
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Autonomous File System: The
RECONCILE program

John H. Howard

TR93-09a December 1996

Abstract

RECONCILE combines files stored at two or more sites while avoiding the danger of losing
updates at one site because of updates performed concurrently at another. This report describes
the program in detail, including motivation, basic concepts, the programś external interface, and
internal design.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Revision History:

1. Initial version, MN93-12, May 12, 1993.

2. Revised and reissued as TR93-09, June 8, 1993.

3. Reformatted, July 6, 1994.

1

Scenario

Imagine that you are writing a book using personal computers at your office and your
home, carrying your files back and forth on a diskette. Your normal procedure is to copy
all the working files from the diskette to the computer you are about to use, edit one or
more chapters, and copy the edited files back to the diskette when you are done.

You have three different copies of your files, one stored in the office computer, one at
home, and one on the diskette. Even though there are really three copies, you think of
them as being different versions of the same files.

Now suppose you forget to copy the files you edited at the office and go home with an
out-of-date diskette. You copy the diskette to your home computer and continue editing,
not noticing that you are starting with stale information. (Perhaps you are editing a
different chapter.) The next day you copy the updated files back to your office computer,
losing yesterday's work!

There are some things you can do to help protect against this common error. For
example, some file copying programs have an option to check dates and refuse to replace
a newer version of a file with an older one. This helps considerably, but is not perfect. It
does not detect the error described above, for example, since the versions of the files you
edited at home in the evening do have a later date than the versions you edited yesterday
at work. It also fails to handle the case of deleting obsolete files.

The reconcile program detects conflicting updates, so you can use it to update files safely.
It will replace a file with a later version only if it is sure that the later version was derived
from the one being replaced. If the file to be replaced is not an earlier version, reconcile
will report an error so that you can resolve the conflict yourself.

In the scenario, neither the office nor the evening version of the files was derived from the
other, so reconcile won't overwrite them. (They were both derived from the same earlier
version, but not from each other.)

How does reconcile know when one version of a file was derived from another? The
basic idea is to keep a history of past versions of files. If one history says that a file has
gone through versions 1, 2, and 3 while the other has only 1 and 2, it is safe to copy
version 3. If one history shows versions 1, 2, and 3 while the other shows versions 1, 2,
and 4, there is a conflict since neither version 3 nor version 4 was derived from the other.

Concepts

A file is a body of closely related information stored in a computer. Typical examples of
files would be documents you edit with a word processor, or spreadsheets, or messages.
Each individual memorandum, letter, or book chapter is kept in its own file. In addition to
its contents, a file has a name and a time stamp. The name identifies the file and the time
stamp says when the file was created or changed. As time passes, a file with the same
name will have different versions, distinguished by their different time stamps.

A directory is a collection of files. Usually the files in a directory have some loose
relationship, for example that they are all part of some larger body of information like the
chapters in a book, or that they were created by the same person, relate to the same topic,
or are owned by the same organization. Directories also have names, and may also have
time stamps although directory time stamps aren't very useful.

Most computer systems arrange files and directories in a hierarchy (or tree), which
simply means that directories can contain sub-directories. An advantage of sub-directories
is that they can group closely related files together. To find a file you work your way into
the successive sub-directories until you reach the file you want.

A working session is a period of work on a single computer. During the course of a
working session, your files might be in an incomplete or inconsistent state and you
ordinarily don't want to make a permanent record of them or to send copies elsewhere.
Usually you try to finish a day's work by cleaning up the inconsistencies before ending
your working session, although occasionally a session might last several days. For the
sake of discussion here, a session can be anything you choose. The important thing about
it is that you don't use reconcile to copy files during a session, but only at the beginning
and/or end.

A site is a specific storage location for a directory hierarchy. It is an assumption of this
document that one should think of several sites as all containing versions of the same
directory hierarchy. These versions might be the same or different. The basic purpose of
reconcile is to combine hierarchies at different sites, making them all the same by safely
updating versions of individual files.

One should not think of a site as being the total disk storage on any one computer.
Usually a site would contain a number of unrelated hierarchies defined according the user's
convenience. A personal computer, for example, might contain separate hierarchies for
system software, installed applications, and one or more individuals' working files. While
actual systems often glue these into a single super-hierarchy, it is easier to think of them as
being separate.

