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Abstract

The generic vievassumption states that an observer is not in a special position relative to the
scene. It is commonly used to disqualify scene interpretations that assume special viewpoints,
following a binary decision that the viewpoint was either generic or accidental. In this chapter,
we show how to use the generic view assumption to quantify the likelihood of a view. This quan-
titative approach can be applied to estimate scene parameters. This approach applies to many
vision problems. We show shape from shading examples where we rank shapes or reflectance
functions in cases which are otherwise ambiguous. The rankings agree with the perceived values.
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1 Introduction

Figure 1: This image can describe one approach to the problem of per-
ception. Starting from the visual image, held by the cherubs at the right,
one wants to find the probability that each of various models or scene inter-
pretations (on the ground in the middle) could have generated that visual
data. (Etching by Samuel Wale, Putti engaged in the study of geometry
and perspective, from J. Kirby’s The Perspective of Architecture, London,
1761.)

A task of visual perception is to find the scene which best explains visual
observations. Fig. 1 can be used to illustrate the problem of perception. The
visual data is the image held by two cherubs at the right. Scattered in the
middle are various geometrical objects—“scene interpretations”—which may
account for the observed data. How does one choose between the competing
interpretations for the image data?

One approach is to find the probability that each interpretation could have
created the observed data. Bayesian statistics are a powerful tool for this,
e.g. [17, 46, 30, 28]. One expresses prior assumptions as probabilities and
calculates for each interpretation a posterior probability, conditioned on the
visual data. The best interpretation may be that with the highest probability
density, or a more sophisticated criterion may be used. Other computational
techniques, such as regularization [47, 42], can be posed in a Bayesian frame-
work [46]. In this chapter, we will apply the powerful assumption of “generic
view” in a Bayesian framework. This will lead us to an additional term from
Bayesian theory involving the Fisher information matrix. This will modify
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the posterior probabilities to give additional information about the scene.
The generic view assumption [31, 4, 3, 36, 43, 38, 39] postulates that
the scene is not viewed from a special position. Fig. 2 shows an example.
The square in (a) could be an image of a wire-frame cube (b) viewed from
a position where the line segments of the front face hide those behind them.
However, that would require a very special viewpoint, and given the image
in (a), one should infer a square, not a cube; references [21, 39] discuss this
example. The generic view assumption has been invoked to explain percep-
tions involving stereo and transparency [39], linear shape from shading [41],
and feature or object identification [31, 36, 3, 43, 38, 28, 12]. Typically,
researchers assume a view is either generic, and therefore admissible, or ac-
cidental, and therefore rejected. Some have pointed out that it should be
possible to quantify the degree of accidentalness or have done so in special

cases [19, 36, 38, 34, 39, 28, 12].

(a) (b)
Figure 2: An example of use of the generic view assumption for binary
decisions. The image (a) could be of a square, or it could be an “accidental
view” of the cube in (b). Since a cube would require a special viewing
position to be seen as the image in (a), we reject that possible interpretation

for (a).

In this chapter we take a quantitative approach, in a complementary
fashion to the categorical use of the generic viewpoint assumption. Rather
than assign categories to views of geometrical objects, we assign probabilities
to views of continuous surfaces. This approach will let us make parametric
decisions about candidate scene interpretations. We discuss the relationship
to aspect graphs in Section 4.

In our approach, we divide parameters into two groups, generic param-
eters and scene parameters. Generic parameters are parameters we do not
need to estimate precisely. Viewpoint is one example; others are object
orientation and lighting position. Scene parameters are what we desire to
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estimate, and can be reflectance function, shape, lighting direction and ve-
locity. We relax this split into two types of parameters in the formulation of
Section 6.

We will exploit the known distributions of the generic variables to modify
the probability of given scene parameters. We will used an established ap-
proximation from Bayesian statistics to quantify the “genericity” of a view.
Our analysis will favor scene interpretations for which the visual data is sta-
ble to small changes in the generic variables. This information can be used
to make principled selections among competing scene interpretations where
otherwise arbitrary choices would have to be made.

We show applications to the shape from shading problem. Using a two-
parameter family of reflectance functions, we show how to find the probability
of a shape and reflectance function combination from a single image. We rank
shape probabilities corresponding to different assumed lighting directions in
a case where each shape can account for the image data equally well.

We motivate our approach in the remainder of the introduction. In Sec-
tion 2 we derive the scene probability equation, the conditional probability
for a scene interpretation given the observed visual data. Then we show the
applications to shape from shading. In Section 6, we frame this approach in
terms of the loss functions of Bayesian estimation. Substantial parts of this
work were presented in [15, 16].

1.1 Example

A simple example illustrates the main idea. Suppose the visual data is the
image of Fig. 3 (a). Perceptually, there are two possible interpretations:
it could be a bump, lit from the left, or a dimple, lit from the right. Yet
mathematically, there are many interpretations to choose from under the
commonly encountered conditions of linear shading ! The image could arise
from any of the shapes shown in (b), under the proper lighting conditions,
which are indicated by the lighting direction arrow shown next to each shape.
How should one choose between these competing explanations?

