
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Establishment of Isolated Failure Immune
Real-Time Channels in HARTS

Qin Zheng, Kang G. Shin

TR93-10 December 1993

Abstract

Fault-tolerant, real-time communication is very important yet difficult to achieve. Traditional
protocols like the TCP/IP achieve reliable communication through acknowledgment and retrans-
mission schemes, where one gains the reliability at the cost of performance. In this paper, we
discuss how this problem can be solved by using the concept of real-time channel and exploring
the inherent spatial redundancy of a given network topology. Specifically, we will show how
isolated failure immune real-time channels can be established in wrapped hexagonal mesh net-
works, thus ensuring timely delivery of messages in the presence of network component failures
as long as the failures are isolated. This kind of fault-tolerance cannot be achieved with other
commonly-known topologies like rings, rectangular meshes, and hypercubes. The proposed ap-
proach is to be implemented in an experimental distributed real-time system called HARTS.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1993
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Mitsubishi Electric Research Laboratories

Cambridge Research Center

Technical Report 93-10 June 8 1993

ESTABLISHMENT OF ISOLATED FAILURE IMMUNE

REAL{TIME CHANNELS IN HARTS

by

Qin Zhengy and Kang G. Shinz

yMitsubishi Electric Research Laboratories, Inc.
201 Broadway

Cambridge, MA 02139

zReal-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

Abstract

Fault-tolerant, real-time communication is very important yet di�cult to achieve. Traditional
protocols like the TCP/IP achieve reliable communication through acknowledgment and re-
transmission schemes, where one gains the reliability at the cost of performance. In this paper,
we discuss how this problem can be solved by using the concept of real-time channel [1] and
exploring the inherent spatial redundancy of a given network topology. Speci�cally, we will
show how isolated failure immune real-time channels can be established in wrapped hexagonal
mesh networks which ensure timely delivery of messages in the presence of network component
failures as long as the failures are isolated. This kind of fault-tolerance cannot be achieved
with other commonly-known topologies like rings, rectangular meshes, and hypercubes. The
proposed approach is to be implemented in an experimental distributed real-time system called
HARTS [2].

Submitted to IEEE Transactions on Networking.

201 Broadway
Cambridge Massachusetts 02139

Publication History:-

1. First printing, TR 93-10, June 1993

Copyright c Mitsubishi Electric Research Laboratories, 1991

201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonpro�t educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the
copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories. All
rights reserved.

1 Introduction

Reliable and timely delivery of messages in point{to{point packet-switching networks has long
been a challenge to system designers. To avoid unpredictable queueing delays at transmission
links/nodes, real-time messages are usually transmitted along a pre-determined path on which
the network resources are reserved to guarantee the actual delivery delay to be less than a pre-
speci�ed bound. Examples include circuit-switching transmission, synchronous transmission
mode (STM), and the recently-proposed real-time channel [1, 3, 4]. Sending messages along a
static path, however, reduces the fault-tolerance of real-time tra�c, since a node/link failure in
the path would disable the channel that runs over the path.

To alleviate this problem, Zheng and Shin [5] proposed a semi-dynamic routing scheme
for real-time channels. By reserving resources at some extra links and nodes, these real-time
channels with extra links and nodes can tolerate any single node/link failure in the network.

Making a real-time channel more robust than just tolerating a single failure turns out to be
very di�cult and requires reservation of signi�cantly more network resources. In the Real-time
Computing Laboratory of the University of Michigan, we have been exploring various network
topologies to solve this problem and have found a wrapped hexagonal mesh [6] to be isolated
failure immune (IFI). An IFI real-time channel guarantees the timely delivery of messages in
the presence of network component failures as long as the failures are isolated with respect to
the channel. Node failures are said to be isolated with respect to a real-time channel if the
source and destination nodes of the channel are not faulty and any two faulty nodes in the
channel are not adjacent. Link failures (a link failure is caused by either the failure of the link
itself or the failure of the node which the link leads to) are said to be isolated if any two faulty
links are not originated from the same functioning node or directed to the destination node.
Fig. 1 shows four types of non-isolated component failures. Another two types of non-isolated
failures are the failures of the source and destination nodes. Fig. 2 shows an example of an IFI
channel from node 1 to node 6 and one pattern of tolerable isolated failures.

