research Laboratories, 1993
201 Broadway, Cambridge, Massachusetts 02139

Contents

1 Motivation : 1

2 LCFG : 2

2.1 Comparisons : 4

2.2 LCFG Lexicalizes CFG : : : : : : : : : : : : : : : : : : : 5

3 Stochastic LCFG : 5

4 Parsing SLCFG : 6

4.1 Terminology : 6

4.2 A Bottom-Up Algorithm : : : : : : : : : : : : : : : : : : 7

5 Training an SLCFG : 9

6 Conclusion : 10

Stochastic Lexicalized Context-Free Grammar 1

1 Motivation

The application of stochastic techniques to syntax modeling has recently regained popularity.
Most of the work in this area has tended to emphasize one or the other of the following two goals.
The �rst goal is to capture as much distributional information about words as possible. The
second goal is to capture as many of the hierarchical constraints inherent in natural languages
as possible. Unfortunately, these two goals have been more or less incompatible to date.

Early stochastic proposals such as Markov Models, N-gram models [2, 14] and Hidden
Markov Models [7] are very e�ective at capturing simple distributional information about ad-
jacent words. However, they cannot capture long range distributional information nor the
hierarchical constraints inherent in natural languages.

Stochastic context-free grammar (SCFG) [1, 3, 5] extends context-free grammar (CFG) by
associating each rule with a probability that controls its use. Each rule is associated with a
single probability that is the same for all the sites where the rule can be applied.

SCFG captures hierarchical information just as well as CFG; however, it does not do a good
job of capturing distributional information about words. There are at least two reasons for this.
First, many rules do not contain any words and therefore the associated probabilities do not
have any direct link to words. Second, distributional phenomena that involve the application
of two or more rules do not have a direct link to any of the stochastic parameters of SCFG,
because the probabilities apply only to single rules.

It has been observed in practice that SCFG performs worse than non-hierarchical ap-
proaches. This has lead many researchers to believe that simple distributional information
about adjacent words is the most important single source of information. In the absence of
a formalism that adequately combines this information with other kinds of information, the
emphasis in research has been on simple non-hierarchical statistical models of words, such as
word N-gram models.

Recently, it has been suggested that stochastic lexicalized tree-adjoining grammar (SLTAG)
[8, 9] may be able to capture both distributional and hierarchical information. An SLTAG
grammar consists of a set of trees each of which contains one or more lexical items. These
elementary trees can be viewed as the elementary clauses (including their transformational vari-
ants) in which the lexical items participate. The elementary trees are combined by substitution
and adjunction. Each possible way of combining two trees is associated with a probability.

Since it is based on tree-adjoining grammar (TAG), SLTAG can capture some kinds of hier-
archical information that cannot be captured by SCFG. However, the key point of comparison
between SLTAG and SCFG is that since SLTAG is lexicalized and uses separate probabilities
governing each possible combination of trees, each probability is directly linked to a pair of
words. This makes it possible to represent a great deal of distributional information about
words.

Unfortunately, the statistical algorithms for SLTAG [9] require much more computational
resources than the ones for SCFG. For instance, the algorithms for estimating the stochastic
parameters and determining the probability of a string require in the worst case O(n6)-time for
SLTAG [9] but only O(n3)-time for SCFG [3].

Stochastic lexicalized context-free grammar (SLCFG) is a restricted form of SLTAG that
retains most of the advantages of SLTAG without requiring any greater computational resources
than SCFG. SLTAG restricts the elementary trees that are possible and the way adjunction
can be performed. These restrictions limit SLCFG to producing only context-free languages
and allow SLCFG to be parsed in O(n3)-time in the worst case. However, SLCFG retains most
of the key features of SLTAG enumerated above. In particular, the probabilities in SLCFG are

2 Schabes & Waters

directly linked to pairs of words.
SLCFG is a stochastic extension of lexicalized context-free grammar (LCFG) [12, 13]. The

following sections, introduce LCFG, de�ne the stochastic extension to SLCFG, present an
algorithm that can determine the probability of a string generated by an SLCFG in O(n3)-
time, and discuss the algorithms needed to train the parameters of an SLCFG.