One often considers only two criteria to evaluate an interpretation: how
well it accounts for the observed data, and the prior probability that the

In linear shading [41], the image intensity is a linear function of the local surface
gradient. For small surface slopes and low angles of illumination, linear shading is a good
approximation to Lambertian shading.
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interpretation would exist in the world. If each shape accounts equally well
for the image data, we are left with choosing based on the prior probabilities
for each shape. We could arbitrarily decide that we like bump shapes more
than tube shapes but we have no grounds for that. Such an arbitrary decision
could easily lead to an incorrect interpretation for some other image. What
is missing from this approach?

For the three tube-like shapes shown, there is a suspicious alignment be-
tween the inferred surface structure and the assumed light direction. This
seems unlikely, and we would like to include this coincidence in our probabil-
ity calculation. Fig. 3 (c¢) and (d) give an intuition for how we might measure
the accidentalness of the surface and light direction alignments. If we imag-
ine wiggling the assumed light direction slightly, we see that for the shape
of (¢), the image changes quite a bit. For the shape of (d), we can observe
the image of (a) over a much broader range of assumed light directions. If
the light had an equal chance of coming from each different direction then
there are more opportunities for the shape of (d) to have presented us with
the image (a) than there are for the shape of (¢).

We will quantify this intuition by taking derivatives. A small image in-
tensity derivative with respect to light direction means that the image will
look almost the same over a relatively large range of light angles. If all light
angles are equally likely, then the likelihood of a shape is proportional to
the range of light angles over which the shape looks nearly the same as the
image data. In our analysis, the image derivatives will result from writing
the image in a Taylor series in the generic variable.

In this way, we will exploit additional assumptions about the visual world.
To the prior assumptions about what is being estimated, we add assump-
tions about relationships between the object, the viewer and the light source
direction. This additional information may allow for weakening the prior
assumptions we need to make about the scene.

This approach, and the approximation we use, comes from the literature
of Bayesian statistics. Using the Taylor series approximates the likelihood
term of the posterior probability as a gaussian, which gives a Bayesian version
of the central limit theorem. This was done by Laplace ([33], cited in [1]),
in the 1800’s as well as Fisher [13] and Jeffreys [26] in the first half of this
century. Others have followed and extended this approach [7, 35, 29, 1, 20,
45, 37] (Berger [1] and MacKay [37] are particularly accessible references).

In the field of computer vision, Szeliski [46] applied maximum likelihood
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estimation to favoring interpolation parameters which could have generated
the observed data in many different ways. See Weinshall et. al. [48] for a
recent related non-Bayesian approach.
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Figure 3: (a) Perceptually, this image has two possible interpretations:
a bump lit from the left, or a dimple lit from the right. But under the
conditions of linear shading [41], each of the shapes shown in (b), under
shallow illumination from the direction indicated, could create the image
(a). (The boundary conditions used were those described in [41]). Shapes
2 — 4 require coincidental alignment with the assumed light direction. We
can distinguish between the explanations if we examine the image stability
to perturbations in light direction. Shape 3 presents the observed image for
a very small range of light angles (c), while shape 5 does for a much larger
range (d). The scene probability equation, which we derive in Section 2,
quantifies the degree of coincidence of the light direction and reconstructed
shape. Using light direction as the generic variable, and shape as the scene
parameter, the scene probability for each interpretation is plotted in (e).
Note the preference for the bump or dimple shapes, in agreement with the
appearance of (a).
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2 The Scene Probability Equation

In this section we derive the probability densities for scene parameters given
observed data. We describe the problem generally.

Let 4 be a vector of observations. This can be image intensities, or mea-
sures derived from them, such as spatial or temporal derivatives or normal
velocities. For simplicity, we will often call this “the image”.

Let the vector 5 be the scene parameters we want to estimate. This
vector can describe, for example, the object shape and reflectance function
or the image velocities.

Let @ be a vector of the generic variables—variables which we do not need
to estimate precisely. For the example of Fig. 3 this was the incident light
angle. Generic variables can include viewpoint position, object orientation,
lighting position, or texture orientation. For now we assume that the prob-
ability density of the generic variables ¥, Pz(Z), is flat:

Pe() =k (1)

where k is a normalization constant. (The notation P,(x) denotes the prob-
ability density of the variable a as a function of x. For brevity, we omit the
subscript for conditional probability functions.) We indicate later how to
generalize to the case of non-flat generic variable densities.

The scene parameters B and generic variables ¥ determine the ideal ob-
servation (image), ¥/, through a “rendering function”, f

y=[ZP) (2)

For the example of Fig. 3 the rendering function was the computer graphics
calculation which gave the image as a function of surface shape, 5, and
incident light angle, 7.