The isolated failure immune problem for undirected networks was �rst discussed in [7] where
the authors proved that a 2-tree1 is a minimum IFI network. In other words, any IFI network
must contain a spanning 2-tree. This result excludes almost all commonly-used network topolo-
gies (e.g., rings with more than 3 nodes, rectangular meshes/cubes, and hypercubes) from the
candidate set of IFI networks, except for the hexagonal mesh.

An IFI real-time channel has the following advantages over a basic real-time channel:

High Reliability: The channel can tolerate a large number of component failures as long as
they are isolated. For example, the IFI channel shown in Fig. 2 can tolerate as many as
7 faulty links and 2 faulty nodes, which represent 70% of the links and 33% of the nodes
that the channel runs through.

Easy Failure Detection: Non-isolated failures in the network can be easily detected using
only local information, i.e., the status of a node's own links and its neighbor nodes. This
makes the system maintenance extremely easy. A node can safely shut down one of its
links or itself by checking the status of its links and neighbor nodes.

Accommodation of Emergency Messages: A path between any pair of nodes in a network
can always be constructed using only those links whose failure will not cause non-isolated
failures. So, in the absence of network component failures, it is always safe to break

1A 2-tree can be constructed as follows. Two nodes connected by a link is a 2-tree. A new node can be added

to a 2-tree by connecting it to two neighboring nodes in the 2-tree.

1

(a) (b)

(c) (d)

destination

Figure 1: Four types of non-isolated component failures. (a) Two faulty
nodes which are adjacent. (b) Two faulty links which originate from the same
functioning node. (c) Same as (b) except that one link is made unusable
(thus regarded faulty) by the failure of another node. (d) Two incoming
faulty links of the destination node.

down some links of existing IFI real-time channels and use their full link transmission
bandwidth to handle emergency messages.

This paper is organized as follows. For completeness, the HARTS topology and its routing
algorithm are reviewed in Section 2. The concept of real-time channel is also briey discussed
there. Section 3 presents the schemes of establishing isolated failure immune real-time channels
in HARTS. The paper concludes with Section 4.

2 HARTS and Real-time Channels

HARTS is an experimental distributed real-time system currently being built in the Real-Time
Computing Laboratory of the University of Michigan [2]. As shown in Fig. 3, the interconnection

1

2

3 4

5 6

source

destination

Figure 2: An IFI channel and one pattern of tolerable link/node failures.

2

 17

 14 15 16

 6 7 8 9

 18 0 1 2

 10 11 12 13

 3 4 5

 13

 2 3 3 4 4 5

 17

 17

 10

 13

 5

 5

 16

 9

 10

 3

 14

 14

 6

 6

 17 16 16 15 15 14

 2

 2

 9

17

X

Y

Z

Figure 3: A wrapped hexagonal mesh of size 3.

network of HARTS is a wrapped hexagonal mesh which can be de�ned as follows.

De�nition 2.1 Let [a]b denote a mod b. Then a wrapped hexagonal mesh of size n (or the
number of nodes on each peripheral edge) is composed of N = 3n(n� 1)+1 nodes, labeled from
0 to N � 1, such that each node s has six neighbors [s+1]N ; [s+3n(n� 1)]N; [s+3n� 2]N; [s+
3n2 � 6n+ 3]N ; [s+ 3n2 � 6n+ 2]N ; and [s+ 3n � 1]N ; in the X;�X; Y;�Y; Z;�Z directions,
respectively.

It was proved in [6] that a wrapped hexagonal mesh is homogeneous. Consequently, any
node can view itself as the center of the mesh. Let mx; my, and mz be, respectively, the number
of hops (negative values mean the moves in negative directions) from the source node to the
destination node along the X; Y; and Z directions on a shortest path. The following routing
algorithm [6] determines the values of mx, my, and mz for the shortest paths from a source
node s to a destination node d in a wrapped hexagonal mesh of size n:

Algorithm 2.1 (Routing in HARTS) .