2 LCFG

Lexicalized context-free grammar (LCFG) [12, 13] is a tree generating system that is a restricted
form of lexicalized tree-adjoining grammar (LTAG) [4]. The grammar consists of two sets of
trees: initial trees, which are combined by substitution and auxiliary trees, which are combined
by adjunction. An LCFG is lexicalized because every initial and auxiliary tree is required to
contain a terminal symbol on its frontier.

De�nition 1 An LCFG is a �ve-tuple (�,NT ,I ,A,S), where � is a set of terminal symbols,
NT is a set of non-terminal symbols, I and A are �nite sets of �nite trees labeled by terminal
and non-terminal symbols, and S is a distinguished non-terminal start symbol. The set I [A

is referred to as the elementary trees.
The interior nodes in each elementary tree are labeled by non-terminal symbols. The nodes

on the frontier of each elementary tree are labeled with terminal symbols, non-terminal symbols,
and the empty string ("). At least one frontier node is labeled with a terminal symbol. With
the possible exception of one (see below), the non-terminal symbols on the frontier are marked
for substitution. (By convention, substitutability is indicated in diagrams by using a down
arrow (#).)

The di�erence between auxiliary trees and initial trees is that each auxiliary tree has exactly
one non-terminal frontier node that is marked as the foot. The foot must have the same label
as the root. (By convention, the foot of an auxiliary tree is indicated in diagrams by using an
asterisk (�).) The path from the root of an auxiliary tree to the foot is called the spine.

Auxiliary trees in which every non-empty frontier node is to the left of the foot are called left

auxiliary trees. Similarly, auxiliary trees in which every non-empty frontier node is to the right
of the foot are called right auxiliary trees. Other auxiliary trees are called wrapping auxiliary
trees.1

LCFG does not allow adjunction to apply to foot nodes or nodes marked for substitution.
LCFG allows the adjunction of a left auxiliary tree and a right auxiliary tree on the same node.
However, LCFG does not allow the adjunction of either two left or two right auxiliary trees on
the same node.

Crucially, LCFG does not allow wrapping auxiliary trees. It does not allow elementary
wrapping auxiliary trees, and it does not allow the adjunction of two auxiliary trees, if the
result would be a wrapping auxiliary tree.

Figure 1, shows seven elementary trees that might appear in an LCFG for English. The
trees containing `boy', `saw', and `left' are initial trees. The remainder are auxiliary trees.

An LCFG derivation must start with an initial tree rooted in S. After that, the tree can be
repeatedly extended using substitution and adjunction. A derivation is complete when every
frontier node is labeled with a terminal symbol.

1In [13] these three kinds of auxiliary trees are referred to di�erently as right recursive, left recursive, and
centrally recursive, respectively.

Stochastic Lexicalized Context-Free Grammar 3

D↓

boy

N

NP NP0↓

saw

V NP1↓

VP

S NPi↓ (+w h)

ε i

NP0

left

V

VP

S

S

seems

V VP*

VP

pretty

A N*

N

VP*

smoothly

Adv

VP NP0↓

think

V S1* NA

VP

S

Figure 1: Example LCFG trees.

(a)

A

A A

(b)

A

A

A*

=

w
1

w
3

w
2w

4

w
1 w

4

w
3

A

A

w
2

(c)

A

A

A*

=

w
1

w
2

w
3w

4

w
1 w

4

w
2

A

A

w
3

(d)

A

A

A*

A

A

=

w
1

w
3

w
5

w
2

w
4

w
1

w
2

w
4

w
5

w
3

Figure 2: Tree combination: (a) substitution, (b) left adjunction, (c) right adjunction, and (d)
wrapping adjunction, which is not allowed by SLCFG.

As illustrated in Figure 2a, substitution replaces a node marked for substitution with a copy
of an initial tree.

Adjunction inserts a copy of an auxiliary tree T into another tree at an interior node � that
has the same label as the root (and therefore foot) of T . In particular, � is replaced by a copy
of T and the foot of the copy of T is replaced by the subtree rooted at �. The adjunction of
a left auxiliary tree is referred to as left adjunction (see Figure 2b). The adjunction of a right
auxiliary tree is referred to as right adjunction (see Figure 2c).