We postulate some measurement noise, although we will often examine
the limit where its variance goes to zero. The observation, ¥/, is the rendered
ideal image ¥ plus the measurement noise, 7:

g =i+ (3)

The noise specifies a distance metric between images—the probability that
the differences between the images are due to noise. We will assume that the
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measurement noise is a set of independent, identically distributed Gaussian
random variables with mean zero and standard deviation o. Thus P;(77), the
probability density function of the noise, is

. 1 —||7]|?
Pa(it) = exp I

S
i
N

where N is the dimension of the observation and noise vectors and ||77||* = 777

Given an observation gAf, we want to find P(B | gAf), the conditional proba-
bility of the parameters 3. We first use Bayes’ theorem to evaluate the joint

—

probability of 3 and a particular value of the generic variables, P(ﬁ, 7|y

. P(7| B,2)P+(B)Px(Z
PGT| ) = (y|ﬁpi(f)(ﬁ) ()7 5)

where we have assumed that 7 and B are independent. The denominator is
constant for all models B to be compared.

To find P(ﬁ, Z | ), independent of the value of the generic variable ¥, we
integrate the joint probability of Eq. (5) over the possible & values:

[ P31 3.7 Po() d. (6)

From our Gaussian noise model, Eq. (4), we have

L2 1 —|l7=F(z.8)|>
Py | B,7) = WG EE (7)

P(y | 3, #) is large where the scene 5 and the value ¥ yield a rendered
image similiar to the observation i. The integral of Eq. (6) measures the
area of ¥ for which the scene B yields the observation. In our example, it
effectively counts the frames in Figure 3 (c¢) or (d) where the rendered image
is similar to the input data. This will favor shape 5, for which the image
changes little over a range of light angles.

For the low noise limit, we can find an analytic approximation to the

—

integral of Eq. 6 [27, 5]. We expand f(&, 3) in Eq. (7) in a second order
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Taylor series,

—, — —,

F(@,5) ~ f(Z0,B) + > F1 18 — Toli + Z oi f7 18— Tl (8)

where [-]; indicates the ¢th component of the vector in brackets, and

7 af(fv g) .
fz' 8:1;2 | =To> (9)

and L.
17, 5)
6:1%6:1@
We take 7y to be the value of ¥ which can best account for the observed
image data; i.e., for which ||y — f(:i", B))H2 is minimized.
Using Eqgs. (7)—(10) to second order in & — 7y in the integral of Eq. (6),
we find the posterior probability for the scene parameters B given the visual

' = lz=a, - (10)

data 7"

P(g| ?7) -k eXp(_Hy_ZO(-vaﬂ)Hz) P@‘(g) ﬁ(m (11)

=k (fidelity) (prior probability) (generic view),

where the ¢ and jth elements of the matrix C are

— —, —

Coy =T = (T~ F(@0, ) - f",;. (12)

We call this the scene probability equation. We have combined the constants
which do not depend on the scene 5 into the normalization constant &, which
can be set so that the integral of P(B | gj’) over all 5 is one. Usually we
examine relative probabilities; then k& doesn’t matter. The rendering function
derivatives in Eq. (8) must exist for Eq. (11) to hold. Thus, we cannot apply
Eq. (11) to some idealized geometrical objects.

The scene probability equation Eq. (11) has two familiar terms and a
new term in computer vision. The term exp(%) penalizes scene

hypotheses which do not account well for the original data (hypotheses ﬂ for
which the squared difference of f(:z;o, ﬂ) from the image data i is large). We

MERL-TR-93-11b September 1994



11

call this the image fidelity term. (This may also be called the “likelihood of
Ty and B with respect to gAj'”) The prior probability term PB(B’) came from
Bayes’ law and incorporates prior assumptions. These two terms (the prior
and a squared error term) are familiar in computer vision. ——— is the

det(C)
new term, arising from the generic view assumption. If the rendered image

changes quickly with the generic view variables, then \/ﬁ will be large

. = . . . 1 .
and the scene hypothesis 3 will be unlikely. This rTel) term quantifies

our intuitive notion of generic view, and we call it the generic view term.
Note that the generic view term depends on the best value of the generic
variable, #y, as well as the scene parameter B, so it is not equivalent to
a prior on the scene parameter, which will only be a function of B The
scene probability equation gives the probability that a scene interpretation 5
generated the visual data, i, based on fidelity to the data, prior probability,
and the probability that the scene would have presented us with the observed
visual data.

This quantification of the genericity of a view follows established tech-
niques in Bayesian statistics. The matrix C is called the conditional Fisher
information matrix [13, 1]. It is used to approximate the likelihood locally as
a Gaussian [13, 26, 7] and can be used in integration over a loss function or in
marginalization [35, 1]. For example, Box and Tiao [6] employ this approxi-
mation when they integrate out nuisance parameters from a joint posterior,

1

as we have done here. Gull [19] calls NZETel) the Occam factor and he,

Skilling [45], and MacKay [37] use it as we have here and in other ways. This
factor also arises in the context of “non-informative priors” [26, 7, 1].

The case of only one generic variable and ||3A7— f(:z;o, 3) || = 0 shows the role
of the image derivatives more clearly. Then the scene probability equation
becomes: |

P(B[y) =k P33 (13)

) .
VoD

The probability of a parameter vector 5 varies inversely with the sum of the
squares of the image derivatives with respect to the generic variable.

