
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Using Reconciliation to Share Files between
Occasionally Connected Computers

John H. Howard

TR93-08a December 1996

Abstract

Future large distributed systems will be made by interconnecting highly autonomous subsystems,
rather than by building ever more elaborate complexes which attempt to provide a single system
image transparent to the user. The work described here explores the implications of this in the
context of file sharing using occasional reconciliation.

Fourth Workshop on Workstation Operating Systems (WWOS-IV), Napa, California, October
14-15, 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1996
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Revision History:—

1. First version: May 27, 1993

2. Reformatted: July 7, 1994

1

Introduction

Most distributed file systems attempt to provide the impression of a single, globally
consistent system. This simplifies things for users, avoiding the need to keep track of
multiple servers; and for operators, making it possible to reconfigure servers, migrate files,
and perform all sorts of maintenance without interfering with users or requiring their
cooperation. Furthermore, it allows application programs, written to deal with a single
system, to continue to be used unchanged in a distributed environment.

There are several arguments against the use of single system images, however. They
require frequent communication between the various servers and clients, often depending
on high performance networks. Therefore, they are unsuitable for mobile computers.
They usually go to great lengths to provide complete consistency, regardless of whether it
is really needed or wanted. Immediate and automatic distribution of new files and versions
of files may not be what the user wants, as it reduces user control over data sharing, and
poses security risks. Sophisticated users and application programs may prefer to take
advantage of desirable features of the distributed environment. Since application
programs can not be expected to help at all dealing with network failures, transparent
systems must go to great lengths to handle them completely.

Recent work in file systems for mobile computing addresses the problem of lost or slow
communication by allowing some form of disconnected operation. However, the
underlying philosophy is still based on a single system image; the disconnected client is
considered to be in a sort of error condition that should be rectified as soon as the file
server connection is restored.

The work described here takes a different philosophical position, namely, that the file
system is built out of separate, autonomous parts that communicate occasionally to
reconcile their different versions of the files they "share". There is no single authoritative
source, but rather a collection of peers. Reconciliations happen at times convenient for
the user or application, rather than continuously. Any participating system can choose to
operate completely independently and autonomously for an indefinite period.

This approach has its advantages and disadvantages. Advantages include independence
from network connectivity and performance, easy mobility, and the ability to make and
exploit private versions of shared information. Disadvantages include the need to specify
reconciliation times and to deal with conflicts between inconsistent versions. It is the
purpose of the work in progress reported here to explore these advantages and
disadvantages by means of a prototype.

Work in progress

The heart of the experimental system being developed is a program, RECONCILETM,
which compares and reconciles selected file system hierarchies. Briefly, it builds a journal
for each site (that is, the file system sub-tree being reconciled) by comparing the file
system state as described in the pre-existing journal with the actual state observed when
the program runs. The journals record file system activity such as file creations, updates,
and deletions. The program compares the journals in order to identify and propagate
updates to sites that lack them. Conflicts arising from independent updates at multiple
sites are detected and reported reliably. The journals also contain information about other
sites and the last time each was contacted; this information is used to determine when it is
safe to discard obsolete journal entries.

Current versions of the RECONCILE program exist for DOS and UNIX platforms, and a
Macintosh version is under development. There are a number of specific applications
being explored:

- Transporting files between personal computers at different locations (office and home, or
desktop and portable) by way of diskettes (this is often referred to as "sneakernet"). This
involves reconciliations between three "sites": the two computers and the diskette that is
carried back and forth, to be reconciled with the working directory of whichever personal
computer is being used at both the beginning and the end of each working session. If a
reconciliation is forgotten or the disk left behind, it is possible to continue work using the
existing versions. The RECONCILE program will detect and report any conflicts, which
the user must then resolve by hand. Personal experience to date suggests that this is
relatively infrequent and not too to handle.

- Transport between different platforms (DOS and UNIX) for software development.
This is similar to the sneakernet application above, with the added feature that the
program automatically recognizes platform types and adjusts text file formats accordingly.

- Joint development in a shared project. Each developer has a private copy of the entire
project, and there is a shared copy accessible to all. Reconciliations (possibly constrained
to copy files only in one direction) are used to check working copies in and out and to
report� conflicts, which must be resolved manually. Intermediate reconciliations may be
used at appropriate moments to reduce the impact of accumulated inconsistencies.