A site may also be nothing more than a diskette. The way we will copy files to and from
the diskette in the introductory scenario will be to reconcile the diskette version with the
computer (home or office). At the beginning of a working session, reconcile will notice
newer files on the diskette and copy them to the computer. At the end of the session,
reconcile will notice newer files on the computer and copy them to the diskette.

A journal is a history of file versions. To do its work, reconcile creates a journal for each
site, merges them to look for missing versions, and either updates by copying more recent
non-conflicting versions, or else reports errors if there are conflicts.

As with database journals, the journals used by reconcile contain not only names and time
stamps but also actions. For reconcile these are very simple: either "update" or "delete",
which can be inferred from the fact that a previously present file has disappeared.
Including deletion operations in journals means that reconcile can (safely) propagate
deletions to other sites, again checking for conflicts.

There are actually two kinds of journals: internal and external. An internal journal is
stored as a special file within the directory it describes. In a hierarchy, each directory has

3

its own internal journal. An external journal contains the same information, but has been
extracted into a separate file, and stored somewhere else. Although reconcile can use
both kinds, it can only update to or from internal journals. External journals are sources
of information about necessary updates, but the actual files and directories involved are
not directly accessible.

Using reconcile

The simplest and standard way to use reconcile is to apply it to several directly accessible
sites such as mounted disks or diskettes. For example the command

reconcile . a:/

would reconcile the current working directory (named "." in most systems) with the
diskette in drive A. The order of the two directories doesn't matter. In the introductory
scenario, you would do this when you begin using either your office or your home
computer, and again at the end. So long as you never forget to do this, all updating will
be automatic. You can even delete obsolete files without having them "come back" at the
other computer.

Suppose you do happen to forget to reconcile at the beginning or end of a session, and
you then update some file (say "oops"). The next time you reconcile with the two
conflicting versions of the file, you will get the error message:

SAVE OLD: a:/oops in oops1
WARNING: oops1 is a saved version of oops

At this point you might use a tool such as diff to find and display the differences between
the two versions, then edit a:/oops to recover any changes in a:/oops1 . When you
are satisified that you have recovered everything, delete a:/oops1 in order to suppress
the warning message on later reconciliations.

Building journals

Reconcile builds its journals by comparing the actual directories with the previous versions
of its own journals each time it is run. This means that it makes sense to run reconcile
even for a single site:

reconcile .

updates the internal journal of the current working directory. If you make several
successive versions of a file, reconcile will only see the last one since the last time it was
run. This can actually be an advantage, since the other versions are of no particular
significance as long as they are not transmitted to any other site. You can choose how
often you want to run reconcile. Even if you forget to run it at the end of a working
session, you will not lose anything permanently. The cost of forgetting a reconciliation
will be an increased probability of conflicting updates, needing manual intervention at a
later time.

Some other applications

In addition to the introductory scenario, here are some other applications for reconcile.

Suppose you are jointly writing a research paper with a colleague. You store the various
sections of the paper in a directory to which each of you has access. You ordinarily
communicate directly to avoid conflicting updates, but sometimes you forget. You can
handle this with reconcile. Make a private copy of the entire directory for each of you.
Let's say the directories are named ~tom/paper, ~dick/paper, and ~common/paper, and
that you are Tom.

Before beginning a working session, you perform the command
reconcile ~tom/paper ~common/paper

at this point there might be conflicts; if there are you may need to give Dick a call to
resolve them. Having done so if necessary, you are sure that your working version of the
paper is in agreement with the shared version. During the course of your work various
sections might be temporarily wrong, or inconsistent with each other, but since this is just
your working copy and not the common version, you need not feel concerned. Eventually
you're happy with what you've done; you've proofread it and it appears to be consistent
and free of errors. You check it back in with exactly the same command as above.

Reconcile Command Syntax

The syntax of the reconcile command is
reconcile [options] [[-mode] (directory | file)] ...