LCFG's prohibition on wrapping auxiliary trees can be rephrased solely in terms of elemen-
tary trees. To start with, there must be no elementary wrapping auxiliary trees. In addition,
an elementary left (right) auxiliary tree cannot be adjoined on any node that is on the spine
of an elementary right (left) auxiliary tree. Further, no adjunction whatever is permitted on
a node � that is to the right (left) of the spine of an elementary left (right) auxiliary tree T .
(Note that for T to be a left (right) auxiliary tree, every frontier node subsumed by � must be
labeled with ".)

Tree adjoining grammar formalisms typically forbid adjunction on foot nodes and substitu-
tion nodes. In addition, they typically forbid multiple adjunctions on a node. However, in the
case of LCFG, it is convenient to relax this latter restriction slightly by allowing right and left
adjunction on a node, but at most once each. (Due to the other restrictions placed on LCFG,
this relaxation increases the trees that can be generated without increasing the ambiguity of
derivations.)

4 Schabes & Waters

6

CFL

RL
PATH SET POWER

-
RL CFL TAL

STRING SET POWER

r
LTAG
TAG

rLCFG

r
CFG
TSG

Figure 3: The tree and string complexity of LCFG and several other formalisms

2.1 Comparisons

The only important di�erence between LCFG and LTAG is that LTAG allows both elementary
and derived wrapping auxiliary trees. The importance of this is that wrapping adjunction (see
Figure 2d) encodes string wrapping and is therefore context sensitive in nature. In contrast, left
and right adjunction (see Figures 2b & 2c) merely support string concatenation. As a result,
while LTAG is context sensitive in nature, LCFG is limited to generating only context-free
languages.

To see that LCFG can only generate context-free languages, consider that any LCFG G

can be converted into a CFG generating the same strings in two steps as follows. First, G is
converted into a tree substitution grammar (TSG) G0 that generates the same strings. Then,
this TSG is converted into a CFG G00.

A TSG is the same as an LCFG (or LTAG) except that there cannot be any auxiliary trees.
To create G0 �rst make every initial tree of G be an initial tree of G0. Next, make every auxiliary
tree T of G be an initial tree of G0. When doing this, relabel the foot of T with " (turning T

into an initial tree). In addition, let A be the label of the root of T . If T is a left auxiliary tree,
rename the root to AL; otherwise rename it to AR.

To complete the creation of G0 alter every node � in every initial tree in G0 as follows: Let A
be the label of �. If left adjunction is possible at �, add a new �rst child of � labeled AL, mark
it for substitution, and add a tree corresponding to AL ! " if one does not already exist. Right
adjunction is handled analogously by adding a new last child of � labeled AR and insuring the
existance of a tree corresponding to AR ! ".

The TSG G0 generates the same strings as G, because all cases of adjunction have been
changed into equivalent substitutions. Note that the transformation would not work if LCFG
allowed wrapping auxiliary trees. The TSG G0 can be converted into a CFG G00 by attening
each tree in G0 into a context-free rule that expands the root of the tree into the frontier in one
step.

Although the string sets generated by LCFG are the same as those generated by CFG, LCFG
is capable of generating more complex sets of trees than CFG. In particular, it is interesting to
look at the path sets of the trees generated. (The path set of a grammar is the set of all paths
from root to frontier in the trees generated by the grammar. The path set is a set of strings
over � [NT [f"g.)

The path sets for CFG (and TSG) are regular languages [15]. In contrast, just as for
LTAG and TAG, the path sets for LCFG are context-free languages. To see this, consider that
adjunction makes it possible to embed a sequence of nodes (the spine of the auxiliary tree) in

Stochastic Lexicalized Context-Free Grammar 5

place of a node on a path. Therefore, from the perspective of the path set, auxiliary trees are
analogous to context-free productions.

Figure 3 summarizes the relationship between LCFG and several other grammar formalisms.
The horizontal axis shows the complexity of strings that can be generated by the formalisms,
i.e., regular languages (RL), context-free languages (CFL), and tree adjoining languages (TAL).
The vertical axis shows the complexity of the path sets that can be generated.

CFG (and TSG) create context-free languages, but the path sets they create are regular
languages. LTAG and TAG generate tree adjoining languages and have path sets that are
context-free languages. LCFG is intermediate in nature. It can only generate context-free
languages, but has path sets that are also context-free languages.