Step 0. Set mx := 0; my := 0; mz := 0. Let p = 3n2� 3n� 1; k = (d� s) mod p; r = (k�n)
div (3n� 2); t = (k � n) mod (3n� 2).

Step 1. If k < n then set mx := k, stop. Else if k > 3n2�4n+1 then set mx = k�3n2+3n�1,
stop. Else goto Step 2.

Step 2. If t � n + r � 1 then

3

� If t � r then set mx := t � r; mz := n � r � 1, stop.

� If t � n � 1 then set mx := t � n + 1; my := r + 1� n, stop.

� Else set my := r � t; mz := n � t � 1, stop.

else

� If t � 2n� 2 then set mx := t+ 2� 2n; my := r + 1, stop.

� If t � 2n+ r � 1 then set mx := t � 2n� r + 1; mz := �r � 1, stop.

� Else set my := 2n+ r � t� 1; mz := 2n� t� 2, stop.

To send a packet, the source node calculates mx; my; mz using the above algorithm. It
then sends the packet to an appropriate neighbor. Intermediate nodes update these values to
indicate the remaining number of hops to take in X , Y , and Z directions before forwarding
the message. Hence mx = my = mz = 0 indicates that the packet has reached its destination.
The readers are referred to [6, 2] for a detailed account of the wrapped hexagonal mesh and its
routing algorithm.

To meet the requirement of real-time communication, the HARTS communication subsystem
is designed to support real-time channels [8]. A real-time channel is a simplex virtual connection
between the source and destination nodes which guarantees the delivery of packets within a
user-speci�ed end{to{end delay bound. Two techniques are used to achieve this goal: admission
control of channels and deadline scheduling of packet transmissions.

Admission control requires those processes requesting real-time communication to establish
real-time channels before starting packet transmission. A channel-establishment request may
be accepted or rejected, depending on the current network-load condition. Admission control is
necessary because packet-delay bounds cannot be guaranteed without controlling the network
load.

Packet transmissions are scheduled as follows. Real-time packets have a higher transmission
priority than non real-time packets. Each real-time packet is assigned a deadline over each link
it traverses which is determined according to the packet's generation time at the source node
and the delay bounds di's assigned to the links of the real-time channel. When several real-time
packets contend for use of the same link, the packet with the earliest deadline is transmitted
�rst. The advantages of using deadline scheduling are the minimization of contention delays
and protection between established channels [3, 4].

To set up a real-time channel, the requesting process must determine two parameters, T and
C, specifying its tra�c generation pattern, where T is the minimum packet inter-generation time
and C is the maximum packet transmission time (directly proportional to the maximum packet
length). It is reasonable to assume prior knowledge of these parameters for many real-time
applications, such as interactive voice/video transmission and real-time control/monitoring. In
other applications where the tra�c pattern is less predictable, the estimated values of T and C

could be used. A process may exceed its pre-speci�ed maximum packet generation rate at the
risk that its packets may be delivered with delays longer than the pre-speci�ed bound or may
even be discarded, but due to the deadline scheduling of packet transmissions, this particular
process will not a�ect the guarantees of the other existing channels.

The process then sends a channel establishment request message containing T and C to-
gether with the end{to{end packet delay bound D and addresses of the source and destination
nodes to a special node containing the Network Manager (NM), which maintains the informa-
tion of all existing channels and executes the channel establishment algorithm of [3, 4] to check
if the requested channel can be established over a speci�ed route under the current network

4

load condition. If the channel can be established, the algorithm also calculates the link delay
bounds dj's which will be used to determine the deadlines of the channel's packets.

Readers are referred to [1, 9, 3, 4] for a detailed discussion of real-time channels.

3 Isolated Failure Immune Real-Time Channels in HARTS

This section discusses how real-time channels can be enhanced to be Isolated Failure Immune
(IFI) in HARTS. The �rst step is to �nd an IFI path, which is de�ned as a subnetwork containing
a directed path from the source to the destination in the presence of any isolated failures. Let
dS(v1; v2) denote the minimum number of hops (i.e., distance) from node v1 to node v2 in a
network S. The following theorem gives a su�cient condition for S to be an IFI path from a
source node vs to a destination node vd in a general directed network.