If no directories or files are provided, the current working directory (".") is used.

directory names a directory containing an internal journal and files

file names an external journal describing some remote site
("-" refers to an external journal on standard input or output)

-mode one or more of the following letters:
r read the journal but don't write it
w write the journal but don't read it
o do not update files, only the journal

The [options] are:

-q work quietly, suppressing messages about actions taken

-n do not update any files (OK to update journals)

-h print a description of the command syntax, don't do anything else.

-a sitename Abandon named site. Use this to forget a site that is no
longer in use. This allows the program to discard obsolete journal entries
needed only for reconciliations with old sites. Sites are automatically
abandoned after two months, with warnings being printed after one month.

5

Environment:

In addition to command line parameters, reconcile gets a name for the computer system
being used from the environment variable $HOST , using "UNKNOWN " if it is undefined.
This name is needed only as a substitute for the disk volume label used to identify sites.

Internal Documentation

This section gives the details how the program works. It will be of interest primarily to
individuals desiring a deeper understanding of the program's behavior and to programmers
interesting in maintaining or modifying the program. See also the appendixes, which give
supporting information.

Overall Sequence of Events

Reconcile performs its processing in the following general steps:

1. Parse parameters, building a list of sites to be reconciled. If no sites are given, use "."
(the current working directory) as the only site.

2. Read the old journal file for each site.

3. For each internal journal, update the journal by examining the files currently present at
that site.

4. Update the list of known sites and their most recent reconciliation times. Discard
events known from these times to be obsolete at all known sites.

5. Perform the actual reconciliation, detecting conflicts and replicating files when there is
no conflict, and warning the user when a conflict exists.

6. For each site, write out an updated journal file.

These steps are described in more detail below.

Parameter parsing (step 1)

This is a straightforward process of examining the parameters sequentially. It is
performed by procedure main in module reconcile .

Reading and writing journals (steps 2 and 5)

Journals read by procedures readjournal and readentries in module journal ,
and written by procedures writejournal and writeentries . The journal file
format is editable text, described in Appendix A.

Updating from the actual directory (step 3)

Journals are brought up to date with reality by reading the actual directory and inserting
journal entries accordingly. This work is done by procedure readdirectory in
module journal . Current directory entries are considered one at a time. For each one
found, a new journal entry for the site, time, and filename is created if none exists, and the
new or existing entry is marked as having been confirmed.

After the entire directory has been read, a pass is made through the journal looking for
unconfirmed entries. An unconfirmed entry indicates that a file once existed but no longer

7

does, that is, that it has been deleted. For each such unconfirmed entry, a new journal
entry is created with a deletion action and the current time as its time stamp.

Reconciliation (step 5)

The actual business of reconciliation is performed on the internal representation of the
journals by procedure reconcile in module journal .

Reconciliation is performed only for the "current" entry, that is, the most recent entry for
the file. Previous entries refer to out-of-date versions of the file. The goal is to make the
entry (and file) present at every site. For each site at which the entry is not present, first
check to see if there is a conflict (see below). If there is none, copy the file from any site
at which the current entry exists. Copying the file may actually be deleting it if the current
event is a deletion event, or may involve creating or deleting a directory or symbolic link.

ASCII text files vary slightly in format between DOS and UNIX systems. The copying
procedure deals with this by inspecting the beginning of each file it copies. If the file looks
like a text file (it contains only standard printing and control characters organized into
lines no longer than 128 characters) then the program automatically adjusts the text format
for the target system type.

Detecting inconsistencies

A conflict exists for a site if the site does not have the current version of a file, but does
have some previous version, and the current version is not derived from the previous one,
as defined in the next paragraph. Existence of derivation shows that the current version
came from the previous one by a connected series of user actions. This implies that it is
safe to replace the prior version with the current one, since doing so is equivalent to
replaying the sequence of actions in the derivation. Lack of a derivation implies that the
replacement may be unsafe and therefore should not be done automatically.

A derivation is a sequence of steps that convert the older version to the newer one. Each
step should be directly reflected in the journal of some site, as a successive pair of entries,
one following the other, with no other entries for the file in between at that site. (There
might be intervening entries at other sites, which would mean conflicts elsewhere but not
for the derivation being considered.) This sequentiality at a particular site implies that the
later of the two successive versions was created directly by editing or modifying the earlier
of the two. A derivation is like an audit trail; it records all the steps taken to convert the
older version to the newer one.