2.2 LCFG Lexicalizes CFG

As shown in [12, 13] LCFG lexicalizes CFG without changing the trees derived. Further, a
constructive procedure exists for converting any CFG G into an equivalent LCFG G0.

The fact that LCFG lexicalizes CFG is signi�cant, because every other method for lexi-
calizing CFGs without changing the trees derived requires context-sensitive operations [4] and
therefore dramatically increases worst case processing time.

As shown in [12, 13] (and in Section 4) LCFG can be parsed in the worst case just as quickly
as CFG. Since LCFG is lexicalized, it is expected that it can be parsed much faster than CFG
in the typical case.

3 Stochastic LCFG

The de�nition of stochastic lexicalized context-free grammar (SLCFG) is the same as the def-
inition of LCFG except that probabilities are added that control the combination of trees by
adjunction and substitution.

De�nition 2 An SLCFG is an 11-tuple (�,NT ,I ,A,S,PI ,PS ,PL,PNL,PR,PNR), where (�,NT ,
I ,A,S) is an LCFG and PI , PS , PL, PNL, PR, and PNR are statistical parameters as de�ned
below.

For every root � of an initial tree, PI(�) is the probability that a derivation starts with the
tree rooted at �. It is required that:

X

�

PI(�) = 1

Note that PI(�) 6= 0 if and only if � is labeled S.
For every root � of an initial tree and every node � that is marked for substitution, PS(�; �)

is the probability of substituting the tree rooted at � for �. For each � it is required that:

X

�

PS(�; �) = 1

For every node � in every elementary tree, PNL(�) is the probability that left adjunction will
not occur on �. For every root � of a left auxiliary tree, PL(�; �) is the probability of adjoining
the tree rooted at � on �. For each � it is required that:

PNL(�) +
X

�

PL(�; �) = 1

6 Schabes & Waters

note that PNL(�) = 0 if and only if left adjunction on � is obligatory.
The parameters PNR(�) and PR(�; �) control right adjunction in an exactly analogous way.

An SLCFG derivation is described by the initial tree it starts with, together with the se-
quence of substitution and adjunction operations that take place. The probability of a derivation
is de�ned as the product of: the probability PI of starting with the given tree, the probabil-
ities PS , PL, and PR of the operations that occurred, and the probabilities PNL and PNR of
adjunction not occurring at the places where it did not occur.

The probability of a string is the sum of the probabilities of all the di�erent ways of deriving
it. A most likely derivation of a string is a derivation that has as large a probability as any
other derivation for the string. The probability of a tree generated by an SLCFG for a string
is the sum of the probabilities of every way of deriving the tree. (Unlike in SCFG, in SLCFG
there can be more than one way to derive a given tree.) A most likely tree generated for a
string is a tree whose probability is as large as any other tree generated for the string. (Note
that a most likely derivation need not generate a most likely tree.)

4 Parsing SLCFG

Since SLCFG is a restricted case of SLTAG, the O(n6)-time SLTAG parser [9] can be used for
parsing SLCFG. Further, it can be straightforwardly modi�ed to require at most O(n4)-time
when applied to SLCFG. However, this does not take full advantage of the context-freeness of
SLCFG.

This section demonstrates that SLCFG can be parsed in O(n3)-time by exhibiting a CKY-
style bottom-up algorithm for computing the probability assigned to a string by an SLCFG.
This algorithm can be trivially modi�ed to extract a most probable derivation of the given
string. More e�cient SLCFG processors can be based on the Earley style LCFG recognizer
presented in [12].

4.1 Terminology

Suppose that G is an SLCFG and that a1 � � �an is an input string. Let � be a node in an
elementary tree (identi�ed by the name of the tree and the position of the node in the tree).

Label(�) 2 �[NT [" is the label of the node. The predicate IsInitialRoot(�) is true if and
only if � is the root of an initial tree. Parent(�) is the node that is the parent of � or ? if � has
no parent. FirstChild(�) is the node that is the leftmost child of � or ? if � has no children.
Sibling(�) is the node that is the next child of the parent of � (in left to right order) or ? if
there is no such node.

The predicate Substitutable(�; �) is true if and only if � is marked for substitution and �

is the root of an initial tree that can be substituted for �. The predicate Radjoinable(�; �) is
true if and only if � is the root of an elementary right auxiliary tree that can adjoin on �. The
predicate Ladjoinable(�; �) is true if and only if � is the root of an elementary left auxiliary tree
that can adjoin on �.