In evaluating the Gaussian integral in Eq. (6) we assumed that the generic
variables were separable. Generic object pose in 3-d is an exception to that
and we derived the scene probability equation for that case in [14]. If the

MERL-TR-93-11b September 1994



12

prior probability of the generic variable were not constant then the factor
Pz(ap) would be included in the prior term of Eq. (11).

After finding P(B | gAj’), one can estimate a “best” value 5, after making
assumptions about the loss incurred by an incorrect estimate (see Section 6).
Alternatively, one can pass a representation of the entire probability density
function P(ﬂ | y) on to a higher level of processing.
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3 Shape from Shading Examples

We apply the scene probability equation to some problems in shape from
shading. Given a shaded image, lighting conditions and the reflectance func-
tion, there are many algorithms which can compute a shape to account for
the shaded image; see [22, 23] for reviews.

Most shape from shading algorithms require specification of the lighting
and object surface characteristics. There are a number of methods that
can infer these given more than one view of the object or other information
[25, 50, 18, 40, 52]. Finding the object shape from a single view without
these parameters is not a solved problem. Brooks and Horn [10] proposed a
more general scheme that iterated to find a shape and reflectance map that
could account for the image data.

However, accounting for image data is not enough. For some classes of
images, many shapes and reflectance functions can account equally well for
an image (although some images which are impossible to explain by Lam-
bertian shading have been found, [24, 9]). An infinite number of surface
and light source combinations can explain regions of 1-dimensional intensity
variations, since the solution just involves a 1-dimensional integration. The
rendering conditions of “linear shading” [41] can be invoked to explain any
image, as we discuss later. Thus, to explain a given image, one must choose
between a variety of feasible surface shapes, reflectance functions and lighting
conditions.

To make such choices, one could invoke prior preferences for the preferred
shapes or reflectance functions. Some shape from shading algorithms do this
implicitly by using regularizing functionals. However, if one relies too heavily
on the prior statistics to make decisions, that will bias the shape reconstruc-
tions. The scene probability equation enables one to use the generic view
assumption to choose between shapes and reflectance functions, lessening
the reliance on the priors.

We have not developed a shape from shading algorithm which uses the
scene probability equation directly. Rather, we use existing shape from shad-
ing algorithms ([2, 41]) to generate hypothesis shapes and use the scene
probability equation to evaluate their probability density. Future research
can incorporate the scene probability equation, or an approximation to it,
directly into a shape from shading algorithm.
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3.1 Reflectance Function

Fig. 4 shows an example of a 1-d image which can be explained by several
different shapes and reflectance functions. The image (a) may look like a
cylinder (c) painted with a Lambertian reflectance function (b) (shown on a
hemisphere). However, it could also have been created by the flatter shape
of (f), painted with a shiny reflectance function (e). If both interpretations
account for the data, how can we choose between them? We could invoke
prior assumptions about the probabilities of various shapes or reflectance
functions, but we would prefer a choice based on the image, not our prior
assumptions (see [39]).

Before applying the scene probability equation to this example, we pro-
vide intuitive motivation for the result. We can distinguish between the two
scene hypotheses if we imagine rotating them. The Lambertian shaded image
would change little for small rotations, while the shiny image would change
considerably, Fig. 4 (d) and (g). Thus, for the Lambertian solution, for a
large range of object poses we would see the image of Fig. 4 (a). For the
shiny solution, we would see that image over a smaller range of poses.

One might think that the images of rotated shiny objects would always
change more than those of Lambertian ones, since the diffuse reflection
changes slowly with surface orientation. However, Fig. 5 shows that this
is not the case. The image data, Fig. 5 (a), may look like a shiny cylinder,
but, again, it can be explained by either a Lambertian reflectance function,
shape (c) painted with (b), or a shiny one, the shape (f) painted with (e).
Note that the shape for the Lambertian function is taller than that of the
shiny reflectance function. When we rotate both shapes, in Fig. 5 (d) and
(g), it is the image of the Lambertian shape, (c), which changes more than
that of the shiny one (f), because of the parallax induced as the tall shape
moves back and forth.

To quantify these intuitions, we can apply the scene probability equation
to distinguish between these shapes and reflectance functions. Our observa-
tion i is the image data. The parameter B we wish to estimate is the shape
and reflectance function of the object. We use a two variable parameter-
ization of reflectance functions, a subset of the Cook and Torrance model
[11]. The parameters are surface roughness, which governs the width of the
specular highlight, and specularity, which determines the ratio of the diffuse
and specular reflections. Fig. 6 gives a visual key.
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We want to use the scene probability equation, Eq. (11), to evaluate the
probability P(B | gj’) for each reflectance function in our parameterized space.
A shape exists for each reflectance function which could have created the 1-d
images of Fig. 4 (a) and Fig. 5 (a). (For each shape we assumed boundary
conditions of constant height at the vertical picture edge). We will consider
only shape and reflectance function combinations which exactly account for
the image data. Then the fidelity term in Eq. (13) for P(B | 4) is 1. For this
example, we will assume a flat prior for the reflectance functions and shapes
as parameterized, Pﬁ(ﬁ) = ¢. We used a shape from shading algorithm [2] to
find the shape corresponding to each reflectance function.