Theorem 3.1 A subnetwork S containing the source node vs and the destination node vd is
an IFI path from vs to vd if

C1 Every node v 2 S; v 6= vd, has at least two outgoing links to two other nodes, say v1 and v2,
such that dS(v1; vd) < dS(v; dd), dS(v2; vd) � dS(v; vd), and v1, v2 are adjacent,

C2 There is no loop in S whose nodes are all of the same distance d > 1 to the destination
node vd.

Proof: From C1, every node v 2 S except the destination node has two outgoing links l1
and l2 which lead to a pair of adjacent nodes v1 and v2, respectively. Then, a packet will be
blocked at node v only if (1) both l1 and l2 are disabled, or (2) both v1 and v2 are disabled, or
(3) l1 and v2 are disabled, or (4) l2 or v1 are disabled. All these situations represent non-isolated
failures. Thus, in the absence of non-isolated failures, a packet from the source node can always
progress unless it has reached the destination. Further, C1 ensures a packet will not move away
from the destination and C2 ensures that a packet will not move forever without reaching the
destination node or circling in a loop in which each node is directly connected to vd. Since vd
can not have more than one faulty incoming link, we conclude that a packet from the source
node can always reach the destination node. 2.

From the above theorem, we see that each node in an IFI path needs only two outgoing
links. We call one of them the primary link and the other the secondary link.

The primary link is the one which leads to a node closer to the destination. One can
choose the primary link from the shortest path as determined by Algorithm 2.1. In case there
exist multiple choices, i.e., more than one of mx; my; mz are non-zero, we will use the following
algorithm to select a primary link L.

Algorithm 3.1 (Selection of the primary link L) .
Let abs(x) and sign(x) denote the absolute value and the sign of x, respectively, and let

X; �X; Y;�Y; Z; �Z denote the outgoing links of a node along the six di�erent directions.
Then,
If abs(mx) > 1 then set L := sign(mx)X
else if abs(my) > 1 then set L := sign(my)Y
else if abs(mz) > 1 then set L := sign(mz)Z
else if abs(mx) = 1 then set L := sign(mx)X
else if abs(my) = 1 then set L := sign(my)Y

5

else if abs(mz) = 1 then set L := sign(mz)Z.

The logic behind the above algorithm is that one should �rst select the primary link in the
direction which is more than one hop away from the destination. If there are more than one
such directions, the primary link is selected in the order of X, Y, Z. On the other hand, if there
are no such directions, the primary link is selected in the direction which is one hop away from
the destination in the order of X, Y, Z. As will be clear later, the selection of the primary
links in this speci�c way will facilitate the determination of the secondary links and reduce the
number of nodes/links of the resulting IFI channel.

In a wrapped hexagonal mesh network, to ensure that the secondary link does not lead to a
node which is farther away from the destination, it must be either 60 degree above or 60 degree
below the primary link.2 We use the notation L+1 to denote the link which is 60 degree above
L, and L � 1 the one which is 60 degree below L. For example, if L = X , then X + 1 = �Z
and X � 1 = �Y .

Let node[i] denote the ith node of an IFI path, and node[i]:p and node[i]:s denote the node's
primary and secondary links, respectively. We propose the following algorithm to construct an
IFI path from vs to vd.

Algorithm 3.2 (Construction of an IFI path) .

Step 1. Calculate mx; my; mz for the source node vs using Algorithm 2.1. Notice that at most
two of them can be non-zero.

Step 2. Set i := 1 and node[1] := vs. Set the initial rotating direction for the secondary link
R := 1 if one of the following is true: (1) abs(my) > abs(mx) = 1, (2) abs(mz) �
abs(my) = 1, (3) abs(mx) > 1, mz 6= 0, and (4) abs(mx) = abs(mz) = 1. Otherwise, set
R := �1.

Step 3. Calculate the primary link L(i) using Algorithm 3.1. If i > 1, L(i) 6= L(i � 1), and
node[i� 1] is not adjacent to vd, set R := �R.

Step 4. Set node[i]:p := L(i); node(i):s := L(i) + R, and set node[i+ 1] to be the node which
the secondary link of node[i] leads to. Update mx; my; mz for node[i+ 1].