The concept of covering is critical to the bottom-up algorithm shown below. Informally
speaking, a node � covers a string if and only if the string can be derived starting from �.

More precisely, for every node � in every elementary tree in G, let T 0 be a copy of the subtree
of T that is rooted at �. Extend T 0 by adding a new root whose only child is the original root
of T 0. Label the new root of T 0 with a unique new symbol S0. If there is a node on the frontier
of T 0 that is marked as the foot, relabel this node with ". This converts T 0 into an initial tree.

Stochastic Lexicalized Context-Free Grammar 7

Let G� be an SLCFG that is identical to G except that T 0 is introduced as an additional initial
tree and the start symbol of G� is S0. The probabilities associated with the the interior nodes
of T 0 are identical to those for the corresponding nodes in T . The probabilities for the root of
T 0 are PS = PL = PR = 0, PNL = PNR = 1, and crucially PI = 1. PI = 0 for the other initial
trees.

The node � covers a string a1 � � �an with probability p in G if and only if the probability
of a1 � � �an in G� is p. The node � covers a string a1 � � �an without left (right) adjunction
with probability p in G if and only if the probability of a1 � � �an in G� is p without considering
derivations where left (right) adjunction occurs on the original root of T 0.

(Note that if � is a foot node, T 0 is an empty tree. The only string covered by � is the empty
string; however, the empty string is covered with probability 1, because the empty string is the
only string derived by G�.)

4.2 A Bottom-Up Algorithm

We can assume without loss of generality that every node in I [A has at most two children.
(By adding new nodes, any SLCFG can be transformed into an equivalent SLCFG satisfying
this condition. This transformation can be readily reversed after parsing has been completed.)

The algorithm stores triples of the form [�; code; p] in an n � n array C. In a triple, code
is a set over the universe L (for left adjunction) and R (for right adjunction). The fact that
[�; code;p] 2 C[i; k] means that � accounts for the substring ai+1 � � �ak with probability p. More
precisely, for every node � in every elementary tree in G, the algorithm guarantees that when
the computation concludes:

� [�; ;; p] 2 C[i; k] if and only if � covers ai+1 � � �ak with probability p without left or right
adjunction.

� [�;fLg; p] 2 C[i; k] if and only if � covers ai+1 � � �ak with probability p without right
adjunction.

� [�; fRg; p] 2 C[i; k] if and only if � covers ai+1 � � �ak with probability p without left
adjunction.

� [�; fL;Rg; p] 2 C[i; k] if and only if � covers ai+1 � � �ak with probability p.

The process starts by placing each foot node and each frontier node that is labeled with
the empty string in every cell C[i; i] with probability one. This signi�es that they each cover
the empty string at all positions. The initialization also puts each terminal node � in every
cell C[i; i + 1] where � is labeled ai+1 with probability one. The algorithm then considers
all possible ways of combining matched substrings into longer matched substrings|it �lls the
upper diagonal portion of the array C[i; k] (0 � i � k � n) for increasing values of k � i.

Two observations are central to the e�ciency of this process. Since every auxiliary tree
(elementary and derived) in SLCFG is either a left or right auxiliary tree, the substring matched
by a tree is always a contiguous string. Further, when matched substrings are combined, the
algorithm only has to consider adjacent substrings. (In SLTAG, a tree with a foot can match
a pair of strings that are not contiguous|one left of the foot and one right of the foot.)

There are three situations where combination of matched substrings is possible: sibling
concatenation, left concatenation, and right concatenation.

As illustrated in Figure 4, sibling concatenation combines the substrings matched by two
sibling nodes into a substring matched by their parent. In particular, suppose that there is

8 Schabes & Waters

A

a
j +1

… ak

+

a
i +1

… aj a
i +1

… ak

B

A'

BB

A A' A A'

Figure 4: Sibling concatenation.

(a)

A

A

A*

+
A

a
i +1

… aka
j +1

… ak
a
i +1

… aj
(b)

A
+

A

A

A* a
i +1

… ak
a

j +1
… ak

a
i +1

… aj

Figure 5: (a) Left concatenation and (b) right concatenation.