Now we consider the generic view term. We will use both the vertical
rotation of the object and the vertical light position as the generic variables.
We need the derivative of the image intensities, I, with respect to the rotation
angle, ¢. This derivative is a special case of a formula given in [14],

dl 01 om 5
=l ) (1)

where ¢ = %, X and Y are Cartesian image coordinates, Z is the surface

height, and m is the reflectance map. We calculated numerically the image
derivative with respect to light position. For the z value of the axis of rotation
we used the value which minimized the squared derivative of the image with
respect to object rotation angle.

Using the above in the scene probability equation, we plot in Fig. 7 (b) and
(d) the probability that each reflectance function and corresponding shape
generated the 1-d images, shown again in Fig. 7 (a) and (c). Note that for
each image, the high probabilities correspond to reflectance functions which
look (see Fig. 6) more like the material of the image patches in Fig. 7 (a) and
(c). We have successfully evaluated the relative probabilities that different
reflectance functions and shapes created a given image. Note this was done
from a single view and for a case where the reflectance function is otherwise
completely unknown.
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Figure 4: The image (a) may appear to be a cylinder (c) painted with
a Lambertian reflectance function (b) (shown on a hemisphere). However
the flatter shape of (f) and a shiny reflectance function (e) also explain
the data equally well. We can distinguish between the competing accounts
for (a) by imagining rotating each shape. Images of each shape at three
nearby orientations are shown in (d) and (g). We see that the image made
assuming a Lambertian reflectance function (b) is more stable than that
made assuming a shiny reflectance function (e). If all object angles are
equally likely, and the shapes and reflectances of (c¢) and (f) are equally
likely to occur in the world, then (c) should be a more likely interpretation

of (a) than (f).
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Figure 5: The image, (a), can be accounted for in two different ways. The
shape (c) and the Lambertian reflectance function shown in (b) will create
the image (a), as will the shape (f) and a shiny reflectance function (e).
We can distinguish between the shiny and Lambertian explanations for (a)
if we imagine rotating each shape. (d) and (g) show each shape at three
different orientations. The image made from the shiny reflectance function,
(e), changes only a little, while the parallax caused by the rotation of the
tall shape of the Lambertian solution causes a larger image change. The
reflectance function of (e) provides more angles over which the image looks
nearly the same. If all viewpoints are equally likely, and the shapes and
reflectances of (¢) and (f) are equally likely to occur in the world, then (f)
should be more likely than (c). The scene probability equation makes this

precise.
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Figure 6: Key to reflectance function parameters of Fig. 7. Reflectance
functions are displayed as they would appear on a hemisphere, lit in the
same way as Fig. 7 (a) and (c). The ratio of diffuse to specular reflectance
increases in the vertical direction. The surface roughness (which only af-
fects the specular component) increases horizontally. The sampling incre-
ments are linear for specularity and logarithmic for roughness.
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relative
probability

Figure 7: (a) Input image. (b) Probability that the observed image (a)
was created by each reflectance function and corresponding shape. The
probabilities are highest for the reflectance functions which look like the
dull cylinder. See Fig. 6 for a visual guide to the reflectance function pa-
rameters of plots (b) and (d). (c) Input image. (d) Probability that (c)
was created by each reflectance function and shape. The probabilities are
highest for the reflectance functions which look like (see Fig. 6) the shiny
cylinder. All reflectance functions were assumed to be equally likely and
all can account for the image data equally well. The distinctions between
reflectance functions came from the generic view term of the scene proba-
bility equation.
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3.2 Why the Prior Probability Is Not Enough

Fig. 8 shows an example where both the fidelity and prior probability terms
favor a perceptually implausible explanation. The generic view term biases
the probabilities toward the plausible explanation. Fig. 8 (a) shows an image,
and (b) and (c) are two possible explanations for it. (The vertical scale of
(b) is exaggerated by 7). (We made this example by construction. Gaussian
random noise at a 7 dB signal to noise ratio was added to (e) to make (a). (b)
was found from (a) using a shape from shading algorithm, assuming constant
surface height at the left picture edge [2]. We evaluated the probabilities of
(b) and (c) assuming both generic object pose and generic lighting direction.
The strength of a prior preference for smooth surfaces is arbitrary and none
was included in the final densities. The actual noise variance was used for o?
in the fidelity term of Eq. (11), although a wide range of assumed variances
would give the preferences described here).

Perceptually, Fig. 8 (c) seems like a better explanation of (a), even though
it doesn’t account for all the noise. The fidelity term of the scene probability
equation Eq. (11) favors Fig. 8 (b). Without the generic view term, the only
term left to bias the probability of an interpretation is the prior probability.
A typical prior is to favor smooth surfaces, which again would favor the
peculiar shape (b), since (b) is much smoother than (c), as measured by the
squared second derivatives of the surfaces.