Step 5. If node[i+ 1] = node[i� 1], then set node[i+ 1] := vd and stop. The destination node
has been reached. Otherwise, set i := i+ 1; R := �R, goto Step 3.

The correctness of Algorithm 3.2 is proved by the following theorem.

Theorem 3.2 The subnetwork obtained from Algorithm 3.2 is an IFI path from vs to vd.

We make several remarks on Algorithm 3.2 as follows.

1. In Step 4, the address of node[i + 1] can be obtained from that of node[i] using De�ni-
tion 2.1, which gives the addresses of the six neighboring nodes of a node in six directions.
The values ofmx; my; mz for node[i+1] can be updated directly with Algorithm 2.1 using
the address of node[i + 1]. But a simpler way of doing this is as follows. Let u be the

2Here \above" means counter-clockwise and \below" means clockwise.

6

direction of link node[i]:s and v; w be the remaining two directions. Let s = 1 if link
L(i) + R is at the positive direction of u and s = �1 otherwise. Then, if (mu = mv = 0
and smw > 0) or (mu = mw = 0 and smv > 0), update mv := mv � s;mw := mw � s.
Otherwise, update mu := mu � s. The correctness of this algorithm can be veri�ed by
placing the destination node vd at the center of the wrapped hexagonal mesh and checking
the changes of mx; my; my as one moves from node[i] to node[i+ 1] along link node[i]:s.

2. In Step 2, the initial rotating direction R for the secondary link is chosen such that if
node[1] has two links both on shortest paths3 to the destination nodes, node[1]:s will take
one of them. In this way, the resulting IFI path needs less links and nodes than when
doing otherwise. The way in which the primary link is chosen in Algorithm 3.1 also serves
this purpose.

3. Since the primary links are always on the shortest path to the destination, they form a
shortest path sinking tree to the destination. In other words, if a packet generated at any
node in S is always forwarded using the primary links, it will take a minimum number
of hops to the destination. This fact results in the following routing policy at each node:
an arriving packet should be forwarded via the primary link whenever possible. The
secondary link is used only if the primary link is down.

We now discuss how the IFI real-time channel can be established over an IFI path obtained
from Algorithm 3.2. The procedures to establish an IFI real-time channel are composed of the
following three steps.

Step 1. Calculate the packet delay bound over each link of the channel.

Step 2. Calculate the end{to{end delay bound using the link delay bounds.

Step 3. If the end{to{end delay bound is not larger than the requested one, the channel can
be established. Calculate the link delay bounds to be assigned to the channel. Otherwise,
the channel establishment request is rejected.

Results in [3, 4] can be used for the calculation of the link delay bounds in Step 1. Let
node[i]; i = 1; � � � ; k be the nodes of an IFI path obtained from Algorithm 3.2, where node[1] is
the source node and node[k] is the destination node. Let d[i]:p and d[i]:s be the delay bounds
over the primary and secondary links of node[i], respectively. Then the end{to{end packet
delivery delay bound in Step 2 can be calculated using the following algorithm.

Algorithm 3.3 (Calculation of the packet delivery delay bounds) .
The packet delivery delay bound d[i] from node[i] to the destination node node[k] can be

calculated as follows:

d[k� 1] = maxfd[k � 1]:p; d[k � 1]:s+ d[k � 2]:pg;

d[k� 2] = maxfd[k � 2]:p; d[k � 2]:s+ d[k � 1]:pg;

d[i] = maxfd[i]:p+ d[ip]; d[i]:s+ d[is]g i = k � 3; � � � ; 1:

where node[ip]; node[is] are the nodes to which the primary and secondary links of node[i] lead,
respectively.

7

node[k-2]

node[k-1]

node[k]

node[i]

node[i].s

node[i].p

node[k-1].p

node[k-2].p

node[k-1].s

node[k-2].s

(b)(a)

]p

node[i s]

node[i

Figure 4: Calculation of d[i]'s.