Procedure Probability(a1 � � �an)
begin
for i = 0 to n
for all foot nodes � in A, Add(�; ;; i; i; 1)
for all frontier nodes � in A [I where Label(�) = ", Add(�; ;; i; i; 1)
for i = 0 to n� 1
for all frontier nodes � in A [I where Label(�) = ai+1, Add(�; ;; i; i+ 1; 1)
for d = 0 to n
for i = 0 to n� d

set k = i+ d

for j = i to k
for all nodes � in G

if [�; fL;Rg; p1] 2 C[i; j] and [Sibling(�); fL;Rg; p2] 2 C[j; k]
then Add(Parent(�); ;; i; k; p1 � p2)

for all nodes � and � in G where Ladjoinable(�; �)
if [�; fL;Rg; p1] 2 C[i; j] and [�; code; p2] 2 C[j; k] and L 62 code

then Add(�; L[code; i;k; p1 � p2 � PL(�; �))
for all nodes � and � in G where Radjoinable(�; �)
if [�; code; p1] 2 C[i; j] and R 62 code and [�; fL;Rg; p2] 2 C[j; k]
then Add(�; R[code; i; k;p1 � p2 � PR(�; �))

p = 0
for all nodes � in G where IsInitialRoot(�) and Label(�) = S

if [�; fL;Rg; p0] 2 C[0; n] then p = p+ p0 � PI(�)
return p
end
Procedure Add(�; code; i; k; p)
begin
if [�; code;p0] 2 C[i; k] for some p0 then update [�; code;p0] in C[i; k] to [�; code;p0 + p]
else C[i; k] := C[i; k][[�; code; p]
if code = fL;Rg then
if FirstChild(Parent(�)) = � and Sibling(�) = ? then Add(Parent(�);;; i; k;p)
for each node � such that Substitutable(�; �), Add(�; ;; i; k;p� PS(�; �))
if L 62 code then Add(�; L[code; i; k;p� PNL(�))
if R 62 code then Add(�; R[code; i; k;p� PNR(�))
end

Figure 6: A procedure for computing the probability of a string given an SLCFG.

Stochastic Lexicalized Context-Free Grammar 9

a node �0 (labeled B in Figure 4) with two children �1 (labeled A) and �2 (labeled A0). If
[�1; fL;Rg;p1] 2 C[i; j] and [�2; fL;Rg; p2] 2 C[j; k] then [�0; ;; p1� p2] 2 C[i; k].

Left concatenation (see Figure 5a) combines the substring matched by a left auxiliary tree
with the substring matched by a node the auxiliary tree can adjoin on. Right concatenation
(see Figure 5b) is analogous.

The algorithm (see Figure 6) is written in two parts: a main procedure Probability(a1 � � �an)
and a subprocedure Add(�; code; i; k), which adds the triple [�; code; p] into C[i; k].

The main procedure repeatedly scans the array C, building up longer and longer matched
substrings until it determines all the S-rooted derived trees that match the input. The purpose
of the codes (fL;Rg etc.) is to insure that left and right adjunction can each be applied at most
once on a node. The procedure could easily be modi�ed to account for other constraints on the
way derivation should proceed, such as those suggested for LTAGs [11].

The procedure Add enters a triple [�; code;p] into C[i; k]. If some other triple [�; code; p0] is
already present in C[i; k], then the probability p0 is updated to p0 + p to reect the fact that an
additional derivation of ai+1 � � �ak has been found. Otherwise, a new triple [�; code;p] is added
to C[i; k].

The procedure Add also propagates information from one triple to another in situations
where the length of the matched string is not increased|i.e., when a node is the only child of
its parent, when substitution occurs, and when adjunction is not performed.

The O(n3) complexity of the algorithm follows from the three nested induction loops on d,
i and j. (Although the procedure Add is de�ned recursively, the number of pairs added to C

is bounded by a constant that is independent of sentence length.)
The algorithm does not depend on the fact that SLCFG is lexicalized|it would work equally

well if were not lexicalized. If the sum p0+p on the third line of the Add procedure is changed to
max(p0; p) the algorithm computes the probability of a most probable derivation. By keeping a
record of every attempt to enter a triple into a cell of the array C, one can extend the algorithm
so that derivations and therefore the trees they generate can be rapidly recovered.