- New release installation. In this case the sites are the directories on workstations used to
store program products and the distribution directories containing the new releases.
Installation uses one-way reconciliations, thus allowing for the preservation of local
customizations and detection of conflicts between them and the new releases. It is
expected that this approach would work well for subsystems and programs that use a

TM RECONCILE is a trademark of Mitsubishi Electric Research Laboratories, Inc.

3

single installation directory (or hierarchy), it would not handle programs that require
installation of files in a number of separate system directories.

Note that transparency and a single system image is inappropriate in all of these
applications. In every case, the user is directly aware of the existence of multiple sites and
versions and sees as being an advantage rather than an inconvenience.

Other applications could also be imagined. For example, the reconciliation program could
be extended to merge individual records in files containing personal databases such as
phone lists or calendars and then used to maintain and share the databases as above. For
such cases, the application program might do occasional reconciliations automatically,
leading to a partially transparent system in which temporary inconsistencies are tolerated
but expected to be infrequent.

Related Work

Distributed file systems that support disconnected operation include Coda [Kistler 92] and
Ficus [Guy 91]. Both of them use optimistic concurrency control based on time stamps
to detect conflicting updates during reintegration, but both retain the notion of a single
system image rather than exposing multiple versions to users and application programs.

Several commercial program products such as LapLink V [Laplink 93] and FileRunner
[Filerunner 93] provide a limited form of reconciliation based on copying newer files.
Simple time-based directory merging (used in some copy commands and in LapLink) does
not detect conflicting updates, and responds to deletions by restoring the deleted file from
the other site rather than by propagating the deletion action. FileRunner handles deletions
and detects some multiple update conflicts, but is organized around one master site and a
number of secondary ones.

The lazy replication system of Ladin, Liskov, Shira, and Ghemawat [Ladin 92] uses time
stamps to decide to propagate recent events in a general object system. Systems such as
this recognize multiple versions internally but do not make them visible to the user or
application program.

Grapevine [Grapevine 82] provided mail and user directories across a large organization;
it was able to deal with possible inconsistent versions because of the specific application it
supported.

There is a large body of work such as ISIS [Birman 87], distributed databases, and general
distributed object systems [Herlihy 90] which allow applications to choose levels of
consistency for their operations in one way or another. Generally speaking, the weaker
consistency levels relax the order at which operations might be observed [Eswaren 76,
Lamport 78], but do not work in terms of multiple sites or versions of the same object.

References

[Birman 87] Birman, K. and Joseph, T., "Reliable communication in the presence of
failures", ACM Trans on Computing Systems 5, 1 (Feb 87), 47-76.

[Eswaren 76] Eswaren, K., Gray, J., Lorie, R., Traiger, I., "The notions of consistency
and predicate locks in a database system", Comm ACM 19, 11 (Nov 76), 624-633.

[Filerunner 93] FileRunner, MBS Technologies, Inc., 4017 Washington Rd #4000,
McMurray, PA 15317.

[Grapevine 82] Birrell, A., Levin, R., Needham, R., and Schroeder, M., "Grapevine: An
Exercise in Distributed Computing", Comm ACM 25, 4 (April 1982), 260-274.

[Guy 91] Guy, R., Ficus: A Very Large Scale Reliable Distributed File System (Ph.D.
thesis, June 1991), UCLA Computer Science Department technical report CSD-910018.

[Herlihy 90] Herlihy, M. and Wing, J., "Linearizability: A Correctness Condition for
Concurrent Objects", ACM Trans on Programming Languages and Systems 12, 3 (July
1990), 463-492.

[Kistler 92] Kistler, J., and Satyanarayanan, M., "Disconnected Operation in the Code File
System", ACM Trans on Computer Systems 10, 1 (Feb 1992), 3-25.

[Ladin 92] Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S., "Providing High
Availability Using Lazy Replication", ACM Trans on Computer Systems 10, 4 (Nov
1992), 360.

[Lamport 78] Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed
System", Comm ACM 21, 7 (July 1978), 558-565.

[Laplink 93] Laplink IV, Traveling Software, Inc., 18702 North Creek Parkway, Bothell,
WA 98011.

	Title Page
	Title Page
	page 2

	Using Reconciliation to Share Files between Occasionally Connected Computers
	page 2
	page 3
	page 4
	page 5