The correctness of Algorithm 3.3 can be veri�ed as follows. From the proof of Theorem 3.2,
the connections between node[k � 2]; node[k� 1]; and node[k] are shown in Figure 4(b), from
which the �rst two equations can be obtained. For 1 � i � k�3, node[i] is connected to node[ip]
and node[is] in the way shown in Figure 4(a), which proves the remaining k�3 equations. Since
ip and is are always larger than i for i � k � 2, the maximum delay bound from node[i] to
node[k] can be obtained from the above equations.

If d[1] � D, the IFI real-time channel can be established, and we need to determine the link
delay bounds to be assigned to the channel. As discussed in [3, 4], the link delay bounds of the
channel should be set as large as possible to reduce the channel's inuence on the links' ability
to establish more real-time channels in future. This can be done using the following algorithm.

Algorithm 3.4 (Assignment of link delay bounds) .

Step 1. In Algorithm 3.3, for i = k � 1; � � � ; 1, record the link (i.e., the primary or secondary
link) l[i] on which the maximum is achieved for d[i]. Notice that there could be two links
for i = k � 2 or i = k � 1.

Step 2. Record all the links traversed as one goes from node[1] to node[k] using only the links
recorded in Step 1. This gives a critical path from the source to the destination which has
the end{to{end delay bound d[1] as calculated from Algorithm 3.3.

Step 3. Let N be the total number of links on the critical path. For each link `j on the critical
path, set the channel's delay bound dj := dj+(D�d[j])=N , where dj is the minimum link
delay bound calculated for `j.

Step 4. Recalculate d[i]'s in Algorithm 3.3 with the link delay bounds on the critical path re-
placed by dj's. The channel's delay bounds of the links not on the critical path can then
be calculated as the di�erences of d[i]'s of the nodes they connect.

In summary, we have the following algorithm for the establishment of an IFI real-time
channel.

3Note that there could be multiple shortest paths between a pair of nodes.

8

X

Z

Y

1

2

3 4

5

6

7

8

10 (20)

10
10

20

10

10 2010

30

20

10

15 (30)30 (60) 10 (20)

25 (50)35 (70) 20 (40)

10

10

10

Figure 5: An IFI real-time channel from node 1 to node 8. Solid arrows
represent the primary links, and dashed arrows represent secondary links.
Link delays assigned to the channel are shown near the links.

Algorithm 3.5 (Establishment of an IFI real-time channel) .

Step 1. Calculate the minimum packet delay bounds d[i]:pmin and d[i]:smin over the primary
and secondary links of node[i]; i= 1; � � � ; k� 1.

Step 2. Calculate the end{to{end delay bound d[1] from Algorithm 3.3.

Step 3. If d[1] is larger than the user-requested end{to{end delay bound D, the channel request
is rejected. Otherwise, the channel can be established with the link delay bounds calculated
from Algorithm 3.4.

We now give an example to demonstrate the above ideas. Figure 5 shows a portion of a
hexagonal mesh. We want to establish an IFI real-time channel from node 1 to node 8 with
channel parameters (T; C;D) = (100; 5; 70).

We �rst construct an IFI path from node 1 to node 8 using Algorithm 3.2. For i = 1,
node[1] = node 1. (mx; my; mz) = (2; 0;�2). The initial rotating direction for the secondary
link R = 1 since abs(mx) > 1 and mz 6= 0. From Algorithm 3.1, the primary link is calculated
to be node[1]:p = L(1) = X , and the secondary link is node[1]:s = L(1) + 1 = �Z.

Set the next node to one which link �Z leads to, then node[2] = node 2. Update mx; my; mz

for node[2] as follows. The direction of �Z is Z, so u = Z, and v = X;w = Y . Also, s = �1.
Since mw = 0 and smv = �2 < 0, we only need to update mu := mu� s = �2+1 = �1. Thus,
for node 2, (mx; my; mz) = (2; 0;�1).

9

Repeating the above procedure, we get an IFI path as shown in Figure 5, where the primary
links are denoted by solid arrows and the secondary links by dashed arrows. It is not di�cult
to see that a packet can be transmitted from node 1 to node 8 in the presence of any isolated
failures. Also, all the primary links and the nodes form a shortest path sinking tree to the
destination node.