What is missing from that framework is some way to penalize the precise
alignment between the light source and the object which is required the get
the image (d) from the shape (b). While the shape (¢) doesn’t account for
the noise, it gives an image that is more stable with respect to object or
lighting rotations. By the criterion of the scene probability equation, (c)
has a higher overall probability density than interpretation (b). Fig. 8 (¢)
also corresponds more closely to one’s visual perception of the object. Using
the scene probability equation, we can recognize interpretations which are
less faithful to the image data, yet more likely to have created the observed
image.
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Figure 8: The image in (a) can be explained by the surface (b), lit from the
left (vertical scale exaggerated by 7). When rendered, that shaded shape
accounts well (d) for the input image, but the object and the light source
must be precisely positioned. Shape (c¢) is another possible interpretation.
When lit from above, it does not account for the noise of the input image, as
shown in (e). Both the fidelity and the typical prior of surface smoothness
favor interpretation (b) over the shape (c). It is the generic view term of
the scene probability equation which lets us penalize the precise alignment
required for shape (b) to produce image (d). The relative values of the
fidelity and generic view terms are shown in (f). The large generic view
contribution of shape (c) gives it a higher overall probability, in accord with
the human perception in preferring interpretation (e).
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4 Relationship to Aspect Graphs

Aspect graphs [31, 32] also incorporate viewpoint information in a visual
analysis. It is useful to compare the aspect graphs with our Bayesian ap-
proach. To make an aspect graph, one divides all possible views of an object
into categories. A view is accidental if it lies “between” categories.

We re-draw the aspect graph Figure 9 (a) as a plot of image category as
a function of viewpoint position in (b). This corresponds to a plot of the
image data f(x, /) as a function of the generic variable « in (c).

Knowing Pz(¥), we can use Eq. (6) to find the probability of observing a
particular aspect category, Fig. (9) (d). We integrate the distance in = over
which the output f(x) is that category. We do the same when we evaluate
Eq. (6) analytically to arrive at the scene probability equation, Eq. (11).
The analytic approximation preceeding Eq. (11) would fail for the categor-
ical descriptions, for which the image category is piecewise constant over
object pose. Then the denominator of the analytic approximation goes to
zero. Thus we see that the aspect graph and scene probability equation ap-
proaches are complementary. They can perform a similar calculation of view
probabilities, but in complementary domains.

5 Comments about the scene probability equa-
tion

We derived the scene probability equation for the case of Gaussian observa-
tion noise. There is some physical justification for this, since Gaussian noise
is the limiting case of a sum of independent random variables. However, to
study the effect of assumed noise distribution, we can consider a different
noise distribution for the problem of Figure 3. We consider uniformly dis-
tributed zero mean observation noise of amplitude v, identically distributed
at each pixel. Then P(¥ | B, Z) will be zero when any pixel of the rendered
scene, f(ﬁ, 7), differs from the observed image gAj’by more than ~. Other-
wise P(y | 5, Z) = ¢, a constant. Using the first order Taylor series term of

Eq. (8), we find that the value of the integral of Eq. (6) for P(B | /) varies
inversely with the magnitude of largest derivative at any pixel value. We cal-
culated this for the example of Figure 3; the results are shown in Figure 10.

MERL-TR-93-11b September 1994



24

As with guassian noise, the result favors the bump and dimple explanations.
However, for this case of uniform noise, the different shape explanations are
closer to equally probable. Thus we see that the assumed observation noise
can change posterior probabilities. The uniform observation noise of Fig. 10,
which implies an image metric based on the single pixel of largest difference,
may be a poor choice.

The Gaussian noise which we assumed to derive the scene probability
equation has drawbacks, as well. For independent, additive Gaussian noise,
the probability that the difference between two images was caused by noise
depends only on the sum of the squared differences between the images. Such
a mean square error image distance metric is well known to be an imperfect
measure of perceptual distance between images (e.g. [44]). The posterior
probabilities of shapes 2—4 of Figure 3 (e) were larger than might be expected.
Our Gaussian noise model may account for that. The long, linear structures
of the difference images of Figure 3 (¢) are extremely visible to people, yet not
particularly improbable to the noise model. A more perceptually based image
distance metric may assign greater penalty to shapes 2—4. For example, one
might expect improved results by scaling the variance of the gaussian noise by
a measure of the local image contrast. This would make image changes more
visible in low-contrast regions than in high-contrast regions, analogously with
human perception. This would give additional penalty to the tube shapes
of Figure 3 (b) , since, when the light source moves, they introduce small
changes in low-contrast regions of the image.

There is a potential computational concern regarding the scene probabil-
ity equation. The approximation we made to Eq. (6) requires that we find
Zo, the value of & which minimizes ||y — f(:i", B))H2 This may be simple for
some generic variables. It was for our examples of object pose or illumination
direction, and it is for problems with bilinear structure [8]. There could be
cases, however, where this was a non-trivial optimization problem.