Existence of a derivation is determined by procedure connected of module journal ,
which follows the direct steps backward from the current version, skipping unrelated
events, until it reaches the prior version.

Discarding obsolete events (step 4)

Without some way of discarding obsolete events, the journal files would grow indefinitely.
An event is obsolete at a given site if there is a more recent event for the same file at the

same site. If an event is obsolete at all sites, it can be discarded because it will never cause
an inconsistency.

In order to track this, journals contain a list of "known sites", each marked with time of
the most recent reconciliation involving the known site. This list is propagated and
updated as reconciliations occur. The known site times indicate when information came
from the known sites. In addition, each known site reflects these time stamps back by
generating a list of acknowledgments. An acknowledgment gives the name of the known
site, the name of a site known to it, and the time stamp of that source site. Again, these
acknowledgments are propagated and updated appropriately. Originating sites may use
the time stamps of the acknowledgments to determine when events are obsolete at other
sites. Any event that happened before the oldest acknowledgment time must have been
propagated to all known sites, so its predecessors can be discarded without causing
conflicts.

Finally, there is a potential problem about lost sites. If a site fails to produce
acknowledgments, it will cause events to accumulate indefinitely. This could easily
happen if the site is no longer used. To avoid this, the program issues warnings about any
sites last heard from more than a month ago, and removes them from the known site list
after two months. There is also a command line option to discard a known site
immediately.

9

Appendix A: Journal file format

Journal files are standard text files that can be observed (and even changed, at your own
risk) with any text editor. The files contain a header line, several lines identifying known
sites, and then one line for each journal entry proper.

Header line:

Journal of <sitename> (<systype>) - <programname>

where <sitename> is the fully qualified name of the file hierarchy, <systype> is the
system type (DOS or UNIX at present), and <programname > gives the name and
version of the reconcile program that wrote the journal.

Entry line:

The entry lines each contain a fixed set of fields, separated by tabs, in the format:
<verb> <date> <time> <name><type> <remarks>

<verb> is one of a limited set of symbols denoting possible actions:

+ create or update, making a new version
- delete
> some other site has a more recent version
< some other site has a more recent deletion
* some other site has a more recent version,

but it conflicts with the previous version at this site.

<date> is the date the action occurred (yy/mm/dd format)

<time> is the time the action occurred (hh:mm:ss format)

<name> is the file's name, followed directly by the type (no intervening tab)

<type> is a single character:
(nothing) for an ordinary file
/ for a subdirectory
@ for a symbolic link

<remarks> are arbitrary comments. Saved files are indicated by the special remark:
!was <original name>

Special handling:

Lines in the journal of the form:
#ignore <pattern>

cause matching files to be ignored during reconciliation. The pattern is a file name in
which wild card ("*") characters match arbitrary sequences of zero or more characters.
#ignore applies to the directory in which it appears and all of its subdirectories.

Lines in the journal of the form:
#normal <pattern>

override directives such as #ignore inherited from parent directories, restoring normal
handling to files with matching names. Within a single directory, the first matching
directive is used.

Known site and acknowledgment:

The known site lines give the date and time of the most recent reconciliation for each
known site. Each line is of the form:

$ <date> <time> <sitename>

Acknowledgments immediately follow the known site line for the acknowledging site, and
are of the form

. <date> <time> <sitename>

where the acknowledging site (named by the immediately preceding known site line) is
simply reflecting a reconciliation time back to its source.

11

Appendix B: Program Modules

The program is built out of the following source modules, each of which is represented by
a C++ source file (<name>.cpp) and a corresponding header file (<name>.h).

entry Defines individual journal entries.

filesys Performs local file system input/output operations.

journal Defines journals, performs most of the actual work.

knownsit Defines "known sites", handles acknowledgments obsolete event times.

myalloc Performs storage allocation and checks for memory leaks.

parse Supports text parsing operations in parameter and journal file processing.

reconcil Main program, parameter analysis, and user message generation

site Defines sites.

timestmp Defines internal and external formats for date and time information.

filetypeHandles filename-based special handling rules such as #ignore.

	Title Page
	Title Page
	page 2

	Autonomous File System: The RECONCILE program
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