We now establish an IFI real-time channel over the IFI path thus obtained by assigning
delay bounds to the links using Algorithm 3.5. Suppose there is no other real-time tra�c in
the network. Then, for i = 1; � � � ; 8, d[i]:pmin = d[i]:smin = C = 5. Using Algorithm 3.3, d[i]'s
are calculated and shown near each node in Figure 5. The requested real-time channel can be
established since d[1] = 35 < D = 70.

The critical path can be determined by recording the links over which the maximum is
achieved in Algorithm 3.3, which is in this example the ones marked by \//" in Figure 5. There
are a total of N = 7 links on the critical path. The channel's delay bounds over the links of
the critical path are thus dj = dj + (D � d[1])=N = 5 + (70� 35)=7 = 10. The updated values
of d[i]'s calculated from Algorithm 3.3 are shown in the parentheses near each node. Then, the
channel's delay bounds on the other links can be calculated as the di�erences of d[i]'s of the
nodes they connect, which are shown near each link in Figure 5.

From the above example, one can see that an IFI channel usually needs 3 to 4 times more
links than a basic real-time channel. This means that more transmission bandwidth needs to
be reserved for an IFI channel. This \over-reservation" reduces a network's ability of accommo-
dating real-time channels. However, as discussed in [3, 4], real-time channels make only "soft"
reservation since any unused bandwidth can be used for non real-time tra�c. In this sense, the
\cost" of an IFI channel to non real-time tra�c is the same as a basic channel. So in a network
with majority of tra�c being non real-time (which is usually the case in practice), IFI real-time
channels is an economical means of achieving fault-tolerant real-time communication.

4 Conclusion

We have in this paper discussed how IFI real-time channels can be established in HARTS by
exploiting its wrapped hexagonal mesh topology. Thus far, the researchers of the HARTS
project have implemented basic real-time channels [10]. Upgrading the HARTS communication
subsystem to accommodate IFI real-time channels will be easy by using the following features
of HARTS architecture:

Programmable Routing Controller: Built as a testbed for distributed computing systems,
HARTS achieves the maximum exibility by using a custom-designed programmable rout-
ing controller for each node. Thus upgrade of the current basic real-time channel routing
algorithm to the IFI real-time channel routing algorithm is extremely simple. The system
can also be easily built to support di�erent types of real-time channels ranging from basic,
single-failure-immune (SFI) [5], to IFI.

Bit-by-bit feedback transmission links: The current HARTS is equipped with bit-by-bit
feedback transmission links. Each receiver sends back every bit it receives from a sender.
In this way, each node has continuous information about the status of its neighboring
nodes. This provides su�ciently error detection capacity required by the IFI channels.

Basic real-time channels have already been implemented in HARTS. We expect the en-
hancement with IFI channels would make HARTS an even more promising architecture for
distributed fault-tolerant real-time systems.

10

References

[1] D. Ferrari and D. C. Verma, \A scheme for real-time channel establishment in wide-area
networks," IEEE Journal on Selected Areas in Communications, vol. SAC-8, no. 3, pp.
368{379, April 1990.

[2] K. G. Shin, \HARTS: A distributed real-time architecture," IEEE Computer, vol. 24, no.
5, pp. 25{35, May 1991.

[3] Q. Zheng and K. G. Shin, \On the ability of establishing real{time channels in point{
to{point packet{switched networks," IEEE Transactions on Communication (in press),
1993.

[4] Q. Zheng, Real-time Fault-tolerant Communication in Computer Networks, PhD thesis,
University of Michigan, 1993. PostScript version of the thesis is available via anonymous
FTP from ftp.eecs.umich.edu in directory outgoing/zheng.

[5] Q. Zheng and K. G. Shin, \Fault{tolerant real{time communication in distributed com-
puting systems," in in Proc. 22nd Annual International Symposium on Fault{tolerant
Computing, pp. 86 { 93, 1992.

[6] M.-S. Chen, K. G. Shin, and D. D. Kandlur, \Addressing, routing and broadcasting in
hexagonal mesh multiprocessors," IEEE Trans. Computers, vol. 39, no. 1, pp. 10{18, Jan-
uary 1990.

[7] A. M. Farley, \Networks immune to isolated failures," Networks, vol. 11, pp. 255{268,
1981.