Finally, there may be cases where the denominator of the generic view
term of the scene probability equation goes to zero when image derivatives
with respect to the generic variables go to zero. This indicates that the
approximation for the integral in Eq. (6) no longer holds. The alternative
formulation of the next section avoids this problem.
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6 Relationship to Loss Functions

Another point of view from which to examine this work is that of Bayesian
loss functions. I came to this viewpoint in the course of joint work with D.
Brainard on a Bayesian approach to color constancy [8]. Independently, A.
Yuille and H. Bulthoff [51] have applied a related loss function analysis.

In the scene probability equation, we split world parameters into generic
and scene parameters. We indicate that we do not care about the values of
the generic variables by integrating the joint posterior over those variables.
However, sometimes we may be interested in estimating the generic variables
to rough accuracy. Bayesian loss functions provide a framework in which to
specify these desired accuracies precisely.

Suppose we have a posterior distribution P(Z]y) on a vector variable &
given the observation 7. In Bayesian decision theory (e.g., [1]), one defines
a loss function, L(Z,d), which is the penalty for guessing @ when the real
value of the variable to be estimated is #. From the posterior P(¥|y), one
can calculate the posterior expected loss, L(@,7), for making the decision @,
conditioned on the observation data 7, as

L(@,7) = /fL(:Z;’, &) P(Z|7) dz. (15)

An observer will want to know what value of @, call it :;Z", minimizes the
expected loss.

Figure 11 shows four loss functions of particular interest, illustrated for
a hypothetical 2-dimensional parameter space. All the loss functions we
consider are of the form L(¥,d) = L(¥ — d), and the expected loss Eq. (15)
is a convolution of the loss function with the posterior.

A quadratic loss function, L(Z,d) = |7 — d|*, Fig. 11 (a), has many
mathematically appealing properties. For example, the center of mass of the
probability is the unique global minimum of the expected loss. However, its
penalty increases without bound. It seems that a loss function for the task
of perception ought to give equal penalty to all obviously wrong answers.

The commonly used MAP estimator corresponds to a minus delta func-
tion loss, L(Z,d) = 6(¥—d). Recall that MAP estimation uses the maximum
of the posterior distribution as the estimate for #. This loss function says
every guess which is not correct to infinitely high precision carries the same
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loss. Only ezactly the right answer counts. Such a requirement for accuracy
is not realistic for perception problems.

Figure 11 (¢) shows a loss function related to the generic view approach of
this paper. We let the parameter vector ¥ be composed of a scene parameter
vector, ¥, stacked on top of a generic variable vector, ¥, (these were B and
Z, respectively, in the notation of the other sections). The scene probability
equation implicitly assumes a constant loss over all values of the generic
parameters. Thus L(#,d) = F(Z3 — ds), where F' is some function of the
scene parameters. To see how this assumption was made, note that in Eq. (6)
we integrated over all values of the generic variables. This corresponds to the
integration of the expected loss integral of Eq. (15) where L(Z, d) is constant
over the generic parameters. For the generic view work, we did not specity
the loss function F(Z3 — dg) to be applied to the scene parameters. Figure
11 (c) shows a delta function loss in that dimension.

Our approximation of Eq. (8) means that we only evaluate the integral
Eq. (15) over a local area of the generic variable parameter space. Thus
in practise, we only consider the effect of a small variation in the generic
variables.

A potentially appealing compromise between these loss functions is what
we call a minus “local mass” loss function [8]. We define

L(7,d) = —enr @D’

(16)
(Yuille and Bulthoff independently proposed the same loss function [51]).
This function rewards getting approximately the right answer, and penalizes
all wrong answers beyond several standard deviation with essentially equal
penalty. The scalar variance p? in Eq. (16) easily generalizes to a matrix.
The local mass function can offer advantages over the generic view loss
function. It does not require the separation of variables into generic and
scene parameters; both are explicitly estimated. We performed an asymptotic
expansion to evaluate the integral of Eq. (6). A similar expansion may be
used to find the expected loss for the local mass loss function. The asymptotic
expansion used for Eq. (6) does not hold when the derivatives f’ and f_;’ go to
zero, but the analogous approximation for the local mass loss function does
not have this problem. Substituting Eqs. (5), (7), and (16) into Eq. (15),
redefining ¥ to subsume B and assuming o small [27, 5], we have for the
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expected loss:

P — |7 = J(Z)|? L 1
L(Z, 1) =k P; 17
) =k e (W20 i) s 01T
where )
Ciy = .]?/2 : f/j — (7 — J?(fo)) : f_;/ij + %52'1‘7 (18)

and ¢;; are the elements of the identity matrix. Note that the above equations
are nearly the same as the scene probability equation, Eq. (11), except that
¥ now refers to a combined vector of generic and scene parameters. Also,
here, 7o, a function of Z, is

To = argmin|lg — f(E)]" + ?Hf — Z||°] (19)