5 Training an SLCFG

In the general case, the training algorithm for SCFG [5] requires O(n3)-time for each sentence
of length n. A training algorithm for SLCFG can be constructed that achieves these same worst
case bounds.

To start with, since SLCFG is a restricted case of stochastic lexicalized tree-adjoining gram-
mar (SLTAG), the O(n6)-time inside-outside reestimation algorithm for SLTAG [9] can be used
for estimating the parameters of an SLCFG given a training corpus. Straightforward modi�-
cations lead to an O(n4)-time algorithm for training an SLCFG. However, this alone does not
achieve the full potential of SLCFG.

The same basic construction that underlies the algorithm in the last section can be used
as the basis for an O(n3) inside-outside training algorithm for SLCFG. As in the last section,
the key reason for this is that computations involving SLCFG only require the consideration of
contiguous strings.

It should be noted that in the special case of a fully bracketed training corpus, the parameters
of an SCFG can be estimated in linear time [6, 10]. It is an open question whether this can
be done for SLCFG. However, it should be straightforward to design an O(n2)-time training
algorithm for SLCFG given a fully bracketed corpus.

10 Schabes & Waters

6 Conclusion

The preceding sections present stochastic lexicalized context-free grammar (SLCFG). SLCFG
combines the processing speed of SCFG with the much greater ability of SLTAG to capture
distributional information about words. As such, SLCFG has the potential of being a very useful
tool for natural language processing tasks where statistical assessment/prediction is required.

References

[1] T. Booth. Probabilistic representation of formal languages. In Tenth Annual IEEE Symposium on
Switching and Automata Theory, October 1969.

[2] F. Jelinek. Self-organized language modeling for speech recognition. In Alex Waibel and Kai-Fu
Lee, editors, Readings in speech recognition. Morgan Kaufmann, San Mateo, California, 1990. Also
in IBM Research Report (1985).

[3] F. Jelinek, J. D. La�erty, and R. L. Mercer. Basic methods of probabilistic context free grammars.
Technical Report RC 16374 (72684), IBM, Yorktown Heights, NY, 1990.

[4] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars and lexicalized grammars. In Maurice
Nivat and Andreas Podelski, editors, Tree Automata and Languages. Elsevier Science, 1992.

[5] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the Inside-
Outside algorithm. Computer Speech and Language, 4:35{56, 1990.

[6] Fernando Pereira and Yves Schabes. Inside-outside reestimation from partially bracketed corpora.
In 20th Meeting of the Association for Computational Linguistics (ACL'92), Newark, Delaware,
1992.

[7] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257{285, February 1989.

[8] Philip Resnik. Probabilistic tree-adjoining grammars as a framework for statistical natural lan-
guage processing. In Proceedings of the 14th International Conference on Computational Linguistics
(COLING'92), 1992.

[9] Yves Schabes. Stochastic lexicalized tree-adjoining grammars. In Proceedings of the 14th Interna-
tional Conference on Computational Linguistics (COLING'92), 1992.

[10] Yves Schabes, Michael Roth, and Randy Osborne. Parsing the Wall Street Journal with the
inside-outside algorithm. In Sixth Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL'93), Utrecht, the Netherlands, April 1993.

[11] Yves Schabes and Stuart Shieber. An alternative conception of tree-adjoining derivation. In 20th

Meeting of the Association for Computational Linguistics (ACL'92), 1992.

[12] Yves Schabes and Richard C. Waters. Lexicalized context-free grammar: A cubic-time parsable for-
malism that strongly lexicalizes context-free grammar. Technical Report 93-04, Mitsubishi Electric
Research Labs, 201 Broadway. Cambridge MA 02139, 1993.

[13] Yves Schabes and Richard C. Waters. Lexicalized context-free grammars. In 21st Meeting of the
Association for Computational Linguistics (ACL'93), pages 121{129, Columbus, Ohio, June 1993.

[14] C. E. Shannon. Prediction and entropy of printed english. The Bell System Technical Journal,
30:50{64, 1951.

[15] J. W. Thatcher. Characterizing derivations trees of context free grammars through a generalization
of �nite automata theory. Journal of Computer and System Sciences, 5:365{396, 1971.