[8] D. D. Kandlur and K. G. Shin, \A communication subsystem for HARTS: An experimental
distributed real-time system," submitted for publication.

[9] D. D. Kandlur, K. G. Shin, and D. Ferrari, \Real-time communication in multi-hop net-
works," in Proc. 11th Int. Conf. on Distributed Computer Systems, pp. 300{307. IEEE,
May 1991.

[10] K. G. Shin, D. P. Kandlur, D. L. Kiskis, P. Dodd, H. Rosenberg, and A. Indiresan, \A
distributed real-time operating system," IEEE Software, vol. 9, no. 5, pp. 58{68, September
1992.

Appendix: proof of Theorem 3.2

We prove that the resulting subnetwork S satis�es C1 and C2 of Theorem 3.1.
For any node[i] 6= vd in S, let v1 and v2 be the two respective nodes which links node[i]:p

and node[i]:s enter. From the algorithm, node[i+1] = v2. Thus v2 2 S. To show that v1 is also
in S, and v1 and v2 are adjacent, we �rst prove that there is a link in S from v2 to v1.

Since a secondary link will never lead to the destination node, v2 6= vd. Thus, node[i + 1]
always has two outgoing links node[i + 1]:p and node[i + 1]:s in S. Assume node[i]:s is 60
degree above node[i]:p. As shown in Figure 6, from the direction of node[i]:p (which is on the
shortest path from node[i] to vd), node[i+1]:p (i.e., the shortest path from node[i+1] to vd) has
only three choices: l3; l4; l5. We claim that node[i+ 1]:p can not take l3 since otherwise, from
Algorithm 3.1, node[i]:p would have taken l2 instead of l1. If node[i + 1]:p = l5, the primary

11

v 1

node[i+1]
v 2

node[i]

node[i].s = l

node[i].p = l

l

l

l5

4

3

2

1

v 3

Figure 6: Proof of the adjacency of v1 and v2.

link of node[i+ 1] is the link from v2 to v1. Otherwise, node[i+ 1]:p = l4. From Algorithm 3.2,
node[i+ 1]:s should be 60 degree below node[i+ 1]:p since node[i]:p and node[i+ 1]:p have the
same direction and node[i] is not adjacent to vd (node[i+ 1]:p would otherwise have taken l5).
Thus node[i+ 1]:s = l5 is the link from v2 to v1. Similarly, it can be proved that there is a link
from v2 to v1 in S when node[i]:s is 60 degree below node[i]:p.

We now prove that v1 2 S. If node[i + 1]:s = l5, then v1 = node[i + 2] 2 S. Otherwise,
from the above proof, node[i+ 1]:p = l5. If v1 = vd, from Algorithm 3.2, node[i+ 1]:s directs
back to node[i]. Then, v1 = node[i+ 2] 2 S. Otherwise, as shown in Figure 6, v3 = node[i+ 2].
Continuing this induction, we can conclude that either v1 2 S, or the six neighbors of v1 all
have primary links directed to v1. The latter case implies v1 = vd. Thus, v1 2 S. Since there is
a link in S from v2 to v1, v1 and v2 are adjacent in S.

Further, since node[i]:p is on the shortest path, dS(v1; vd) = dS(node[i]; vd)�1 < dS(node[i]; vd).
Since there exists a link in S from v2 to v1, dS(v2; vd) � dS(v1; vd) + 1 = dS(node[i]; vd). Thus
C1 is proved.

We now prove that there does not exist any loop all of whose nodes are of a constant distance
d > 1 to vd by contradiction. First, notice that such a loop contains only secondary links since
a primary link connects two nodes of di�erent distances to vd. Then, all the primary links
of the nodes in the loop must lead to a common node v. This is from the fact proved above
that either node[i + 1]:p or node[i + 1]:s must lead to a node v which node[i]:p leads to. But
node[i+ 1]:s can not lead to v since it must lead to a node of the same distance to vd as that
of node[i]. This is possible only if v = vd, i.e., d = 1. Thus, C2 is proved. 2

12

	Title Page
	Title Page
	page 2

	Establishment of Isolated Failure Immune Real-Time Channels in HARTS
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