The constant % in Eq. (18) allows for use of Eq. (17) even in cases where the

image derivatives f’ and f_;’ are zero. Eq. (17) allows explicit estimation of
generic variables as well as scene parameters, since they are both combined
into the variable #. Figure 12 illustrates graphically the relationship between
the integrations used to obtain scene probability equation, Eq. (11), and the
expected local mass loss, Eq. (17). The two equations reflect the similarities
shown graphically.
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Figure 9: Comparison of aspect graphs and the present approach, for 1-d
examples. (a) Hypothetical aspect graph of an object in a world where the
viewpoint can only translate in one dimension. (b) The function relating
viewpoint position, z, with aspect category is piecewise constant. In our
continuous valued approach, the visual data is treated as a continuous
function of viewpoint, , plotted in (c). (d) Assuming generic viewpoint,
the length of the viewpoint variable & for which f(z) yields a given aspect
category gives the probability of that aspect category. (e) For the scene

probability equation, the local slope of d{lgf) influences the probability of
the observation f.
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P(X)
Y Y
X —»
uniform measurement noise 1 2 3 4 5

Figure 10: Relative probabilities of the 5 shapes of Figure 3, under the
assumption of uniformly distributed observation noise. (In the analysis of
Figure 3, we assumed Gaussian noise). For the model of uniform noise, the
probability is based on the single pixel with the highest intensity deriva-
tive with respect to light direction. While favoring the bump and dimple
interpretations, this noise model provides less discrimination between the
shapes than does the gaussian noise model. Under the assumption of uni-
form noise, these probabilities are set by the single pixel with the largest
intensity derivative with respect to the generic variable, in this case light-
ing direction. Discrimination between the shapes might be increased if
noise detectability were made to be a function of local image contrast, as
described in the text.
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Figure 11: Four loss functions for a 2-d parameter space. (a) Quadratic
loss function. The loss becomes unbounded as the error increases. (b)
Minus delta function loss. A constant penalty is incurred for all but exactly
the right answer. (c¢) Our generic view assumption was equivalent to a
constant, extended loss function in the generic variable direction, such as
shown here. In this chapter we did not specify the loss function in the scene
parameter direction, which is shown as a negative ¢ function in the figure.
(d) Minus “local mass” loss function. Small deviations from the correct
answer are rewarded. Incorrect answers are penalized with a saturating

penalty strength.
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generic variable
integration

/Iocal mass function

7%,

|
posterior probability Xo

<—— (eneric variable, X ——»

Figure 12: Similarity between marginalization of generic variable, used to
derive Eq. (11), and the expected loss for a minus local mass loss function,
used to derive Eq. (17). The shaded curve is the posterior probability.
Typically, for a given scene interpretation, it will be high only over a narrow
range of the generic variable, as shown. The marginalization integral over
the generic variable measures the probability mass under the wide rectangle
shown. The expectation integral for the local mass loss function measures
the area under the gaussian function shown. For local mass functions much
broader than the posterior probability spikes, these can give nearly the
same answer.
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7 Summary

It is often the case that there is more than one explanation for given visual
data. In those cases, assumptions about the world must be used to break
ties. The generic view assumption has commonly been used to categorize
scene interpretations as either “generic” or “accidental”. Here we apply
this powerful assumption in a complementary domain, exploiting it to make
quantitative judgements about scene parameters. We show how to invoke
the assumptions of generic viewpoint, lighting, or object pose to estimate
parameter values of scene interpretations. This approach removes some of
the decision-making burden from the prior assumptions about the objects
being estimated, for example, surface shape.

The input can be greyscale images or other visual data. We divide world
parameters into two types, scene parameters, which we want to estimate,
and generic parameters, which we do not. Following an approach taken in
other application areas of Bayesian statistics, we write the image in a Taylor
series expansion of the generic variables and integrate over the probability
densities of the generic variables. The resulting scene probability equation
gives the probability of a set of scene parameters, given an observed image.
It has three major terms:

a fidelity term, which requires that the scene parameters explain the
observed visual data;

the prior probability, which accounts for prior assumptions about the
scene parameters;

the generic view term, which quantifies how accidental our view of a
particular scene is. It indicates the chance that a given scene would
have presented us with the observed image.

We show various applications to shape from shading. The scene prob-
ability equation gives the probability of different reflectance functions and
shapes for a given image. We assign relative probabilities to different shapes,
each of which would generate the observed image, for different assumed light
directions. The generic view term in the scene probability is important; one
can have a shape from shading solution which is faithful to the data, but
unlikely, and one which is less faithful but more likely.
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The loss functions of Bayesian decision theory encompass our generic
view framework as a special case. We present a modified version of the scene
probability equation which applies for the case of a minus “local mass” loss
function. This version of the scene probability equation avoids some problems
where image derivatives go to zero and allows estimation of generic as well
as scene parameters.

This Bayesian approach may have many applications in vision. The scene
probability equation derived in this paper ranks the relative probability den-
sities of different scene interpretations. From such an equation, one may
derive algorithms which find an optimum scene interpretation. This may
result in more powerful or more accurate algorithms for such problems as
shape from shading, motion analysis, or stereo.
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